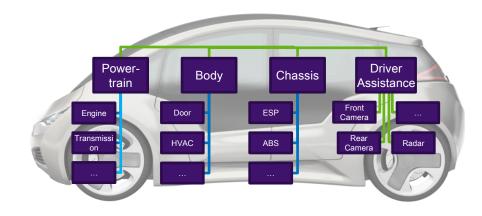
Retrofitting SDN to classical invehicle networks: SDN4CAN

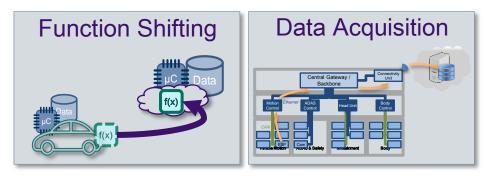
Robert Bosch GmbH, Corporate Research Dr. Marco Wagner, Dr. Michael Doering

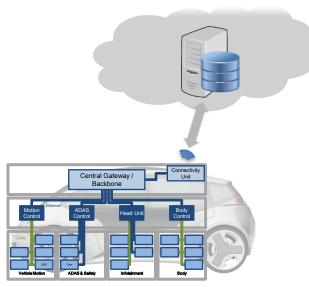
Retrofitting SDN to classical in-vehicle networks Agenda


- Automotive networks today
- ► Our approach: SDN4CAN
- Status, Future Work and Remaining Challenges

Retrofitting SDN to classical in-vehicle networks Automotive Networks today

- Lots of specialized networks
 - Controller Area Network (CAN)
 - Local Interconnect Network (LIN)
 - Media Oriented Systems Transport (MOST)
 - ► FlexRay
 - Automotive Ethernet (IEEE802.3bw–2015 100BASE-T1)
- ► Lots of Heterogeneity
 - ► Up to 80 electronic control units
 - E/E architectures strongly vary from OEM to OEM, from model to model and variant to variant
- Static development approach
 - All communication relationships, signals and messages are defined, tested and implemented at design time

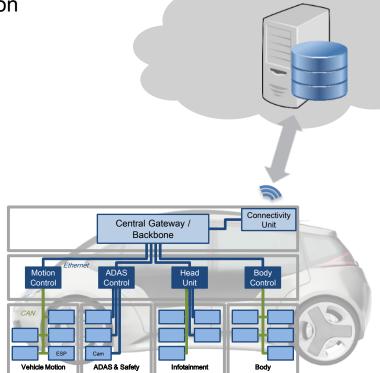




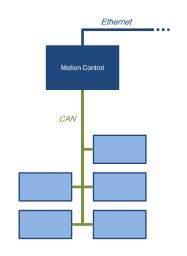
Retrofitting SDN to classical in-vehicle networks Automotive Networks today

Current trends and new use cases

- ► New use case are coming up
 - Shifting functions to the cloud
 - Acquiring vehicular data from the cloud
- New architectural styles are emerging
 - Less but more powerful ECUs
 - Introduction of Ethernet backbones
 - Partial break out from domain-oriented structures
 - New architectural approaches for automated driving functions
- ► New requirements regarding in-vehicle communication
 - Seamless, service-oriented communication model from the ECU to the cloud
 - Flexible communication mechanisms to transmit data only when needed

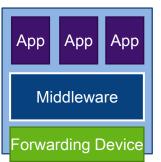


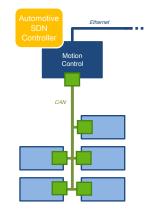
Retrofitting SDN to classical in-vehicle networks Automotive Networks today

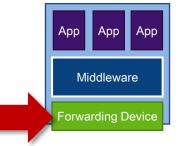

New challenges regarding network management

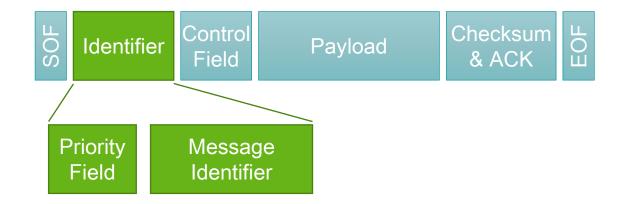
- ► Shift from static, development time network planning to runtime adaptation
 - Manage dynamic traffic on network and sub-network level
 - Ensure mission-critical communication can take place at any time
 - Use the resources and capabilities provided by the E/E architecture efficiently
- Manage the heterogeneity
 - Introduce network management principles that are capable on of managing the heterogeneity in
 - Network technologies (CAN, Ethernet...)
 - Protocols (SOME/IP, DDS...)
 - Establish network control mechanisms on all kinds of network technologies
- Introduce IT approved solutions to the automotive domain
 - Service-oriented communication is on its way
 - Software-defined Networking is discussed for the Ethernet domain
 - No sign of bringing SDN concepts to today's most used network system CAN

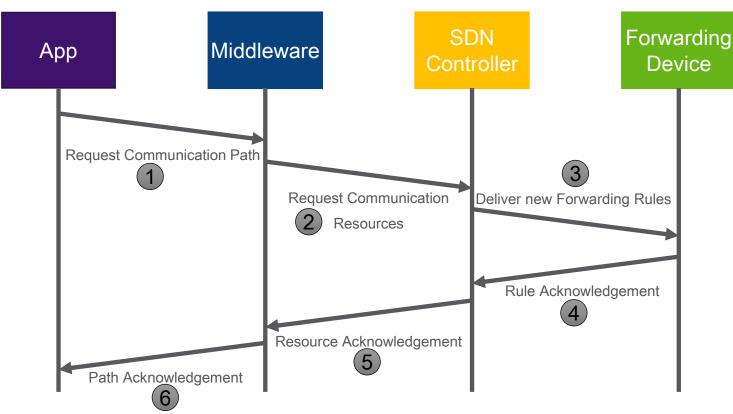
© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

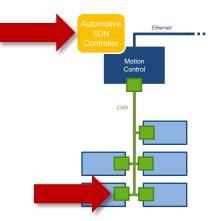

- ► Overall idea:
 - Bring the concepts and benefits of Software-Defined Network to the Controller Area Network
- Short introduction to CAN
 - Today's most used automotive network technology
 - Multi-master serial bus
 - Carrier Sense Multiple Access/Collision Resolution (CSMA/CR)
 - Message arbitration is based on the Identifier of a message
 - Up to 1 Mbit/s data rate (realistic: 500Kbit/s)




- Base element: Forwarding Device
 - Plays the role of a gatekeeper between a CAN node and the network
 - Control functionality (e.g. whitelisting, blacklisting, bandwidth budgeting)
 - Message prioritization (e.g. prioritized message queues, identifier manipulation)
 - Includes the interface to the Automotive SDN Controller
 - Forwarding of path requests
 - Accept and realize forwarding rules sent by the SDN Controller
- Topological approach
 - A forwarding device is added to every CAN node
 - One or more Automotive SDN Controllers monitor and govern the network

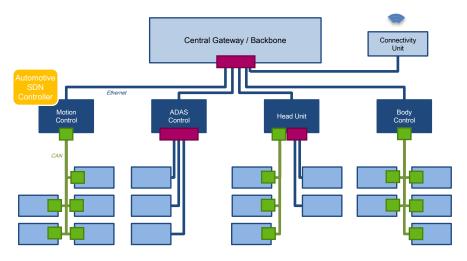



- ► Forwarding Rule example
 - Message prioritization through identifier manipulation



Provisioning of new communication paths

G CR/AEX1 | 10/11/2017


© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Retrofitting SDN to classical in-vehicle networks Status, Future Work and Remaining Challenges

- Current state
 - Concept has been developed
 - Partial implementation on Linux and SocketCAN has been done
- Next steps
 - ► Integration into an overall automotive E/E architecture
 - Combination von TSN
 - Definition of end-to-end paths
- Remaining Challenges
 - Availability guarantees (e.g. robustness, offline operation)
 - Network heterogeneity (topological styles, additional network technologies, limited network capabilities)
 - Introduction of dependable planning processes for network traffic (vs. usage of thumb rules)
 - Controller redundancy strategies

CR/AEX1 | 10/11/2017

obert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

THANK YOU

BOSCH

Dipl.-Ing.(FH) Dr. Marco Wagner

Corporate Sector Research and Advance Engineering Communication and Network Technology

marco.wagner3@de.bosch.com

Robert Bosch GmbH, CR/AEX1 Renningen 70465 Stuttgart GERMANY Visitors: Phone +49 711 811-11383 www.bosch.com

