Grid simplification to accelerate calibration of integrated catchment models: Accuracy vs. efficiency

D.von Gunten , T.Wöhling, C.Haslauer and O.A.Cirpka

IRTG IHM - Center for Applied Geoscience, University of Tübingen

June 6, 2014

Grid simplification to accelerate calibration

Integrated Catchment Model

Description

PDE-based models, which couple surface flow and variably-saturated subsurface flow

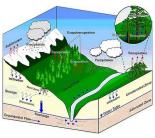


Figure: IRTG.2014

Pro and Con

- simulate spatially distributed, coupled surface-subsurface interactions
- can model changes in environmental conditions (Perez,2011)

But

- Long simulation times
- Results in a long and tedious calibration process

Problem and Proposed Solution

- **Fact:** The grid resolution largely determines the length of the simulation (Vazquez,2002).
- **Problem:** Model calibration of integrated catchment models is very slow (Li, 2008).
- Proposed calibrationUsing grids of lower spatial resolutionmethod:during model calibration.
 - Challenge: Discretization errors of the coarser grids.

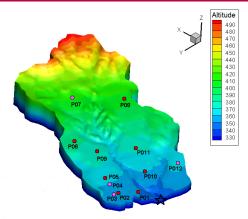
Proposed calibration method

Set up and comparison of three computational grids:

- a fine grid used in the final model,
- an intermediate grid
- a coarse grid
- Constraining the feasible parameter space using the coarse grid
- Calibration of model parameters on the intermediate grid
- Transfer of the model parameters to the fine grid
- Model validation and evaluation

Grid Comparison

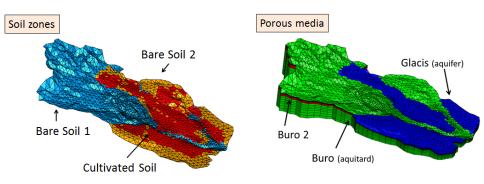
Calibration


Conclusion

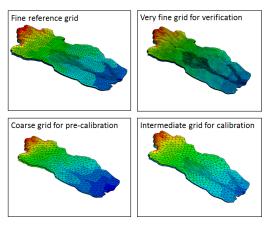
Case study: Lerma's basin

Country: Spain

Area: 7.5 km^2 Altitude: 330-490m a.s.l. Land-use: Agriculture Irrigation: Increase (from 0 $\frac{m^3}{year}$ in 2005 to 1.8 \cdot 10⁶ $\frac{m^3}{year}$ in 2008)

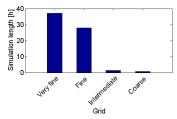


Black star: Position of the catchment outlet Red or magenta circles: Position of the wells Vertical exaggeration: 5x


HydroGeoSphere

- 3-dimensional, fully coupled hydrological model
- Surface flow: 2D diffusive wave approximation of the Saint Venant equations
- Variably saturated subsurface flow: Richards equation
- Developed at the university of Waterloo, Canada and by aquanty.

Model Design


Computational Grids

Hydrogeological units are identical for all grids

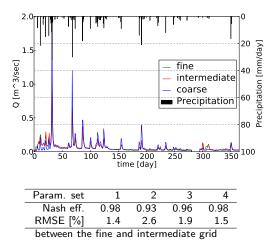
Grid	Elements	Layers	
Coarse	10448	14	
Interm.	16200	14	
Fine	79332	22	
Very fine	217872	24	

Simulation time:

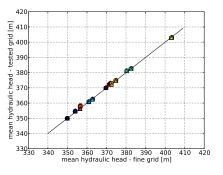
For one year on one core with a desktop computer Intel Core i7-2600 CPU @ $3.40 \rm Ghz$

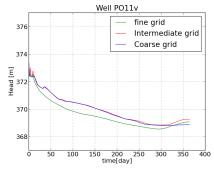
Grid Comparison

Method:


- Use of 4 parameter sets and 2 artificial initial conditions.
- Comparison of flow hydrograph, hydraulic heads and soil saturation
- Meteorological input from 2009

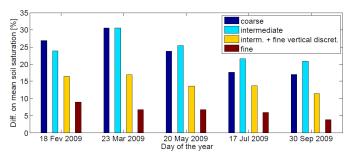
Grid Comparison


Method:


- Use of 4 parameter sets and 2 artificial initial conditions.
- Comparison of flow hydrograph, hydraulic heads and soil saturation
- Meteorological input from 2009

Hydrograph Comparison:

Hydraulic Heads Comparison



Parameter set 1

Water Saturation

Comparison of mean water saturation of top soil (depth: 0-40cm) between the very fine grid and the other grids:

Water saturation is significantly higher in the coarse and intermediate grid than in the very fine grid. Due to non-linearities in the modeling of transpiration.

Calibration and Validation Data

Calibration:

- Daily flow at the catchment outlet (2006-2009)
- Monthly hydraulic head at 8 observation wells (2008-2009)

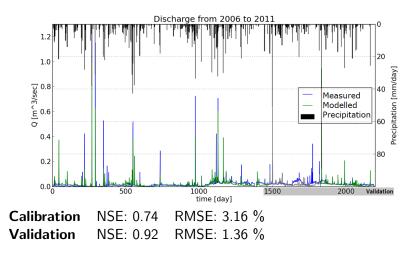
Validation:

- Daily flow at the catchment outlet (2010-2011)
- Monthly hydraulic head at 14 observation wells (2010-2011)

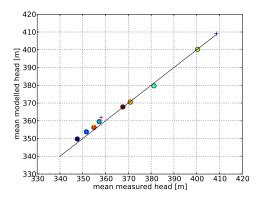
Sensitivity Analysis

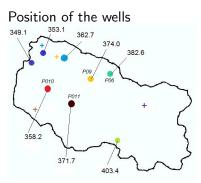
Among the 42 parameters tested, the most sensitive parameters were:

Most sensitive parameters						
• Saturated hydraulic conductivity K	for all zones	(6)				
• Pore-size factor <i>n</i> (Van Genuchten)	for the soil zones	(3)				
Porosity	in the glacis or aquifer	(1)				

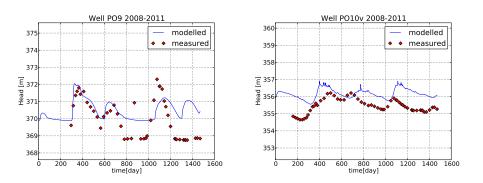

As a result: 10 parameters will be calibrated

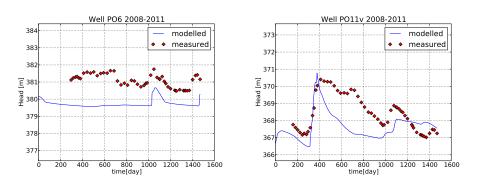
tested for the meteorological input of 2008 on the intermediate grid with the initial conditions of the calibrated model.


Calibration Procedure


- **1** Test 200 parameter sets on the coarse grid with an initially saturated domain.
- **2** Update the initial conditions, using the best performing parameter set and the intermediate grid.
- 3 Manually calibrate the model on the intermediate grid.
- Update the initial conditions on the intermediate grid.
 Transfer them to the fine grid.
- **5** Finish the manual calibration on the fine grid.

Hydrograph: Calibration and Validation


Calibrated Hydraulic Head - Mean



Position and surface elevation of the wells [meter]. Mean: 2008-2011 (circle) or 2010-2011 (cross)

Calibrated Head - Variability I

Calibrated Head - Variability II

Approximate duration of the calibration

Conventionally:

- Initial conditions: 100 years of simulation = 28'000h
- Manual Calibration: 70 sets · 6 years =11'300h

Using the fine grid

TOTAL: 39'000h or 1625 days

Proposed Approach:

- Initial calibration on the coarse grid: 200.6years =800h
- Initial conditions on the intermediate grid: 100years = 150h
- Manual calibration on the intermediate grid: 70.6 years =630h
- Update of the initial conditions: 70years = 105h
- Final calibration on the fine grid: 6 years · 3 = 480h
- TOTAL: 2165h or 90 days

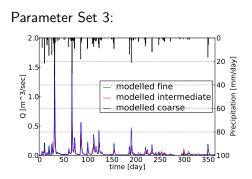
Conclusion

- Using grids of various size is a practical solution to accelerate model calibration in integrated models.
- It also simplifies the obtention of the initial conditions.
- This approach was successfully tested in our catchment-scale case study.
- It might be easily adapted for reactive transport problems or for automatic calibration.

Reference

- IRTG, 2014: IRTG website, 22.05.2014, http://www.geo.uni-tuebingen.de/forschung/international-research-traininggroup-integrated-hydrosystem-modelling.html,
- 2 PÉREZ, 2011: A.Pérez, R. Abrahão, J.Causapé, O.Cirpka, C.Bürger, Simulating the transition of a semi-arid rainfed catchment towards irrigation agriculture, Journal of Hydrology, 409:663-681,2011
- 3 VAZQUEZ,2002: Vazquez, R. F., Feyen, L., Feyen, J., Refsgaard, J. C, Effect of grid size on effective parameters and model performance of the MIKE -SHE code. Hydrological Processes, 16:355-372, 2002
- 4 LI, 2008:Q. Li and A. Unger and E. Sudicky and D. Kassenaar and E.J. Wexler and S. Shikaze, *Simulating the multi-seasonal response of a large-scale* watershed with a 3D physically-based hydrologic model, 357:317-336, 2008

Thank you for your attention



Any question?

Additional Slide

Parameter	Set	Param. 1	Param. 2	Param. 3	Param. 4
rarameter					
	Κ	$1.5 * 10^{-5}$	$5 * 10^{-5}$	$1.5 * 10^{-5}$	$1.5 * 10^{-5}$
Bare Soil 1	α	3	5	3	3
	β	2.25	2	1.5	2.25
	Κ	10^{-5}	10^{-4}	$1.5 * 10^{-5}$	10^{-5}
Bare Soil 2	α	2	5	3	2
	β	1.35	2	1.5	1.35
	Κ	$2 * 10^{-5}$	$4 * 10^{-5}$	$1.5 * 10^{-5}$	$2 * 10^{-5}$
Cultivated Soil	α	2	5	3	2
	β	1.25	2	1.5	1.25
	Κ	0.0002	$2 * 10^{-6}$	$1.5 * 10^{-5}$	0.0002
Glacis	α	2	5	3	2
	β	1.5	2	1.5	1.5
	Κ	10^{-6}	10^{-5}	10^{-5}	10^{-6}
Buro 2	α	5	5	3	5
	β	1.4	2	1.5	1.4
	Κ	$5 * 10^{-7}$	10^{-7}	10^{-7}	10^{-7}
Buro	α	3	5	3	3
	β	1.8	2	1.5	1.8
Initial l	read	Surface	Surface	West: 380m	West: 380m
				East: Surface	East: Surface

Additional Slide

