
Towards an Adaptive Hierarhial Antiipatory Behavior Control SystemOliver Herbort and Martin V. Butz and Joahim Ho�mannoliver.herbort�stud-mail.uni-wuerzburg.de{butz,ho�mann}�psyhologie.uni-wuerzburg.deDepartment of Cognitive Psyhology, Röntgenring 11University of WürzburgWürzburg, 97070, GermanyAbstratDespite reent suesses in ontrol theoretial programsfor limb ontrol, behavior-based ognitive approahesfor ontrol are somewhat laking behind. Insights inpsyhology and neurosiene suggest that the mostimportant ingredients for a suessful developmentalapproah to ontrol are antiipatory mehanisms andhierarhial strutures. Antiipatory mehanisms arebene�ial in handling noisy sensors, bridging sensorydelays, and direting attention and ation proessingapaities. Moreover, ation seletion may be imme-diate using inverse modeling tehniques. Hierarhiesenable antiipatory in�uenes on multiple levels of ab-stration in time and spae. This paper provides anoverview over reent insights in antiipatory, hierarhi-al, ognitive behavioral mehanisms, reviews previousmodeling approahes, and introdues a novel modelwell-suited to study hierarhial antiipatory behav-ioral ontrol in simulated as well as real roboti ontrolsenarios. IntrodutionThe autonomous ontrol of the own body is an es-sential hallenge for any ognitive system. Althoughestablished behavioral ontrol in animals and humansseems e�ortless in every day life, many hallenges arise.Due the omplex, dynami, time lagged, noisy, and of-ten nonlinear interations between body and environ-ment, e�etive body ontrol in real environments ishard. Movements of di�erent body parts in�uene eahother, lothing hange the interations, musle foresare state-dependent, et. Furthermore, sensory infor-mation may be unavailable, as for example in darkness,or may be available to the brain only after a signi�anttime delay. The brain has to learn these omplex, of-ten ontext-dependent, interations to be able to induee�etive adaptive body ontrol.The notion that most ations are goal direted andthat the goal state is represented before the ation isperformed is labeled the ideomotor priniple and anbe traed bak to the 19th entury (Herbart 1825;James 1890)). Although behaviorists later questionedCopyright  2005, Amerian Assoiation for Arti�ial In-telligene (www.aaai.org). All rights reserved.

this view, it is now widely aepted that behavior isin most ases goal oriented. Ho�mann (1993) empha-sized this insight in his theory of antiipatory behaviorontrol, whih theorizes that ations are usually pre-eded by an antiipatory image of the sensory e�ets.The image triggers that ation(s) that is (are) expetedto yield the antiipated e�ets, onsidering the urrentenvironmental irumstanes. Di�erent sensory modal-ities and sensory aspets an in�uene ation triggering,for example, an external e�et, like a tone, or also a pro-prioeptive e�et, like the feeling of bending the �ngersor of pressure against the �ngertips. To ontrol moreomplex behavior, ations may be divided into simplerparts. For example, if a piano player wishes to play atone, the antiipation of the tone auses the antiipa-tion of the feeling of the orret hand position and thenthe �nger pressing the key. Thus, to ahieve an over-all goal, several suessive goals may trigger suessiveations.To be able to generate suh omplex behavior e�e-tively, hierarhial proesses are neessary that generategoals and partition far-reahing goals into suitable sub-goals. However, even if neurosiene shows that brainfuntions are strutured hierarhially (e.g. Poggio &Bizzi 2004), only few omputational arguments exist,why suh strutures are advantageous.This paper reviews evidene for antiipatory guidedhuman proessing and derives design suggestions forognitive behavior systems. Similarly, we assess evi-dene for hierarhially strutured mehanisms. Thegained insights lead us to the development of a simplelearning system for studying the potential bene�ts ofhierarhial antiipatory ontrol strutures. We intro-due the base model and on�rm suessful behavioralontrol of a simple arm. In sum, this paper studies de-veloping antiipatory hierarhially ontrolled systemsthat learn e�etive ontrol strutures to guide omplexadaptive behavioral patterns.The remainder of this work is strutured as follows.First, we review antiipatory and hierarhial ognitivestrutures. Next, existing ognitive ontrol models areompared. Finally, we introdue our model revealingits urrent apabilities, limitations, and potentials. Ashort disussion onludes the paper.



Antiipatory Hierarhial StruturesIn this setion, we gather evidene for and bene�ts ofantiipatory and hierarhial strutures in learning, be-havioral ontrol, and ognition in the broader sense.Antiipatory Behavior ControlAntiipatory behavior refers to behavior in whih ur-rently desired goals preede and trigger the ation thatusually results in the desired goals. Psyhologial ex-periments underline the onept of antiipatory behav-ior.A simple experiment on�rms the presene of e�etrepresentations before ation exeution. Kunde (2001)paired ations with ompatible or inompatible e�ets,suh as the presentation of a bar on the left or on theright ompatible or inompatible to a left or right keypress. Although the e�ets were presented only afterthe key press, reation times were signi�antly faster,when the loation of target button and visual e�et or-responded. Similar e�ets were found for the modalitiesof intensity and duration (Kunde, Koh, & Ho�mann2004). Elsner and Hommel (2001) showed that rea-tion times also inrease if an ation is aompanied bya stimulus that does not math with the expeted ef-fet, even if this stimulus ould be ompletely ignoredto hoose the orret response key. In all ases, it is on-luded that antiipatory e�et representations interferewith an ation ode or also with an external stimulus.Thus, goal aspets are represented before ation exe-ution in terms of at least some of the sensory e�ets.Interestingly, it has also been shown that humans a-quire suh ation-e�et assoiations muh easier thansituation-ation relations (Stok & Ho�mann 2002).However, the advantages of suh antiipatory behav-ior remain somewhat obsured. What are the bene�tsof representing e�ets before or atually for ation exe-ution? Other disiplines provide interesting insights inthis respet. Arti�ial intelligene shows that antiipa-tory representations enable higher �exibility in learningand deision-making. In reinforement learning (Sutton& Barto 1998), the DYNA arhiteture (Sutton 1990)showed that model-based reinforement learning meh-anisms inrease �exibility when goals vary or when theenvironment is partially dynami. More reent investi-gations in relational reinforement learning have shownsimilar advantages when the �exible propagation of re-inforement learning is required (Kersting, Van Otterlo,& De Raedt 2004).In ontrol theory, strutures apable of prediting fu-ture states yield more powerful ontrollers. For exam-ple, a forward model that predits the onsequenes ofations may be used to orret errors in advane (Miallet al. 1993). The onept of ombining sensory and pre-ditive information to ompensate for unavailable, de-layed, or highly noisy sensory feedbak is made most ex-pliit in the widely applied Kalman �lter (Kalman 1960;Haykin 2002). Neurosienti� studies indiate thatKalman �ltering-like strutures exist in the erebellum

(Barlow 2002). Additionally, it was shown that inversemodels (IMs) that diretly determine the ation nees-sary to obtain a desired goal result in e�ient adaptiveontrollers (Kawato, Furukawa, & Suzuki 1987).Thus, ognitive psyhology and neurosiene suggestthat antiipations are important for e�etive adaptivelearning systems. Arti�ial intelligene and ontrol the-ory have shown that antiipatory strutures improvelearning speed and reliability, behavioral �exibility andexeution, and sensory robustness, resulting in e�etivegoal-direted systems.Hierarhies for Learning and ControlBesides the antiipatory indiators, studies and modelssuggest that ognitive information is proessed hierar-hially. Powers (1973) already stressed the importaneof hierarhies in behavioral ontrol and onsequent om-putational models of ognitive systems. Just reently,Poggio and Bizzi (2004) pointed out that hierarhialstrutures are very likely the key to not only sensoryproessing but also motor ontrol. Available hierar-hial models in vision (Riesenhuber & Poggio 1999;Giese & Poggio 2003) are suggested to be extended tomotor ontrol. Hierarhial top-down in�uenes showedto have advantageous struturing e�ets (Rao & Ballard1999).Computational motor ontrol models showed advan-tages of hierarhial strutures. Considering the hierar-hy of the musuloskeletal system, the spinal ord, anda ontroller in the CNS at the top, Loeb, Brown andCheng (1999) demonstrated that the spinal ord is ableto ounter most perturbations on its own. However, thespinal ord also reeives task-depending input from theCNS to adjust its behavior. Thus, the spinal ord makesthe ontrol task easier for the CNS beause not everysingle musle has to be addressed. It is su�ient to setan overall strategy to deal with most perturbations.Hierarhial proessing models were proposed byKawato, Furukawa and Suzuki (1987), who applied ahierarhial ontroller to a robot arm. The lowest levelontains a simple PD-ontroller that an in priniplehandle any task. The ontroller is not very e�ient,beause the delayed feedbak results in a slow ontrolproess. A seond layer improves performane. As soonas a diret model of the plant is learned, it updatesthe ontrol signal using the expeted feedbak, whihis available muh faster. However, it is still neessaryto adjust the signal iteratively. A third level onsistsof an inverse model (IM) that alulates a ontrol sig-nal for any given goal. When the IM is aurate, theontroller selets a feasible ontrol signal instantly. Inase of a failure, the lower levels indue the (slower andless e�etive) ontrol. The more aurate the modelsin the higher levels, the more they in�uene the ontrolsignals.Despite the ubiquitous hints on the importane of hi-erarhial proessing and the �rst model from Kawatoand olleagues, it remains somewhat unlear why hier-arhies are advantageous. One advantage may be the



general deomposability of our environment due to timeand spae onstrains (Simon 1969; Gibson 1979) Com-putational advantages an be found in arti�ial intelli-gene studies.Re-onsidering reinforement learning, it has be-ome lear that hierarhial proessing mehanisms aremandatory for e�etive reward propagation and �exi-ble learning (Barto & Mahadevan 2003). Hierarhialstrutures are formed that an trigger options, that is,abstrat ation representations inluding goals. Mostreent publiations have shown that suh hierarhi-al representations may be learned by using simplestatistis of the environment searhing for deompos-able sub-strutures (Butz, Swarup, & Goldberg 2004;Simsek & Barto 2004).Thus, hierarhial ontrol enables the disovery andrepresentation of more distant and abstrat dependen-ies as well as inreases �exibility in behavioral learningand deision making, as well as in sensory proessing atdi�erent levels of abstration in time and spae.Merging BothAs we have seen, ognitive proessing is guided by an-tiipations that improve sensory proessing and behav-ioral ontrol. Hierarhies yield more �exible represen-tations for antiipatory learning and behavior. The re-view suggests that the ombination of antiipatory andhierarhial strutures may be a promising approah tounderstand and model human motor learning and on-trol.The review suggests several requirements for a og-nitive ontroller. First, the ontroller must representa goal in terms of desired sensory inputs. Partial, un-derspei�ed, and even ontraditing goals may be rep-resented in di�erent sensory modalities. Seond, goalrepresentations should not only be modular but alsohierarhial. Higher level goal representations are usu-ally more abstrat in time and spae and trigger lowerlevel, more onrete, sensory dependent goal represen-tations. Third, the representations should be learnedby interating with the environment. Learning arhi-teture and learning biases, however, are provided inadvane.Biologial PlausiblityTo model motor learning and ontrol, not only fun-tional onstraints have to be taken into aount. Ad-ditionally, the struture of the motor ontrol systemand the mehanisms that modify the struture duringlearning should be biologially plausible.Neural networks are onsidered realisti models ofknowledge representation in the brain (Georgopoulus1995). In the ase of multilayer neural networks, thisplausibility holds only for an already learned networknot for the training mehanisms. For single layer net-works, the Hebbian learning rule (Hebb 1949) providesan biologially plausible learning algorithm. It statesthat onnetions between neurons are strengthened, if

both neurons are exited at the same time and weak-ened otherwise. Thus, it forms a basis for assoiativelearning. Unfortunately, Hebbian learning only worksfor single layer neural networks that an only omputelinear separable funtions that are too simple for mo-tor ontrol. However, to overome this problem ationsand goals an be represented in a form, that divides thelearning spae in small parts, thus that non linear goal- ation mappings an be stored.Before we introdue our model, whih an satisfythese onstraints, we review other related systems.Cognitive Movement ControllersNumerous omputational models for motor learningand ontrol have been proposed. Most of them addressspei� stages of movement generation, for exampletrajetory formation (Cruse, Steinkühler, & Burkamp1998; Hirayama, Kawoto, & Jordan 1993) or oordi-nate transformation (Salinas & Abbott 1995). Othersare traking referene signals, relying on IMs and feed-bak ontrollers (Kalveram 2004; Kalveram et al. 2005;Kawato, Furukawa, & Suzuki 1987), whih might beombined in a single ontrol struture (Stroeve 1996;1997). Some approahes gate a number of single on-trol strutures to be able to quikly adapt to hang-ing limb properties (Wolpert & Kawato 1998; Haruno,Wolpert, & Kawato 2001) or to ombine motor primi-tives (Berthier et al. 1992).While eah model has interesting properties on itsown, none math all the suggested ognitive systemsrequirements. The desribed hierarhial model ofKawato, Furukawa and Suzuki (1987) ontains threedi�erent levels but does not aept goals in arbitrarymodalities. Other ontrollers (Cruse, Steink"uhler &Burkamp (1998)) aept underspei�ed goals but donot inlude hierarhial layers. Many models ontainneural networks that learn by ognitively implausiblemehanism like bak-propagation. Our model intendsto bridge the respetive drawbaks e�etively reatinga hierarhial, antiipatory ognitive model that is suit-able to proess any goal representation �exibly and hi-erarhially.A Hierarhially Antiipatory Model ofMotor ControlWe devise a new omputational model for motor learn-ing and ontrol. The entral part of the model is theontroller that an transform any goal, represented inany sensor modalities, into ation signals that move thebody to or at least towards a position, in whih the de-sired sensory e�ets are pereived. This goal ationmapping has to be learned by the ontroller by inter-ating with the environment.Inverse Models and Sensory RepresentationA struture that transforms goals into ations has usu-ally to represent a omplex non linear funtion. Todo this with a single layer neural network, the learning



spae an be divided into small parts using Radial BasisFuntions (RBF). A sensory signal is not represented bya single neuron with an ativation that orrelates witha variable of the body on�guration, but is representedby an array of single neurons that represent a spei�range of the possible values of a variable. For exam-ple, a joint angle is not enoded by a neuron that hasa growing �ring rate with growing limb extension nutby many di�erent neurons. Eah of this neurons is onlyativated, if the joint angle is in a spei� range. Therange of values for whih a neuron is ativated is alledreeptive �eld. This kind of representation �ts well toeletro-physiologial data obtained from measuring theorrespondene of single ell ativity in the motor or-tex and movement patterns.Ations are represented in the same fashion if ob-served by the ontroller. However, this representationis not very likely to exist in the periphery (motoneu-rons, proprioeptions, et). Thus, two transformationshave to be done. To enode a pereption like an jointangle into an array of neurons the ativation of everyneuron has to be determined. The reeptive �eld of aneuron is haraterized by the enter of the reeptive�eld. In the model, the ativation of a neuron is alu-lated by applying a Gaussian distribution funtion tothe distane between the enter of the reeptive �eldand the measured value (using half the distane to thenext enter of an reeptive �eld as standard deviation).To reverse this transformations, a winner-takes-allmehanism onverts the ativity of many neurons intoa single signal. Thereby, the ativation of the outputsignal is set to the enter of the reeptive �eld of theneuron with the highest ativation.1To learn the neural network, ations have to be asso-iated to their e�ets, aording to the situation. Thisis done by strengthening the onnetions between neu-rons, that enode a situation and the e�et of an ationand the neurons that enode ations, if both are ati-vated at the same time. After learning, the network anhoose an ation that will produe the desired sensorye�et in a spei� situation. Thus, an inverse model anbe learned in a biologially plausible way by interatingwith the environment.GeneralizationThe neural network presented above raises several ques-tions. At a �rst glane, the ontroller seems inapable ofgeneralization, that means performing ations or reah-ing goals that were not presented to it before. Thisshortoming is partially solved by the representation ofthe information. If the reeptive �elds of the neuronsare wide, they are even ativated, if the sensory signalis not in the lose viinity of the enter of the reep-tive �eld. Hene, the network will ontain information1To enable more �ne grained output signals, the neigh-bors of the winner-neuron are also taken into aount, a-ording to their ativation level. If there a several winner-neurons, one neuron is hosen randomly.

about what to do if a spei� desired sensory state hasnot been reahed during learning. This spatial gener-alization apability does not interfere with knowledgeover experiened movements, beause the ativationsthat are due to generalization is omparatively low.Naturally, it takes some time until an ation has a no-tieable e�et in the environment. To aount for this,the neural network relates ations to the sensory statethat is pereived a few moments later. This yields theproblem, that the inverse model an only store ations,that produe a desired e�et in a short time interval.Consider the movement of an arm that needs 300ms tomove from a relaxed to a fully extended position. Ifthe neural networks enodes only the e�ets that anation has after 100ms it will not ontain informationsabout what to do to extend the relaxed arm beauseit was never observed how this was done in 100ms.This problem an be redued by introduing anotherkind of (temporal) generalization that not only relatesmore distant points in sensory spae to ertain ation,but also sensory e�ets that our after a longer timeinterval. Again, to redue interferene with atuallyobserved movements, the onnetions between sensorye�ets that are produed later in time are weaker.These two kinds of generalization allow the networkto ontrol an arm e�etive and stable.Model EvaluationTo test the feasibility of our approah, we evaluate theperformane of a single IM on a simple 1-dof-armmodel.The arm is dampened and a restoring fore pulls it toits initial position. To move the arm, a motor signal isproportionally transformed into a torque that is appliedto the joint. Thus, applying a onstant torque signalmoves the arm to a ertain equilibrium position aftersome osillations.The IM is apable of applying a torque to produe aspei� desired e�et that omprises the joint angle andits veloity. Reeptive �elds of sensory states (desiredor atual) are distant 0:1rad (1rad = 5:7 deg) for jointangle and on average 1 rads with a higher resolution forsmall veloities. For the enoding of the ation (torque)reeptive �elds are distant 10 rads2 . A hange of torqueof about 1 moves the arm to a new equilibrium positionabout 0:067rad.The network is trained by applying a new randomtorque between �150 rads2 and 150 rads2 for 50ms, 100ms,150ms or 200ms. This auses the arm to move randomlyin the range of �1rad to 1rad. To test the ontroller,the arm has to move from 5 di�erent starting angles(�0:66rad;�:33rad; 0:0rad; :33rad; :66rad) to 21 di�er-ent targets(�1:0rad;�0:9rad; : : : ; 1rad). In all ases,the desired veloity is set to 0. During a reahing move-ment, the ontroller sets a new torque every 50ms. Amovement is onsidered �nished, if the joint angle doesnot move more than 0:02rad within 250ms.To test whether the IM bene�ts from generaliza-tion apabilities, both spatial and temporal generaliza-tion were varied in a 2x2-design with 20 independently
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Figure 1: Spatial and temporal generalization yieldsadvantages for auray (A) and movement speed (B).trained IMs in eah of the four groups. Spatial gener-alization was manipulated by altering the width of thereeptive �elds of the neurons. The high spatial gener-alization ondition had reeptive �elds that measured 3times the distane to the next enter of an reeptive �eldin diameter. The diameter was redued by a third inthe low spatial generalization ondition. Temporal gen-eralization was manipulated by allowing the ontrollerto relate ations to e�ets that ourred up to 100ms(low) or up to 150ms (high) after the ation had beenperformed. In both ases, e�ets that ourred laterhad an ativation level of about 1% of the initial ativa-tion level. Figure 1 shows that both spatial and tempo-ral generalization apabilities allow inreased auray(A) and faster movements (B). Split-plot ANOVAs re-vealed signi�ant main e�ets between the groups formovement time and auray (both p > :01). The in-teration between the groups did not reah signi�ane.A feature of the RBF-like representation is, that notonly preise goal oordinate an be desired, but alsoranges of aeptable goal positions . To test if it isadvantageous to give a wider goal (see disussion) ifabsolute preision is not neessary, reahing to an exatposition was ompared to reahing to position anywherewithin a range of 0:8rad. Eah group onsists of 20 IMsthat learned independently. Figure 2 A and B show,that movements to exat positions (blak squares) areslower (A) and less exat (B) than movements to widegoal ranges (white squares). Note, that the error inthe goal-range-ondition is alulated as the distaneto the nearest joint angle within the range. Split-plotANOVAs on�rmed both results (p > :01). This alsoholds, when the movement to a goal range is omparedto a movement to the exat point within the range thatis losest to the initial position. In average, movementsto any points in the goal range are faster (C) and moreyield fewer errors (D) than movements to the nearestpoint in the goal range. ANCOVAS that ontrolled forthe distane to the nearest possible goal on�rmed both(p > :01).

,0
0

,1
0

,2
0

,3
0

,4
0

,5
0

,6
0

,7
0

,8
0

,9
0

1
,0

0

1
,1

0

1
,2

0

1
,3

0

1
,4

0

1
,5

0

1
,6

0

minimum distance to target (rad)

-0,02

0,00

0,02

0,04

0,06

0,08

0,10

0,12

9
5

%
C

I
e

rr
o

r
(r

a
d

)

n = 20

,0
0

,1
0

,2
0

,3
0

,4
0

,5
0

,6
0

,7
0

,8
0

,9
0

1
,0

0

1
,1

0

1
,2

0

1
,3

0

1
,4

0

1
,5

0

1
,6

0

minimum distance to target (rad)

0,20

0,40

0,60

0,80

1,00

1,20

9
5

%
C

I
m

o
v

e
m

e
n

t
ti

m
e

(s
e

c
)

n = 20

0 4
0
0

8
0

0

1
2

0
0

1
6

0
0

2
0

0
0

2
4

0
0

2
8

0
0

3
2

0
0

3
6
0

0

4
0
0

0

4
4

0
0

4
8

0
0

5
2

0
0

5
6

0
0

6
0

0
0

trial

0,50

1,00

1,50

2,00

9
5

%
C

I
m

o
v

e
m

e
n

t
ti

m
e

(s
e

c
)

n = 20A

C D

0 4
0

0

8
0
0

1
2

0
0

1
6

0
0

2
0

0
0

2
4

0
0

2
8

0
0

3
2

0
0

3
6

0
0

4
0
0

0

4
4

0
0

4
8

0
0

5
2

0
0

5
6

0
0

6
0

0
0

trial

0,00

0,10

0,20

0,30

0,40

0,50

0,60

9
5

%
C

I
e

rr
o

r
(r

a
d

)

n = 20B

Figure 2: A range of aeptable end positions (whitesquares) an be reahed faster (A) and with less error(B) than an exatly spei�ed goal angle (squares). Thisalso holds, if movement time (C) and aurary (D) ofmovements to goal ranges are ompared to movementthat try to reah the nearest point of a given goal range.Towards an Hierarhial ControllerThe data presented above shows, that it is possibleto train a single layer neural network in a biologiallyplausible manner to ontrol a simple arm model. Asoutlined above, some generalization mehanisms an beused to make the IM reah targets that have not beenreahed before or would be out of sope beause the dis-tane between the initial sensory state and the desiredsensory state is to large.We laimed, that a ontroller should be able to pro-ess many di�erent modalities. A single IM that relatesall kinds of sensory inputs (from proprioeptions to dis-tal e�ets) would require a huge neural network stru-ture and hallenge its temporal generalization apabil-ities, beause it would have to relate omplex musleativation patterns with events that happen not veryoften and that an be produed in many di�erent ways.Additionally, the network would have to learn any a-tions by rote learning. Consider the swithing on alamp. To hange the sensory input that enodes bright-ness by pushing the swith, a long sequene of musleativations has to be arried out. To learn this sequeneby random movements may take a very long time. Theproblem would be easier to solve, if many di�erent IMswere involved. An IM that relates brightness to handposition might well learn, that the light goes on if thehand reahes the position where the swith is. A se-ond IM that stores whih musle ativation patterns are
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Figure 3: The left side of the drawing shows how thedesired e�ets are transformed into motor signals usinga hierarhy of inverse models (IM). The motor signalsause hanges in the arm. The hanges are fed bakto the ontroller (right side). Pereptions an be useddiretly or after proessing.needed to reah a spei� hand position ould then beused to move the hand there. Additionally, other tasksthat need the hand to reah a spei� position an beeasily learned. Thus, a omplex goal like swithing onthe light an be transformed into a more onrete de-sired e�et like a hand position that an be more easilytransformed into atual musle ativations.The sheme of suh a struture is outlined in �gure 3.More omplex or abstrat goals like produing a tonewith a piano or swithing on a lamp are onverted byIMs into subgoals of a di�erent modality. The subgoalsare then onsidered as desired e�et by IMs on a lowerlayer of the hierarhy and are thus transformed to sub-subgoals and so on. The IMs lowest layer then alu-late signals that are send to lower motor enters or thespinal ord, where they are transformed into musle a-tivations after some proessing. The musle ativationmay ause the body to move and thus evoke new pro-prioeptions or exteroeptions that are available to theontroller diretly (like musle tension measured by theGolgi tendon organs) or after omputing some abstratrepresentations like the hand oordinate from visual in-formation.Thus, some IMs an be used to represent what willhappen shortly after a ommand signal is hanged whileothers store longer term dependenies. IMs that bridgelonger term intervals an produe ontrol signals for

subsequent shorter term IMs.Model Capabilities, Potentials, andChallengesThe data showed, that the single IMs an learn to on-trol a single arm by mere assoiative learning. Thereby,the ontroller uses e�ient ativation sequenes toreah a target.A major point of ritique on the urrent model maybe the method used for learning the IM. Sine themethod is not goal-direted, the mapping is nowhereguaranteed to onverge to the optimum (Jordan &Rumelhart 1992) However, we believe that it is notneessary to obtain an optimally aurate mapping be-tween ation and e�ets in the general sense. Ationexeution is usually noisy and easily perturbed so thatsensory feedbak ontrol is expeted to be generally ne-essary to reah a preise goal. The IMs presented inherean also be used for losed loop ontrol (Herbort, Butz,& Ho�mann 2005).Another onern is that the hosen RBF enoding isnot very suitable for generalization. Using di�erent lay-ers of RBFs with a ombination of larger and smallerreeptive �elds may solve this problem. However, theenoding also has advantages. The representation fail-itates dealing with unertainty (Knill & Pouget 2004)and allows very �exible goal representations. A goaldoes not need to be exatly spei�ed but a range of a-eptable goal states or goal features an be presentedto the network. This feature inreases �exibility, whihis advantageous for ontrol (Todorov & Jordan 2002).Additionally, the representation allows the enoding ofmany-to-many relationships. A �nal RBF-related on-ern may be the urse of dimensionality and the onse-quently exploding number of RBF neurons. However,tehniques exist that an redue the number of neuronsby adapting RBF sizes to the demands of the ation-e�et funtion (see Butz (in press) for one potentialmehanism ). Additionally, separating omparativelyindependent parts of the sensory spae in di�erent net-works an redue the amount of required neurons (Ur-ban, Bruessler, & Gresser 1998).A big hallenge arises onsidering the need to learnand exeute motor programs. Currently the systemstate only hanges, if the desired e�ets or sensory in-puts hange. Thus, very fast or omplex movementsare not possible. Two ways exist to integrate motorprograms. First, it has been shown that neural iruitsexist in the spinal ord of animals that generate spe-i� motor signals to oordinate simple rhythmi behav-ior, like walking or swimming (Dietz 2003). Thus, themodel of the spinal ord ould be extended to inludesuh rhythmi pattern generators. Additional represen-tations would be neessary to ode the behavior ausedby the pattern generators, suh as representations ofwalking or moving forward, to be able to address thebehavior with antiipations. A seond way to inludemotor programs would be to delegate this task to higher



strutures that send ontinuously hanging desired ef-fets to the ontroller. The ombination of both fea-tures may be able to learn rhythmi behavior ombinedwith onseutive behavioral pattern hanges, as appro-priate.In this paper we only presented results for one sin-gle ontroller. Experiments are in progress ombiningmultiple ontrollers as outlined above. Two approahesneed to be distinguished: parallel, modular ombina-tions and hierarhial, abstrating ombinations. Shad-mer and Brasher-Krug (1997) showed that human sub-jets are able to store many di�erent ontrollers for dif-ferent situations. For example, one ontroller ould betrained for moving light objets and another for heavyobjets. The weighted ombination of both ontrollersthen enables fast adaptation to spei� situations. Thisfeature an be added by using an array of ontrollersthat are experts for a spei� situation and are weightedaordingly (Haruno, Wolpert, & Kawato 2001). Hi-erarhially onneted IMs might prove advantageouswhen di�erent objets need to be moved. Although dif-ferent weighting of lower level IMs is neessary to al-ulate desending ommands from the desired joint an-gles, the relationship between external oordinates andjoint angles stay onstant. Thus, only parts need to beadapted to the urrent situation. Additionally, longertime delays in higher layers may be ompensated forby lower level ontrol strutures. On the other hand,the di�erent times integrated by di�erent models maybe used to failitate more omplex, longer term move-ments.Besides the ombination and extension of IMs,strongly noisy signals will require more elaborate pro-esses. Forward models an be inluded in the proess-ing of the sensory inputs to bridge temporary misper-eptions, sensory failure, or noisy sensory inputs akinto Kalman �ltering.Summary and ConlusionThis paper has reviewed indiations and bene�ts of an-tiipatory mehanisms and hierarhial strutures inontrol proesses. Both mehanisms are involved in hu-man motor learning and ontrol. While antiipatorymehanisms lead to diret ation seletions in inversemodels and e�etive �ltering mehanisms in forwardmodels, the modular and hierarhial ombination ofsuh models promises to yield a more e�etive environ-mental representation inreasing behavioral �exibility,adaptivity, and deision making.The gathered potentials of ombining both meha-nisms into arti�ial ognitive systems promise fruitfulfuture researh. The proposed model provides a novel,integrative approah for studying suh ombinations.The generality of the proposed assoiative struturesenables diret modular and hierarhial ombinations.Future researh will investigate the suitability and ex-tendibility of our approah for the simulation of e�-ient ognitive learning systems in simulated and realroboti environments. Moreover, future researh will
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