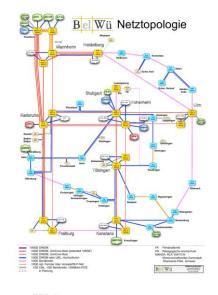


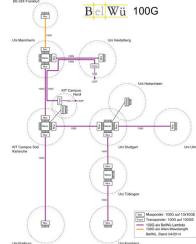
FACULTY OF SCIENCE Communication Networks

Resilient Integration of Distributed High-Performance Zones into the BelWue Network Using OpenFlow

IEEE Communications Magazine Special Issue "SDN Use Cases for Service Provider Networks"

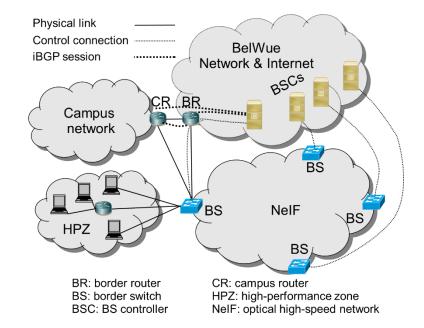
Mark Schmidt

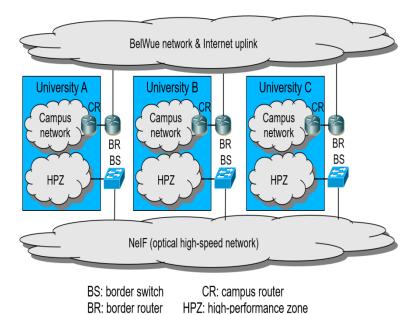

http://kn.inf.uni-tuebingen.de



Introduction

- BelWue ISP interconnects higher education and research facilities
 - 10 Gb/s core network

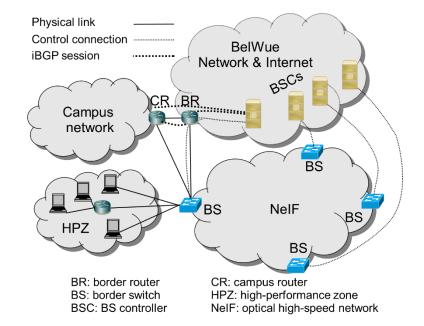

- BelWue core network is extended by highspeed network
 - Netzwerk f
 ür Innovation und Forschung – NeIF
 - Flexible optical platform
 - 100 Gb/s split up into 10x10 Gb/s
 - High-performance zones (HPZ)



- Each university consists of campus and HPZ
 - Connected by high-performance zone SDN switch (BS)
- HPZs
 - Form a separate network with its own IPv4 /22 address space
 - Dedicated /24 prefix per HPZ
- HPZ should communicate with
 - The legacy campus network
 - The Internet
 - HPZs at other campuses

- Forwarding or routing between the universities is necessary
 - A huge single LAN between all HPZs with classical switches
 - Only one large IP subnet
 - MAC-based forwarding also does not scale
 - Rather cheap
 - Forward traffic with the help of routers
 - Different IP subnets at each HPZ possible
 - Rather expensive
 - With SDN switches it is possible to develop a tailored solution for this problem

M. Schmidt: "Resilient Integration of Distributed High-Performance Zones into the BelWue Network Using OpenFlow", 13.10.2017, Tübingen

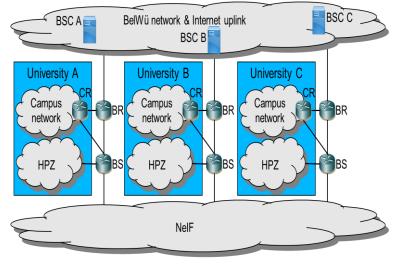

HPZ Integration into Campus and Belwue

Communication to "legacy" networks

EBERHARD KARLS

UNIVERSITÄT Tübingen

- BGP for signaling towards the legacy networks
 - BSCs act as proxy for BSs
- Every BS announces entire /22 with low priority
 - Withdraw prefix on failure and possibly install rate limiter on remote BSs
- Every BS announces local /24 with high priority



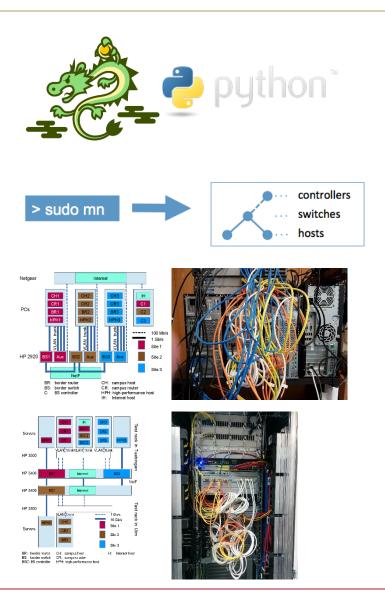
Communication among HPZs

EBERHARD KARLS

UNIVERSITÄT Tübingen

- Forward packet among HPZs with the help of SDN
- Default: Destination IP prefix matching at HPZ
 - Special rules, e.g. based on destination port, supported
- Forward action to local HPZ or to next hop HPZ
- Control path between BSC and BS
 - Out-of-band signaling
 - "Legacy" BelWue
 - No additional cables
 - Redundancy mechanisms
 - Rerouting

BS: border switch CR: campus router BR: border router HPZ: high-performance zone



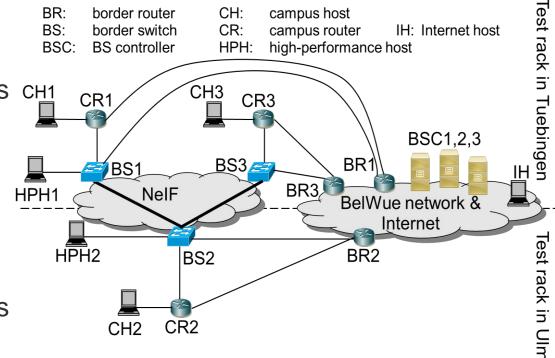
- SDN controller based on Ryu
 - Rapid prototyping
 - Lightweight
- Three testbeds

EBERHARD KARLS

TÜBINGEN

- Mininet based emulation
 - Basic proof of concept
- Local testbed
 - Based on 4 PC and 3 SDNcapable switches
 - Virtual machines for different components
- Distributed NeIF prototype
 - 3 university locations and BelWue location

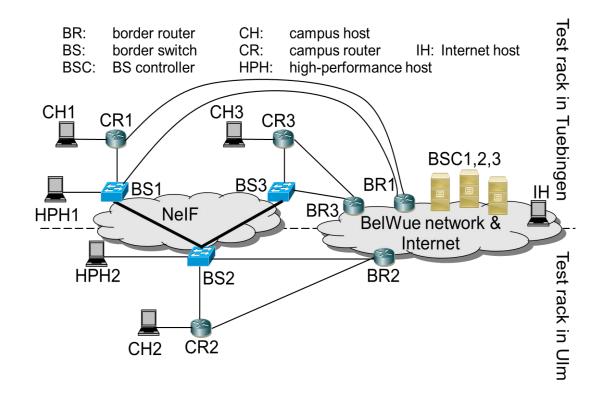
- Goal: integrate the NeIF network more in the (simulated) daily operation
- Automatic rerouting in failure cases
 - On NeIF failure use legacy access
 - On legacy failure use NeIF access
- Relieve legacy uplink
 - University to university communication through NeIF
- Traffic engineering with help of SDN
 - SDN can consider more parameters for routing decision
 - Treat certain flows special
- Step-by-step integration



- Basic connectivity test
 - Ensure all hosts can reach each other
 - Ensure traffic is sent through desired paths chi
 - Tools: ping and tcpdump
- Fail-over test

EBERHARD KARLS

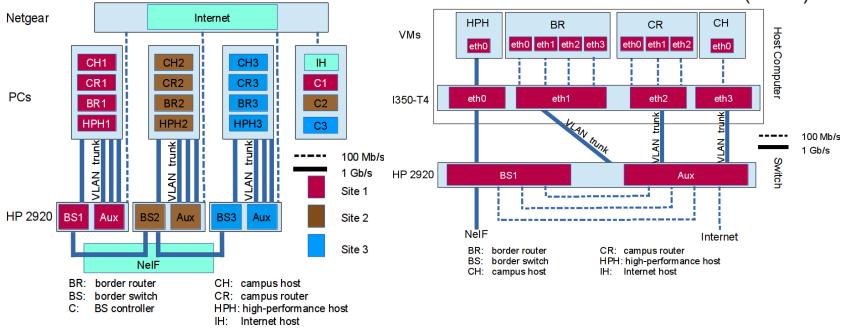
TÜBINGEN


- Disable link on NeIF
- Ensure traffic is sent through desired paths
- Measure time to recover
- Tools: ping and tcpdump

Tests

- Performance test
 - TCP throughput
 - HPZ to HPZ
 - HPZ to campus
 - Campus to campus
 - Tools:
 - iperf, netperf
 - http download
 - Result:
 - 9,4 Gb/s on 10
 Gb/s links
 - 960 Mb/s on 1
 Gb/s links
 - 480 Mb/s on 500
 Mb/s links

- Integration HPZs into university campuses and BelWue network
 - Based on iBGP towards "legacy" network
 - Based on OpenFlow in NeIF
- Implemented in 3 testbeds
 - Emulation, local testbed and real distributed prototype
- We performed several tests
 - Connectivity, performance, fail-over
 - Provided bandwidth for the HPZs and campuses is close to the theoretical optimum.

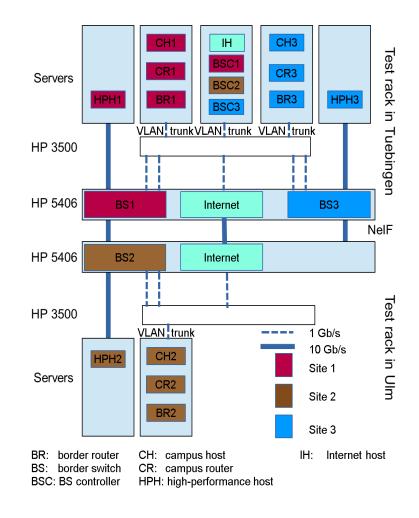


Dipl.-Inform. Mark Schmidt University of Tuebingen Chair for Communication Networks Sand 13, 72076 Tuebingen, Germany

Phone: +49 7071/29-70510 Email: mark-thomas.schmidt@uni-tuebingen.de

- Local testbed
 - Virtualized CH, CR, BR, HPH per location on single PC
 - Switches partitioned
 - SDN enabled
 - Conventional part, used to e.g. (de)multiplex VLANs
 - BelWue and Internet location based on Linux containers (LXC)

M. Schmidt: "Resilient Integration of Distributed High-Performance Zones into the BelWue Network Using OpenFlow", 13.10.2017, Tübingen



- Setup changes for NeIF prototype
 - Use of bwNET test racks

EBERHARD KARLS

TÜBINGEN

- Servers instead of PCs
- Distributed on 2 locations
 - Tuebingen and Ulm
- Use NeIF for high-speed links between locations
- HPH on dedicated machine
 - Utilize high bandwidth

