
Context-Dependent Predictions and
Cognitive Arm Control with XCSF

Martin V. Butz
Department of Psychology

Röntgenring 11
97070 Würzburg, Germany

butz@psychologie.uni-wuerzburg.de

Oliver Herbort
Department of Psychology

Röntgenring 11
97070 Würzburg, Germany

oliver.herbort@psychologie.uni-
wuerzburg.de

ABSTRACT
While John Holland has always envisioned learning clas-
sifier systems (LCSs) as cognitive systems, most work on
LCSs has focused on classification, datamining, and func-
tion approximation. In this paper, we show that the XCSF
classifier system can be very suitably modified to control a
robot system with redundant degrees of freedom, such as a
robot arm. Inspired by recent research insights that sug-
gest that sensorimotor codes are nearly ubiquitous in the
brain and an essential ingredient for cognition in general,
the XCSF system is modified to learn classifiers that encode
piecewise linear sensorimotor structures, which are condi-
tioned on prediction-relevant contextual input. In the inves-
tigated robot arm problem, we show that XCSF partitions
the (contextual) posture space of the arm in such a way
that accurate hand movements can be predicted given par-
ticular motor commands. Furthermore, we show that the
inversion of the sensorimotor predictive structures enables
accurate goal-directed closed-loop control of arm reaching
movements. Besides the robot arm application, we also in-
vestigate performance of the modified XCSF system on a
set of artificial functions. All results point out that XCSF
is a useful tool to evolve problem space partitions that are
maximally effective for the encoding of sensorimotor depen-
dencies. A final discussion elaborates on the relation of the
taken approach to actual brain structures and cognitive psy-
chology theories of learning and behavior.

Categories and Subject Descriptors
I.2.6 [Learning]: Connectionism and neural nets; I.2.8
[Problem Solving, Control Methods, and Search]:
Plan execution, formation, and generation

General Terms
Algorithms, Design, Performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

Keywords
Bodyspaces, Cognitive Systems, Population Codes, Sensori-
motor Codes, XCSF

1. INTRODUCTION
Michigan-style LCSs [2] evolve a set of rules, the so-called

population of classifiers, where a rule consists of a condi-
tion, an action, and a prediction part. While the condition
structure is evolved online, the prediction part is usually
developed by some form of gradient-based approximation.
In the XCSF classifier system [32, 33], conditions represent
hyper-rectangles in a real-valued input space and predictions
are computed linearly from the condition input and an offset
value. Enhancements of the base XCSF system have shown
that the predictions do not necessarily need to be linear, but
can also be polynomial [22] or even predictions formed by
a multilayer perceptron [20]. Moreover, it was shown that
conditions can be changed to, for example, hyperellipsoidal
conditions [5].

Previously, XCSF research had focused on improvements
of the piece-wise approximations formed by the predictions,
the condition structures, or the evolutionary mechanism.
Besides these modifications, though, it is also possible to
form predictions from variables that are different from, but
related to, the input processed by the conditions. In this
case, a classifier condition can be seen as identifying the
context in which a certain (linear) prediction applies. This
modification is introduced and studied in the first part of
this paper.

Although John Holland had introduced learning classi-
fier systems (LCSs) as cognitive systems [17]—with his first
working system CS1 solving a food-water maintenance task
[18]—LCSs have mainly been applied to classification and
datamining problems [1, 19] as well as to other prediction
and control problems, such as stock-market predictions, in-
dustrial plant control, or traffic junction control [21]. Robot
control applications remain sparse and focus on immediate
control problems, such as light following [20]. In this pa-
per, we show that XCSF can be used to evolve classifiers in
an arm posture space for the prediction of motor activity-
dependent hand position changes of a simulated robot arm.
Moreover, we show that a simple inversion of the represen-
tation can be used to control the robot arm.

The resulting representation can be compared with pre-
vious simulated neural approaches for directional, cortical
arm control [4]. Moreover, it is now well-known that pre-

motor and motor cortical areas of the brain represent the
body by means of population encodings, where each neuron
covers a certain subspace of the respective body part in its
receptive field [13, 24, 27, 28]. This paper shows that XCSF
can evolve a similar representation, in which each classifier
condition specifies a certain subspace and the classifier pop-
ulation covers the complete problem space.

Moreover, we show that XCSF evolves its population en-
coding (that is, the set of classifiers) in order to optimize
a prediction task, which is the prediction of hand position
changes dependent on contextual arm posture and predic-
tive motor activity information sources. This is in line with
recent observations that the sensory system shows patterns
that can have only developed to improve motor control ca-
pabilities, and thus, that sensory representations develop
for motor control purposes [12, 14, 30]. The inversion of
the learned forward predictions then enable directional arm
control. Thus, the resulting modified XCSF may be termed
a self-developing, cognitive arm control system.

The remainder of this paper is structured as follows. First,
we give a short overview over XCS and XCSF in particu-
lar. Next, we detach the computed predictions from the
condition input and investigate resulting performance. In
Section 4 we introduce the arm control task and evaluate
XCSF’s forward predictive and inverse control capabilities.
After a short summary, the final discussion suggests further
modifications and applications of the XCSF system for the
development and study of advanced cortical representations
and motor control applications.

2. XCSF: A SHORT OVERVIEW
The classifier system XCS was originally designed as an

online generalizing reinforcement learning system that ap-
proximates the Q-value function of a Markov decision prob-
lem [31]. More than ten years later, though, it has become
clear that XCS is not only able to approximate Q-values with
a compact and highly general representation, but it is also
able to approximate real-valued functions [32, 33] and has
been successfully applied to datamining problems [1], among
various other recent applications (cf. [3] for a collection of
applications and further literature pointers). In any of these
applications, XCS evolves rules to partition the experienced
problem space in such a way that accurate, general classi-
fiers emerge, which together cover the whole problem space
and yield accurate predictions.

In the case of XCSF,—the real-valued XCS version with
linearly computed predictions [32, 33]—the classifier struc-
ture consists of condition and prediction only1. The condi-
tion part of a classifier determines the function domain sub-
space, in which the classifier prediction applies. In XCSF,
the prediction is then determined from the inner product of
the problem input vector and the classifier prediction weight
vector plus a (possibly scaled) offset weight. Classifier fit-
ness is derived from the inverse of the estimated mean error
of the classifier predictions relative to the errors of over-
lapping classifiers. Thus, XCSF may be termed an online
learning, piecewise-linear function approximation system in
which classifier condition structures are evolved to improve
the accuracies of their corresponding local linear approxima-
tions.

1An action part can, however, be included easily and is men-
tioned as a “dummy” action in Wilson’s original work.

Classifier parameters are updated in online interaction
with the problem at hand, iteratively processing problem in-
stances and corresponding actual function values. Gradient-
based techniques are used to approximate prediction, error,
and fitness values. Dependent on the fitness values, a niche-
based steady-state genetic algorithm is applied that selects
highly accurate classifiers and deletes low-fitness classifiers
in overcrowded niches. Together, the resulting evolutionary
pressures have been shown to inevitably evolve generalized,
piecewise-linear approximations of the target function [7].

In the case of the original XCSF, overlapping hyperrect-
angular condition structures and linear prediction struc-
tures were evolved. We use XCSF with rotating hyper-
ellipsoidal condition structures [8], update the predictions
with the recursive least squares technique [23], and apply
set-proportionate tournament selection for offspring selec-
tion [10], since these mechanisms have been shown to im-
prove XCSF’s learning speed, accuracy, and robustness. Fi-
nally, we also use the recently introduced compaction mech-
anism [6], which upon invocation switches to closest classifier
matching and turns off mutation and crossover, to investi-
gate the possibility of generating even more general function
approximations.

In the next section, we show how prediction structures
may be detached from the condition structures. Condition
inputs then are used only to determine matching while ad-
ditional prediction inputs are used to compute the output
prediction. For further information on XCS, the interested
reader is referred to the algorithmic description of the sys-
tem [11] and the cited literature.

3. SEPARATED INPUTS
Previously, computed predictions processed only the in-

put considered by the conditions. No potential other input
sources have been considered. We now show that XCSF’s
predictions can be computed out of some problem input that
may differ significantly from the input used to match classi-
fiers. In this case, classifier conditions may be seen as con-
text processing units, which activate the program (in this
case a linear prediction) that is maximally suitable to ap-
proximate the local problem space with the available ex-
pressive capabilities. In the following experiments, XCSF
conditions perceive context information and cluster that in-
formation to enable maximally accurate predictions2.

To study the effects on classifier structures and XCSF per-
formance, we designed the following three functions to test
XCSF’s learning capabilities, its robustness, as well as its
structural capabilities:

fn,2
1,m(x1, .., xn, y1, y2) = a ∗ (b ∗ x1 + y1 + j ∗ y2) (1)

fn,2
2,m(x1, .., xn, y1, y2) = a ∗ (b ∗Pn

i xi + y1 + j ∗ y2) (2)

fn,2
3,m(x1, .., xn, y1, y2) = a ∗ (sin(b ∗ xj) + y1 + j ∗ y2) (3)

where a and b are scalar function modifiers and n specifies
the number of condition input dimensions. Each function
specifies m output dimensions (with 1 ≤ j ≤ m). The num-
ber of prediction input dimensions was set to 2 through-
out. To distinguish condition from prediction input, we de-
note condition inputs by xi and prediction inputs by yi.

2If not stated differently, parameters were set to the values
reported in [8]. Results are averaged over 20 runs except for
the behavioral tests, for which 10 runs were averaged.

Figure 1: Classifiers only focus on partitioning the
first context dimension in problem f1 (shown with
n = 2). Shown are the classifier conditions (20%
of actual size) distributed over the condition-input
space before (380k learning iterations) and after
compaction (500k l.it.).

Since multiple outputs need to be predicted (that is, m out-
puts), each classifier learns m prediction weight vectors per
classifier—one for each output dimension. The error is de-
termined by the average absolute error over all output di-
mensions.

Function f1 has a very linear structure and could be solved
easily by various approximation techniques. For each sep-
arate output dimension, the function changes only linearly
by a larger factor j. Other than that, inputs are only depen-
dent on x1, so that classifiers evolve that ignore additional
input dimensions. Figure 1 shows a typical classifier distri-
bution at the end of a learning run before and after com-
paction, showing the classifier conditions in 20% of their ac-
tual size. The plot confirms that classifier conditions parti-
tion the function-relevant input dimension x1 and generalize
over x2.

Since the condition structure should be equally effective
for all output dimensions in Function f1 and the output di-
mensions are approximated in parallel in each classifier, the
number of output dimensions should not affect learning per-
formance. This fact can be seen in Figure 2(a), where the
number of input dimensions does not affect performance,
but a larger scaling factor does, because the scaling doubles
the importance of the context dimension x1. It is also inter-
esting to see that the compaction algorithm [6, 9], which is
activated after 400k learning iterations and essentially dis-
ables crossover and mutation and changes to closest classifier
matching, does not only decrease population size (number
of distinct classifiers) but also further decreases the error,
selectively deleting inaccurate offspring and less accurate,
overlapping classifiers.

Function f2 requires the structuring of all n context di-
mensions. But, as in f1, each output dimension is equally
dependent on the context input dimensions. Moreover, due
to the linear combination of the context dimensions, that is,Pn

i xi, the context space needs to be structured obliquely
in the three dimensions. Figure 2(b) shows XCSF’s per-
formance in Function f2. As in f1, the number of output
dimensions does hardly affect learning accuracy and XCSF
evolves increasingly accurate space partitions. With a larger
population size of N = 6400, an error of less than .01 is
reached. Compaction further improves performance and de-
creases population size in all cases.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rro

r,
m

ac
ro

 c
l.

(/1
2.

8k
)

number of learning steps (1000s)

XCSF in f1,m
3,2, N=3200, b=2

a=1, m=1: pred.error
macro cl.

a=1, m=3: pred.error
macro cl.

a=2, m=1: pred.error
macro cl.

(a) XCSF performance in f3,2
1,m

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rro

r,
m

ac
ro

 c
l.

number of learning steps (1000s)

XCSF in f2,m
3,2, a=1, b=2

N=3200, m=1: pred.error
macro cl. (/12.8k)

N=3200, m=3: pred.error
macro cl. (/12.8k)

N=6400, m=1: pred.error
macro cl. (/25.6k)

(b) XCSF performance in f3,2
2,m

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rro

r,
m

ac
ro

 c
l.

number of learning steps (1000s)

XCSF in f3,m
3,2, a=1, b=1

N=3200, m=2: pred.error
macro cl. (/12.8k)

N=3200, m=3: pred.error
macro cl. (/12.8k)

N=6400, m=3: pred.error
macro cl. (/25.6k)

(c) XCSF performance in f3,2
3,m

Figure 2: Performance of the modified XCSF in
the three simple test functions shows competent,
contextual processing. After 400k iterations, com-
paction was activated. In Function f1, only one con-
text dimension is relevant for an accurate prediction.
Function f2 requires oblique clustering of the con-
text dimensions. Function f3 becomes increasingly
harder with m = 3 output dimensions.

Figure 3: Dependent on the number of output di-
mensions in Function f3 (n = 2, m = 1 left vs. n = 2,
m = 2 right-hand side), classifier conditions parti-
tion the context input space in slices for n = 1 and
in somewhat equally sized and distributed subspaces
for m = 2. Classifier conditions are shown in 20% of
their actual size.

The hardest challenge is posed by Function f3 with m > 1,
because each output dimension depends on a different con-
textual input dimension. Given only one output dimension
(m = 1), f3 is essentially identical to f1, except for that
the context is still processed by a sine function. In higher
dimensions, however, each output dimension is dependent
on another context dimension. Thus, since each classifier
predicts all output dimensions, the problem becomes simi-
lar to a real-valued checkerboard problem [29], where each
input dimension should be structured finer, the larger the
absolute derivative of the sine function in this dimension.
The partitioning can be observed in the evolving population
of XCSF. Figure 3 shows typical final populations of XCSF
runs in Function f3 after compaction. On the left hand side,
a population is shown for the setting with n = 2, m = 1,
a = 1, and b = 2π. It can be seen that the partitioning
actually reflects the sine wave with finer partitions in areas
with larger derivatives. In the case of two output dimen-
sions (n = 2, m = 2, a = 1, b = 1), classifier conditions
distribute themselves somewhat equally over the condition
input space, reflecting the checkerboard quality of the prob-
lem (Figure 3, right-hand side). Figure 2(c) shows XCSF’s
performance in the problem. Clearly, the additional output
dimension results in a significantly harder problem.

In sum, the results show that XCSF can be very well ex-
tended to process contextual input, which is somewhat in-
dependent of the input used to compute the predictions. In
the next section, we show one first possible application of
such an XCSF system.

4. COGNITIVE ARM CONTROL
While the previous section has shown that XCSF can

evolve classifiers that cluster contextual information for the
generation of accurately predicting classifiers, we now move
to an arm control task, which is inspired by cognitive control
models.

Despite continuing progress, the understanding of human
motor control is far from complete and the computational
processes underlying infant motor learning are highly ob-
scure. Various research directions suggest that infants learn
internal forward models of body movements during develop-

ment, which enable the inverse, goal-directed control of the
body [15]. Consequently, several interactive forward-inverse
models have been developed [34]. The learning process dur-
ing development is obviously self-supervised and solves the
challenge of building control structures for a highly dynamic
and redundant plant.

In the following, we address two aspects of this inverse
model learning problem, applying it to a redundant, three-
joint planar arm. First, we show that XCSF can partition
the arm posture space to enable highly accurate predictions,
that is, forward model representations. It learns to predict
accurate hand displacements given current motor activity
and hand location. Second, we show that the encoded infor-
mation may be used inversely to determine the motor actions
that move the hand, that is, the arm end-point towards a
desired target.

Somewhat mimicking the neural network approach in [4],
we train XCSF on a three-degree of freedom arm control
problem with context input that encodes the current arm
posture (three angles)3. The prediction input, on the other
hand, encodes current motor activity (change in angles)
but predicts the resulting change in hand location (that is,
the difference in arm end-point coordinates before and after
movement). We train XCSF on this prediction task but do
not only evaluate the predictive capabilities but also the re-
sulting inverse control capabilities. The question is, whether
the evolving representation is able to guide the arm to given
goal states by inverting the piecewise-linear mapping be-
tween motor command and hand location change.

Figure 4 shows typical XCSF performance curves in the
prediction task, confirming that this context-based problem
is learnable by XCSF. Prediction accuracy continuously im-
proves. The application of compaction decreases the pop-
ulation size by over 90% while affecting performance only
marginally. This is the case after 120k steps (Figure 4a)
and also in longer runs with 500k learning iterations (4b).
To test if border effects might affect performance, we trained
XCSF on the full problem space (border 0) and on an inner
problem space with a surrounding unsampled region that
covers the outer 10% of the length of each dimension. While
the inner region is even easier to approximate, also the runs
on the full region yield accurate predictions.

While the evaluation of prediction accuracy just confirms
the prediction capabilities of the modified XCSF version, the
arm control task is a new challenge for XCSF. Given a cur-
rent arm posture, the current match set is determined—as
in the usual prediction case— which however is then used to
determine the inverse motor command as follows. For each
classifier in the set, the inverse of the forward prediction is
calculated. However, since there are only two linear equa-
tions, which usually are used to predict hand displacements
(Δx, Δy) given three angular motor commands, but now we
intend to determine the three motor commands necessary
to achieve a desired hand displacement, an additional con-
straint is necessary. A simple solution is to set one of the
three motor commands to zero—effectively prohibiting the

3The simulated arm has limb lengths of 1.4, 1.4, .8 arm
units. The joints can rotate freely between −60◦ and 150◦
(shoulder), 0◦ and 150◦ (elbow), and −10◦ and 150◦ (wrist),
using the specifications from [4]. During training, random
instance samples were generated that moved the arm selec-
tively in one dimension by a uniformly chosen value between
−.18◦ and .18◦. The error threshold was set to ε0 = .0001.

 0.01

 0.1

 0 20 40 60 80 100 120

pr
ed

. e
rr

or
 (x

10
0)

, m
ac

ro
 c

l.
(/2

5.
6k

)

number of learning steps (1000s)

XCSF in Arm Prediction Task, N=6400

border 0: pred.error
macro cl.

border .1: pred.error
macro cl.

(a) Compaction after 100k learning steps

 0.01

 0.1

 0 100 200 300 400 500

pr
ed

. e
rr

or
 (x

10
0)

, m
ac

ro
 c

l.
(/2

5.
6k

)

number of learning steps (1000s)

XCSF in Arm Prediction Task, N=6400

border 0: pred.error
macro cl.

border .1: pred.error
macro cl.

(b) Compaction after 400k learning steps

Figure 4: XCSF learns to predict motor-dependent
arm displacements effectively and accurately. Com-
paction decreases population size by over 90% while
hardly affecting prediction accuracy.

movement of one joint. However, since all three joints may
need to be moved to reach a given goal state, we simply
take turns and set a different motor command to zero in
each movement command calculation. The overall motor
command in one calculation is determined by the average
movement command suggested by all (micro-)classifiers in a
match set. Before executing the command, the movement
vector was normalized to a total angular movement of 1.8◦

(smaller step sizes did not alter performance significantly).
To evaluate the inverse control performance, we tested

the evolving XCSF populations on a set of 78 start-posture,
goal-hand-location combinations. Particularly, we set the
arm to 27 different arm postures (shoulder, elbow, and wrist
angles either flexed, centered, or bent) and test it on reach-
ing three hand locations, which are located at the position
where shoulder, elbow, and wrist angles are either all flexed,

centered, or bent4. Since extreme angular values cause non-
linear border effects and consequently targeted trajectories
might lead through unreachable terrain, we further restrict
the maximal angles by a certain border surrounding the in-
ner angular posture space, as specified in the graphs. To
evaluate the effectiveness of the movements, we monitor not
only the success rate but also the path efficiency, which we
measure by dividing the Euclidean distance from hand start
to hand goal location with the actual distance the hand
moved from start to goal. We report the average path effi-
ciency over all successful trials out of the 78 test cases. A
goal was considered successfully reached if the hand moved
into a region of .05 arm length units around the goal.

Figure 5 shows that XCSF’s success rate increases during
learning. Also the path efficiency improves but it plateaus
after about 60k learning iterations. It appears that XCSF
overspecializes its population for the generation of accurate
forward predictions so that the representation becomes over-
generalized for the inverse computation, as can also be seen
in the decreased performance after compaction was applied
(after 100k iterations). Nonetheless, especially the inner
area of the arm is controlled reliably and effectively by the
evolved XCSF classifiers. By closer inspection of the actual
movements executed, we noticed that some of the generated
trajectories ended in a circling behavior around the goal lo-
cation. This may be due to the simple inverse computation
approach, where we iteratively set each angular movement
to zero.

An alternative, non-deterministic approach can be found
in the neural network literature on hierarchical vision mod-
els. Rao and Ballard [26] showed that a neural network can
iteratively approximate a linear function accurately-enough
to develop emergent visual cortical features, such as edge
detectors and even more complex image structures. Essen-
tially, the forward linear equation is transposed determining
an approximate inverse. The resulting activity is forwarded
back to the input, resulting in an error between input activ-
ity and predicted activity. The difference is used to prop-
agate the next inverse activity by the transpose, etc. To
ensure sufficient convergence of this process, we executed
this forward-backward interaction for 100 iterations with an
adaptation rate of .05. For further information the inter-
ested reader is referred to the original paper [26].

Figure 6 shows that the approximate inverse computation
approach improves the success rate as well as the path effi-
ciency of XCSF, reaching a success rate of 100% reliably
before compaction. However, also in this case path effi-
ciency stalls at an approximately 95% level and decreases
after compaction is applied. As suggested before, the appar-
ently over-fitted conditions for prediction yield a decreased
inverse accuracy.

Nonetheless, a 95% path efficiency corresponds to nearly
straight trajectories. A set of tested sample trajectories are
shown in Figure 7. The trajectories were generated from a
population of classifiers after 60k learning iterations, train
border .1, test border .3, and the interactive, approximate
inverse computation. Only the inner and outer goal location
tests are shown. It can be seen that the invoked hand move-

4Only 26 start postures were actually tested with each goal
location—thus testing 26∗3 = 78 start-goal combinations—
since there is one coinciding start posture for each of the
goal locations.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20

pr
op

or
tio

n
go

al
s

re
ac

he
d,

 p
at

h
ef

fic
ie

nc
y

number of learning steps (5k)

XCSF in Target Reaching Task, Test Border .2

Train Border 0: Goals reached
Path efficiency

Train Border .1: Goals reached
Path efficiency

(a) Wider area test

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20

pr
op

or
tio

n
go

al
s

re
ac

he
d,

 p
at

h
ef

fic
ie

nc
y

number of learning steps (5k)

XCSF in Target Reaching Task, Test Border .3

Train Border 0: Goals reached
Path efficiency

Train Border .1: Goals reached
Path efficiency

(b) Narrower area test

Figure 5: The arm learns to reach targets reliably
in the inner space (b). Targets closer to extreme
postures yield errors and worse trajectories due to
ineffective border representations (a).

ments (arm end point) are rather direct and always reach
the goal location accurately.

5. SUMMARY AND CONCLUSIONS
This paper has shown that XCSF can be applied not only

as a forward predictive system approximating functions but
also as a context-dependent processing system that struc-
tures contextual information dependent on the predictions
formed given other information. The capability of the result-
ing modified XCSF system was first exemplarily evaluated
in three artificial function problems, in which one or more
context dimensions modified the target values. Certainly
various other types of contextual information, dependent on
the intended application, are imaginable, such as nominal or
binary represented inputs or mixed inputs. Moreover, also
mixture models are imaginable in which parts of (or all) the
context information may also be used for the generation of

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20

pe
rc

en
t g

oa
ls

 re
ac

he
d

/ p
at

h
ef

fic
ie

nc
y

number of learning steps (5k)

XCSF in Target Reaching Task, Train Border .1

Test Border .2: Goals reached
Path efficiency

Test Border .3: Goals reached
Path efficiency

Figure 6: With the approximate inverse computa-
tion, XCSF reaches all goals also in the harder case
with goal states closer to the border.

the predictions. The evaluations also showed that XCSF
distributes its classifiers very effectively in such tasks.

Besides the capability of processing context input sepa-
rately from predictive input, we showed that XCSF may be
applied for the control of a three degree of freedom arm.
In this case, XCSF learned how motor commands (changes
in joint angles) affected the displacement of the hand, given
the current arm posture. We showed that XCSF can be used
to generate accurate forward predictions in this task. Fur-
thermore, we also showed that these forward predictions can
be inversely used to invoke directional arm control. Given
a current desired direction to a goal, XCSF can be used to
invoke suitable motor commands that guide the arm to the
goal on an approximately optimal path. Future research
needs to further evaluate these capabilities and also further
investigate the slight decrease in behavioral performance af-
ter an initial significant performance increase. Alternatively,
it should also be investigated if XCSF can be trained to ac-
tually optimize the inverse representation directly instead
of the forward predictive representation learned in the pre-
sented work.

6. FINAL DISCUSSION
Current computational models of human behavioral con-

trol rely extensively on a sparse representation of percep-
tion. Such a representation requires that perceptual input
is grouped into several more or less discrete units, which
are of high relevance for many aspects of behavioral con-
trol. On the neural level, parietal and motor cortical ar-
eas encode sensory information in population codes, where
each neuron represents a range of possible perceptions [13].
Likewise, motor-actions may also be organized in discrete
units, so-called motor primitives [25]. On a higher level,
also the integration of multiple skills requires a partitioning
of the behavioral context in order to enable stable inverse
model learning and context-dependent control [16]. The par-
titioning of sensory spaces, however, which underlies these
models, is mostly not evolved but predefined or generated
independent of the interaction between sensory input and

Figure 7: The resulting arm trajectories show that the hand moves approximately straight to the goal location,
where the final arm posture is drawn thicker than the intermediate postures on the trajectory.

motor activity. However, research has shown that spatial
coverages are developed highly pro-actively, optimizing the
spatial partitions for the individual behavioral sensorimotor
demands [14].

It has been shown previously that XCSF is a system that
clusters a problem space for the purpose of solving a given
prediction task, that is, XCSF is a self-organizing system,
which clusters for the purpose of prediction. The proposed
XCSF setup evolves a bodyspace partitioning for the predic-
tion of accurate motor activity effects on sensory input, that
is, for accurate sensorimotor learning. Thus, XCSF provides
a platform that can evolve population encodings for the pur-
pose of prediction and control. In the future, XCSF inspired
models may help to gain a deeper understanding of the pro-
cesses that shape neural body control structures and that
link different sensory modalities or goal representations with
motor actions. Moreover, other context-dependent control
applications may be investigated, such as the control of other
body parts.

Although John Holland might have not imagined it quite
this way, sensorimotor cognitive control is possible with

learning classifier systems. The results have shown that
XCSF can be applied as a complex cognitive control sys-
tem, which develops sensorimotor structures from scratch
based on initially simple environment interactions. Future
research will show how more complex cognitive control tasks
with, for example, more degrees of freedom in higher dimen-
sions may be tackled by enhanced, possibly further modu-
larized, XCSF-based systems.

Acknowledgments
The authors acknowledge funding from the Emmy Noether
program of the German research foundation (grant
BU1335/3-1) and like to thank their colleagues at the de-
partment of psychology and the COBOSLAB team.

7. REFERENCES
[1] E. Bernadó-Mansilla and J. M. Garrell-Guiu.

Accuracy-based learning classifier systems: Models,
analysis, and applications to classification tasks.
Evolutionary Computation, 11:209–238, 2003.

[2] L. B. Booker, D. E. Goldberg, and J. H. Holland.
Classifier systems and genetic algorithms. Artificial
Intelligence, 40:235–282, 1989.

[3] L. Bull, editor. Applications of Learning Classifier
Systems. Springer-Verlag, 2004.

[4] D. Bullock, S. Grossberg, and F. H. Guenther. A
self-organizing neural model of motor equivalent
reaching and tool use by a multijoint arm. Journal of
Cognitive Neuroscience, 5:408–435, 1993.

[5] M. V. Butz. Kernel-based, ellipsoidal conditions in the
real-valued XCS classifier system. GECCO 2005:
Genetic and Evolutionary Computation Conference,
pages 1835–1842, 2005.

[6] M. V. Butz. Documentation of XCSFJava 1.1 plus
visualization. MEDAL Report 2007008, Missouri
Estimation of Distribution Algorithms Laboratory,
University of Missouri in St. Louis, MO, 2007.

[7] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson.
Toward a theory of generalization and learning in
XCS. IEEE Transactions on Evolutionary
Computation, 8:28–46, 2004.

[8] M. V. Butz, P. L. Lanzi, and S. W. Wilson.
Hyper-ellipsoidal conditions in XCS: Rotation, linear
approximation, and solution structure. GECCO 2006:
Genetic and Evolutionary Computation Conference,
pages 1457–1464, 2006.

[9] M. V. Butz, P. L. Lanzi, and S. W. Wilson. Function
approximation with XCS: Hyperellipsoidal conditions,
recursive least squares, and compaction. IEEE
Transactions on Evolutionary Computation, in press.

[10] M. V. Butz, K. Sastry, and D. E. Goldberg. Strong,
stable, and reliable fitness pressure in XCS due to
tournament selection. Genetic Programming and
Evolvable Machines, 6:53–77, 2005.

[11] M. V. Butz and S. W. Wilson. An algorithmic
description of XCS. Soft Computing, 6:144–153, 2002.

[12] J. G. Fleischer. Neural correlates of anticipation in
cerebellum, basal ganglia, and hippocampus. In M. V.
Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre,
editors, Anticipatory Behavior in Adaptive Learning
Systems: From Brains to Individual and Social
Behavior. Springer-Verlag, 2007.

[13] A. P. Georgopoulus. Current issues in directional
motor control. Trends in Neuroscience,
18(11):506–510, 1995.

[14] M. Graziano. The organization of behavioral
repertoire in motor cortex. Annual Review
Neuroscience, 29:105–134, 2006.

[15] A. Greenwald. Sensory feedback mechanisms in
performance control: with special reference to the
ideo-motor mechanism. Psychological Review,
77:73–99, 1970.

[16] M. Haruno, D. M. Wolpert, and M. Kawato. Mosaic
model for sensorimotor learning and control. Neural
Computation, 13:2201–2220, 2001.

[17] J. H. Holland. A cognitive system with powers of
generalization and adaptation. Unpublished
manuscript, 1977.

[18] J. H. Holland and J. S. Reitman. Cognitive systems
based on adaptive algorithms. In D. A. Waterman and
F. Hayes-Roth, editors, Pattern directed inference

systems, pages 313–329. Academic Press, New York,
1978.

[19] J. H. Holmes, D. R. Durbin, and F. K. Winston. A
new bootstrapping method to improve classification
performance in learning classifier systems. Parallel
Problem Solving from Nature PPSN, VI:745–754, 2000.

[20] J. Hurst and L. Bull. A neural learning classifier
system with self-adaptive constructivism for mobile
robot learning. Artificial Life, 12:1–28, 2006.

[21] T. Kovacs. Bibliography of real-world classifier
systems applications. In L. Bull, editor, Applications
of Learning Classifier Systems. Springer-Verlag, Berlin
Heidelberg, 2004.

[22] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. Extending XCSF beyond linear
approximation. GECCO 2005: Genetic and
Evolutionary Computation Conference, pages
1827–1834, 2005.

[23] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. Prediction update algorithms for XCSF:
RLS, kalman filter and gain adaptation. GECCO
2006: Genetic and Evolutionary Computation
Conference, pages 1505–1512, 2006.

[24] A. Maravita, C. Spence, and J. Driver. Multisensory
integration and the body schema: Close to hand and
within reach. Current Biology, 13:531–539, 2003.

[25] F. A. Mussa-Ivaldi and E. Bizzi. Motor learning
through the combination of primitives. Philosophical
Transactions of the Royal Society: Biological Sciences,
355:1755–1769, 2000.

[26] R. P. N. Rao and D. H. Ballard. Predictive coding in
the visual cortex: A functional interpretation of some
extra-classical receptive-field effects. Nature
Neuroscience, 2(1):79–87, 1999.

[27] G. Rizzolatti, L. Fadiga, L. Fogassi, and V. Gallese.
Enhanced: The space around us. Science,
277:190–191, 1997.

[28] A. B. Schwartz, D. W. Moran, and G. A. Reina.
Differential representation of perception and action in
the frontal cortex. Science, 303:380–383, 2004.

[29] C. Stone and L. Bull. An analysis of continuous-valued
representations for learning classifier systems. In
L. Bull and T. Kovacs, editors, Foundations of
Learning Classifier Systems, Studies in Fuzziness and
Soft Computing, pages 127–175. Springer-Verlag,
Berlin Heidelberg, 2005.

[30] P. F. M. J. Verschure, T. Voegtlin, and R. J. Douglas.
Environmentally mediated synergy between
perception and behaviour in mobile robots. Nature,
425:620–624, 2003.

[31] S. W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[32] S. W. Wilson. Function approximation with a
classifier system. Proceedings of the Third Genetic and
Evolutionary Computation Conference
(GECCO-2001), pages 974–981, 2001.

[33] S. W. Wilson. Classifiers that approximate functions.
Natural Computing, 1:211–234, 2002.

[34] D. M. Wolpert and M. Kawato. Multiple paired
forward and inverse models for motor control. Neural
Networks, 11:1317–1329, 1998.

