Squeezed light – now exploited by all gravitational-wave observatories

Light with squeezed quantum uncertainty allows for the sensitivity improvement of laser interferometers. Since 2010, the gravitational-wave (GW) detector *GEO600* has been using squeezed light in all of its searches for GWs [1]. The successful sensitivity improvement triggered the implementation of squeezed light sources also in *Advanced LIGO* and *Advanced Virgo*. On April 1st, 2019 these observatories started their third observational run. Since then they have been detecting more than one GW event per week. An increased event rate of up to 50% is due to the exploitation of squeezed states of light [2,3]. Squeezed light is fully described by quantum theory, however, observations on squeezed light represent physics that is not self-evident. I present a description of why a squeezed photon counting statistic is rather remarkable [4].

- [1] LIGO Scientific Collaboration, Nature Physics 7, 962 (2011);
- [2] M. Tse et al., Phys. Rev. Lett. **123**, 231107 (2019);
- [3] F. Acernese et al., Phys. Rev. Lett. 123, 231108 (2019);
- [4] R. Schnabel, Annalen der Physik 532, 1900508 (2020).