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Contact line dynamics near the pinning threshold: A capillary rise and fall experiment

Erik Schäffer* and Po-zen Wong
Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

~Received 13 September 1999!

We used video microscopy to study the pinning dynamics of air/water contact lines in vertical glass capil-
laries. Stick-slip behavior and avalanches are observed in tubes with rough interior walls and strong pinning
forces. In tubes with smooth interior walls, we find that receding contact lines in falling water columns show
no evidence of pinning, but advancing contact lines in rising water columns exhibit algebraic slow down. The
measured value of the critical exponentb varies from run to run, but it is always larger than unity. Further-
more, we find that the rise dynamics varies with the waiting time preceding the experiments. These observa-
tions led us to conclude that the wetting film on the surface and other microscopic changes in the slipping
region near the contact line affect the macroscopic dynamics. We discuss the differences between the real
system and the existing theories that might explain the results. We also present a brief review of other studies
of contact line dynamics and a numerical study of a one-dimensional model.

PACS number~s!: 47.60.1i, 05.65.1b, 68.10.2m, 68.45.Gd
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I. INTRODUCTION

The rise and fall of fluids in capillary tubes have be
studied for many decades@1#. On the macroscopic scale, it
a simple experiment in a simple geometry. The equations
static and dynamic situations are well defined and wid
used. On the microscopic scale, however, even in suc
simple system, the imperfections of real surfaces and
presence of thin wetting films can have profound effects
the macroscopic dynamics. Since the flow of fluid throu
small pores and the spreading of liquids on solid surfa
have a wide range of applications in many fields of scie
and technology, there is much interest in understanding
connections between the microscale and macroscale be
ior. Thecontact lineof the vapor-liquid-solid phases is ofte
the focal point of investigation. An interesting idea to d
scribe the dynamics is in terms of adepinning transitionand
it has attracted considerable attention in recent years. A r
drop stuck on a windowpane offers the simplest illustrat
of this idea. The essence of it is that the geometric roughn
and chemical disorder on the glass surface can be mod
by a random potential. It can pin the raindrop in a metasta
state. If the weight of the drop exceeds the net pinning fo
it would slide down, but it may be halted again if the a
water-glass contact line encounters stronger pinning for
In this paper we report an experiment that uses the rise
fall of water columns in capillary tubes to study the dyna
ics near the depinning transition. Some of the highlights h
been reported previously in Ref.@2# and some details no
described here may be found in Ref.@3#.

The effects of pinning and depinning, often described
stick-slip behavior, are seen in many different physical s
tems. Examples include the sliding of charge density wa
in quasi-one-dimensional conductors with increasingly
plied voltage @4#, the motion of magnetic domain wall
driven by an applied field@5,6#, vortex flow in superconduct

*Present address: LS Professor Dr. Mlynek, Fakulta¨t für Physik,
Universität Konstanz, Fach M695, 78457 Konstanz, Germany.
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ing films @7#, and the movement of fluid interfaces in poro
media@8,9#. Common to all these systems is the presence
quenched disorder, or a random potential, that leads to pi
ning effects. The transition from the pinned state to a mov
state has been proposed as an example ofdynamical critical
phenomena@10–12# that exhibit scaling behavior. Near th
critical point, theories generally predict an algebraic form
the system’saveragevelocity y,

y5yo~F/Fc21!b, ~1!

whereF is the driving force,Fc the finite pinning threshold,
and b the critical exponent.b is believed to be universa
@13–15# in the sense that it depends only on the dimensi
ality of the system and not on material details such as
nature of the order parameter, interactions, and disorder.
contact lines, the physical picture is that, superimposed
the overall velocityy, sections of the line make discret
‘‘jumps’’ analogous to avalanches in other systems. The s
of the jumps follows a power-law distribution and it is lim
ited by a characteristic correlation lengthj. As in equilib-
rium critical phenomena,j diverges as

j}~F2Fc!
2n ~2!

at the thresholdFc , wheren is the correlation length expo
nent. The roughness of the line is self-affine at length sca
smaller thanj. Its width w scales as

w}ja, ~3!

wherea5121/n is the roughness exponent@15#. The aver-
age waiting timet associated with a jump of sizej obeys
dynamic scaling with an exponentz:

t}jz. ~4!

These scaling relations predict an average velocity

y}
w

t
}ja2z}~F2Fc!

2n(a2z)5~F2Fc!
b ~5!
5257 ©2000 The American Physical Society
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5258 PRE 61ERIK SCHÄFFER AND PO-ZEN WONG
where the exponentb5n(z2a). Generally speaking, the
data from various experimental systems seem to fit the a
braic form of Eq.~1! but the values of the exponentb differ
considerably from the theoretical predictions. The cause
this discrepancy is not understood.

The capillary rise experiment we report here probe
wide range of velocities on surfaces with different roug
ness. We observed stick-slip behavior and evidence for s
ing. However, the exponentb was irreproducible and indi
cated a dependence on the presence of a wetting film.
film properties appear to control the dynamics near the p
ning threshold@2#. Similar microscopic details in other sys
tems may also be responsible for the apparent lack of
versality.

The paper is structured as follows. In Sec. II, we revi
the experimental and theoretical work on dynamic cont
angles and contact line dynamics. Section III gives a me
field description of the dynamics of capillary rise and fall
a vertical tube in the absence of surface disorder. This
cussion defines the relevant variables in the experiment
the theoretical baseline for analyses. Section IV gives
experimental details and Sec. V presents the results
strong and weak surface disorder. In the strong disorder c
stick-slip behavior of theentire contact line was observe
and attributed to finite-size effects. In that limit, the syste
becomes one dimensional~1D!. As a result, we present a 1D
simulation of the equation of motion in Sec. VI to compa
with the data. In Sec. VII we summarize our findings a
discuss several important differences between the real
tem and the theoretical models.

II. REVIEW OF BACKGROUND

Classically, Young’s equation describes theequilibrium
contact angle of a drop on anideal flat surface. It can be
modified to include a correction term for an adsorbed fil
which must be present when the system is in equilibri
with its vapor-saturated atmosphere@16#. Wenzel @17# fur-
ther modified Young’s equation to include effects of a rou
surface. Chemical heterogeneities were considered by Ca
@18#. Nonideal surfaces lead tocontact angle hysteresis. Sur-
face roughness and chemical heterogeneities, due to
tamination or otherwise, introduce metastable states in
system. A receding or advancing contact line can beco
pinned when the contact angle falls in a rangeu r,u,ua
around the static equilibrium angleu. The apparent contac
angle measured while the liquid is retracting is called
recedingangle, and that associated with liquid spreading
called theadvancingangle. u r and ua correspond to the
maximum receding angle and minimum advancing angle
a movingcontact line. Their difference depends on the d
gree of roughness and heterogeneity. A further cause for
teresis is the presence of solutes in the liquid. It can cha
the solid-liquid interfacial structure at the molecular lev
and thereby the macroscopic surface tension.

In general, the apparent contact angle associated wi
moving contact line varies with velocity. A number of em
pirical relationships and theoretical models for wetting ha
been discussed in the literature, all of which express thedy-
namiccontact angleud as a function of the capillary numbe
e-
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Ca and the static advancing contact angleua during spread-
ing,

ud5 f ~Ca,ua!. ~6!

The capillary numberCa is defined as the ratio of viscou
and interfacial forces

Ca5
h

g
y, ~7!

wherey is the interface velocity,g the surface tension, andh
the viscosity of the liquid. ForCa,1022, the most com-
monly suggested relationship is

cosua2cosud5ACaB ~8!

whereA and B are constants. As shown in Eq.~14! below,
this equation is equivalent to Eq.~5! if we identify B51/b.
This result suggests that dynamic wetting has universal
havior that is independent of the details of the solid-liqu
gas system. While this is an interesting idea, a closer exa
nation of the data in the literature reveals that th
relationship was never observed over a wide range inCa.
We give a brief survey of the classical studies below first a
then review the more recent theoretical and experimenta
sults.

Elliot and Riddiford @19,20# studied the flow of water
between glass and polyethylene plates. They found that
dynamic contact angle was constant to within 1% of t
static advancing angle~approximately 100°) forCa,2
31027. Above that value, the angle increased monotonica
until it reached a limiting plateau value of 115(1) ° forCa
,231026. Schwartz and Tejeda@21# identified three re-
gimes of wetting behavior in a study using ten differe
solid-liquid systems with static contact angles between
about 70° approximately. In the lowest range,Ca,2
31026, the dynamic contact angle is independent of velo
ity. This is followed by two regions where the contact ang
becomes larger with increasing capillary number with
change of slopes atCa'1023. Blake @22# reports similar
dynamic behavior. In addition, he observes the occurrenc
stick-slip motion in the range of 1025,Ca,1023. Seebergh
and Berg@23# reviewed and confirmed Eq.~8!. They also
tested the influence of intermolecular forces~acid-base inter-
actions between the liquid and solid phases! on the dynamics
of the contact angle for a variety of solids and liquids cla
sified according to their chemical properties~acidic, basic, or
neutral character!. They concluded that the dynamic conta
angle is unaffected by such interactions. Consequently,
wetting behavior in the presence of intermolecular forc
~acid-base! cannot be differentiated from purely dispersiv
systems~acid-acid, base-base, or neutral with any other pr
erty!. Both types of systems resulted in the same parame
A andB in Eq. ~8!.

The role of roughness in wetting has been investigated
several systems@21,22,24#. It has been established tha
roughness increases the dependence of the contact ang
the velocity of the interface and that it introduces stick-s
behavior in the low capillary number regime for system
with nonzero static contact angle. Cainet al. @24# reported
velocity dependencies of the advancing dynamic con
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PRE 61 5259CONTACT LINE DYNAMICS NEAR THE PINNING . . .
angle ud over a narrow range ofCa. They used silicone
coated glass slides of various degrees of roughness
dipped them in water at rates of 0.8212 mm/s, which corre-
spond to 1028,Ca,1027. For the smooth slides, an initia
increase for smallCa in the contact angle is followed by
plateau region and another increasing region. The pla
section and the onset of the second rise coincide with
data from Elliot and Riddiford. However, the initial increa
of the contact angle for very low velocities was not repor
before. Using slides with rough surfaces, they found that
plateau region disappeared. They attributed the initial
with increasingCa to a diffusive mechanism andnot a vis-
cous~velocity! effect. They argued that if the dipping of th
slide was slow enough, a thin film ahead of the contact l
on the initially dry surface would be established by the a
sorption of the diffusing vapor and this could affect the co
tact angle. If the dipping velocity is faster than the establi
ment of the adsorbed film, the surface properties wo
remain unaltered. Thus the contact angle would be inse
tive to the velocity in the lowCa limit. Their results dem-
onstrate the importance of making measurements in a va
saturated atmosphere in thermal equilibrium.

Elliot and Riddiford@20#, as well as Hansen and Miott
@25# before them, suggested akinetic interpretation for the
constant contact angle at low capillary numbers (Ca
,1027). In their scaling approach, they compare the int
facial velocityy with a natural displacement velocityyn de-
fined by the ratio of a characteristic film thicknessL f ilm near
the contact and the relaxation timetmol of the slowest mol-
ecules in the periphery. Ify,yn the molecules in the liquid
have enough time to find their equilibrium positions wi
respect to the solid surface, and the contact angle shoul
independent of the velocity.L f ilm is expected to be of mo
lecular size, andtmol varies with the materials used. For th
water-silicone system studied, the transition from the st
to the dynamic contact angle was found to occur at veloci
that correspond toCa'1027, which resulted in the estimat
t,1025 s. The difference from the relaxation timet0
'10210 s for bulk water is attributed to the energy barri
for adsorbing liquid molecules onto the surface. The d
agreement with the study of Cainet al. may be explained by
the lack of vapor pressure control in the latter experiment.
the real effects of surface roughness and heterogeneitie
main unclear.

A. The depinning transition

As we have mentioned, the recent ideas about the eff
of surface disorder center around the notions of avalanc
and dynamical phase transitions. The same set of ideas
phenomenology apply to fluid interfaces moving through
random porous media as well. Koplik and Levine@10# sug-
gested a stochastic differential equation to describe the
namics of fluid interfaces in porous media with quench
disorder. Their model assumes that the interface is nearly
so that they can ignore the possibility of overhangs a
pinched off patches of the displaced fluid. The position of
interface is represented by a single valued functionz
5 f (x,t), x being a (d21)-dimensional transverse vector.
(111) dimensions,~1 transverse1 1 parallel direction with
respect to the driving force!, z may be thought of as the
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position of a contact line. In (211) dimensions,z may be
used to describe a fluid interface in porous media. The eq
tion of motion is argued to be

] f

]t
5y`1J¹2f 1Y~x, f !, ~9!

where y` is the macroscopic interface velocity that wou
result from a uniform driving forceF in the absence of the
other terms on the right-hand side. In the case of fluid flow
porous media, for example,y` is proportional to the applied
pressure gradient~Darcy’s law!. The¹2 term in Eq.~9! rep-
resents a spatially varying capillary force due to the lo
curvature of the interface. It can be interpreted as an ef
tive surface tension that acts to minimize the interfacial a
or interfacial free energy.J is an effective elasticity.Y(x, f )
represents the quenched disorder in the system. For s
range uncorrelated disorder,Y should bed correlated and
have zero mean.

Equation~9! has been analyzed by Nattermannet al. @12#,
and independently by Narayan and Fisher@13#, using func-
tional renormalization-group~RG! methods. From ane ex-
pansion around five dimensions (d552e), they obtained
essentially the same behavior for thedepinning transitionas
summarized in Eqs.~1!–~5!. Figure 1 illustrates the key fea
ture of the transition: the velocity approaches zero at a fin
threshold forceFc according to Eq.~1!. Three cases of dif-
ferent exponent (b.1, b51, andb,1) are depicted and
they have different asymptotic slopes at the critical po
~zero, a finite constant, and infinity!.

B. Theoretical predictions

The RG analysis of Eq.~9! with e552d predicts@12,13#

a5221/n5e/3 ~10!

and

b5~z2a!n512e/91O~e2!. ~11!

Since contact lines may be regarded as belonging to the
11)2dimension universality class, which corresponds tod
52 ande53, we obtaina51 andb'2/3. However, Ertas¸
and Kardar@15# noted that the free energy associated w
the contact line is different because it involves three differ
phases while Eq.~9! is intended for two-phase systems. Th

FIG. 1. Depending on whether the exponentb is greater than,
equal to, or smaller than unity, the velocity goes to zero at
critical point Fc with zero, finite, or infinite slope, respectively.
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TABLE I. Theoretical predictions and studies for the critical exponentb.

Reference Ca b

Tanner~1979! @40# complete wetting, precursor, smooth surface small 3/2
Hoffman ~1983! @30# diffusion mechanism, smooth surface 102521023 1
Cox ~1986! @35# slipping models, smooth surface small 1
Mumley et al. ~1986! @46# dissipation in film, prewetted smooth surface 102421022 '2

,1025 1
Ishimi et al. ~1986! @37# complete wetting, precursor, rough surface small 2
Raphae¨l and de Gennes~1989! @38# smooth surface, partial wetting; small 1

chemical mono defects: constant force 1/2
constant velocity 3/2

Joanny and Robbins~1990! @39# partial wetting, periodic defects small
constant force: heterogeneity

sine wave 1/2
square wave 1
triangular wave ȳ} ln(F/Fc21)

constant velocity: weak pinning 1
strong pinning 3/2

Sheng and Zhou~1992! @31# smooth surface 102321022 1
rough surface, capillary wave excitation ,1023 22`

Nattermannet al. ~1992! @12# renormalization group~RG! in
d552e dimensions~interfaces! 2/3

Narayan and Fisher~1993! @14# RG in d552e dimensions~interfaces! 2/3
Ertaşand Kardar~1994! @15# RG in D522e interface dimensions~contact lines! 2/3
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fluctuations of the contact line not only affect the liquid-so
and vapor-solid interfaces, but they also deform the liqu
vapor interface@26#. Using ane expansion for interface di
mensionsD near 2 (e522D), they predict

a5e/3 ~12!

and

z5122e/91O~e2!. ~13!

Contact lines correspond toD51, and hencea51/3, andz
'7/9. The scaling lawsb5n(z2a) andn51/(12a) give
b'2/3 andn53/2, respectively.

In addition to the RG analyses, a number of mean-fi
theories have been developed for the moving contact line
they generally obtained Eq.~8! as their prediction for the
dynamic contact angles. The exponentB may be related to
the scaling exponentb in Eq. ~1! by the following consider-
ation. We note that the excess force acting on the advan
contact line can be expressed in terms of the dynamic
static angles

F2Fc}g~cosua2cosud!}ACaB}yB. ~14!

A direct comparison to Eq.~1! leads to the identification

b51/B. ~15!

Thus an experiment that measures the dynamic contact a
as a function of the capillary numberCa can be used to
determine the scaling exponentb.

The difficulty in using hydrodynamic models to calcula
the dynamic contact angle has to do with the well-kno
-

d
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ng
d

gle

nonintegrable singularity in the stress at the contact line
results in a divergence in the energy dissipation@27#. To
avoid this problem, the standard no-slip boundary condit
has to be relaxed. The exact process of how the contact
moves is not totally understood at the molecular level. If t
fluid wets the solid completely, one solution is to take in
account the presence of a precursor film on which the b
fluid spreads, so there is no true contact line. In the cas
partial wetting, a rolling@28,29# or tank tread@30# motion
like a tire rolling over a surface without slipping has be
suggested.

On the mesoscopic scale, a number of slipping mod
have been proposed@31#. They all involve a characteristic
slipping length l s , a distance near the contact line ov
which continuum hydrodynamics break down. Molecula
dynamics simulations for a smooth surface suggest thal s
'10 Å @32,33#. Clearly, for a rough surface, it is importan
to consider whether the contact line follows the contours
the surface continuously or jumps between metastable c
figurations. In all theoretical treatments of the dynamic co
tact angle, the microscopic details of the models proved
affect the macroscopic predictions. In other words, there w
no universality. The following is a review of the variou
approaches and a summary is given in Table I.

Hoffman@30# assumed a microscopic picture in which th
liquid molecules advance by a surface diffusion mechan
on a periodic lattice of the solid. His model is justified b
field-ion microscopy data which show that ordered layers
formed in the adsorbed film due to the solid substrate po
tial @34#. This results in a tank tread motion for conta
angles larger than 120°. The equation he obtained co
sponds to b51 over the range of roughly 1025,Ca
,1023.
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A hydrodynamic approach by Cox@35# uses a genera
slipping model and a matched asymptotic expansion invo
ing the dynamic contact angle. He assumes a smooth su
and also obtainsb51 for Ca!1. This is attributed to the
governing viscous forces near the contact line at low ca
lary numbers. In addition to the usual slipping models, n
Newtonian effects due to gradients in the surface tensio
the elasticity of the solid may relieve the singularity at t
contact line.

A treatment of the contact line motion in the presence
an adsorbed film is given by Mumleyet al. @36# in the con-
text of prewetted capillaries. The main assumption, follo
ing from lubrication theory, is that the energy dissipati
takes place mainly within the film due to higher veloci
gradients¹y. If the film thicknessb0 ~of the order of 1mm)
is much smaller than the tube radiusR, than ¹y f i lm}1/b0
inside the film and¹ybulk}1/R in the bulk fluid. With this
approximation, no dissipation takes place in the bulk and
adsorbed layer shields any surface roughness. Mumleyet al.
@36# obtainedb'2 for 1024,Ca,1022 andb'1 for Ca
,1025. In the experiments performed, stick-slip behav
and jumps were observed even though a prewetting film
present. When the contribution of the jumps to the ene
dissipation was included, they found that only the magnitu
of the contact angle response changed, but not the expo
Overall, it resulted in a better fit of their data.

Ishimi et al. @37# considered the situation of comple
wetting in the presence of a precursor film. The idea is t
the energy dissipation is caused by a frictional force act
on the film due to motion over a rough surface. This force
balanced by the interfacial tension on the precursor. T
analysis led tob52.

For the partial wetting case, Raphae¨l and de Gennes@38#
considered a moving contact line being pinned only by o
defect at a time. The macroscopic dynamics for the con
line were obtained by performing a time-average of the
fect. For a flat homogenous surface without any defect, t
obtainedb51. This results from intrinsic deformation of th
contact angle at small capillary numbers due to hydro
namic dissipations, which was also found by Hoffman a
Cox. As in other calculations, the slipping lengthl s appears
in their equations. For a flat surface with smooth chemi
heterogeneities that are spatially well separated, Raphae¨l and
de Gennes considered two separate physical scenarios
posing a constant velocity on the contact line or applyin
constant force. For fluids in a capillary tube, these scena
could be realized by pushing the liquid with a syringe pum
at constant flow rate or letting the fluid column evolve und
the influence of gravity. For the case of constant velocity,
pinning forces are averaged over time and this givesb
53/2. In the constant force case, the velocity fluctuations
averaged and it results inb51/2. The analysis is only valid
for single, smoothly varying defects—one at a time. For
fects with sharp edges, calledmesadefects, surface rough
ness probably results in different behavior.

Joanny and Robbins@39# studied similar scenarios fo
various periodic defects on solid surfaces. For the cas
complete wetting, where a precursor is present and the
tact line rides on top of the film, they obtained Tanner’s la
@40,26# behavior:ud}Ca1/3 when Ca!1. Since the static
advancing angleua50 for complete wetting, the functiona
-
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form of Eq. ~8! can be obtained by using the Taylor seri
expansion for the cosine (cosx'121

2x
2, for x!1), which

gives B52/3. According to Eq.~15!, this corresponds tob
53/2. Using one of the slipping models, they obtained d
ferent results depending on the strength and the form of
defects and whether the force or the velocity is held const
~The lubrication approximation again enters in form of
slipping lengthl s .) The heterogeneities considered were
sumed to be caused by chemical contaminations and
sisted of periodic stripes. The strength of the individual d
fects had different functional forms. For constant appli
force, the analysis gaveb51/2 for periodic stripes with a
sine wave cross section,b51 for a square wave, and a loga
rithmic dependence (b50 ) for a triangular wave. In the
constant velocity analysis, they obtainedb51 for weak pin-
ning andb53/2 for strong pinning. Strong pinning is cha
acterized by having metastable positions where the con
line is pinned and the critical regime in which the power-la
behavior can be observed is very small. Weak pinning o
causes continuous deformations of the line. The differe
between the two scenarios can be understood in sim
physical terms: If a constant force is imposed, the power-
results from the fluctuations in the velocity of the conta
line, which spends more time on the less wettable regions
the constant velocity case, the fluctuations in the force
moving through different regions are weighted equally.
other words, letting eithery or F be the fluctuating variable
in Eq. ~1! affects the statistical average over time. The valu
of the exponentb obtained by Joanny and Robbins are b
lieved to be artifacts due to the assumed periodic geomet
In real systems, jumps or avalanches occur for portions
the contact line. Excited capillary waves change the coup
between the line and the defects. These may all change
results.

A different approach is taken by Sheng and Zhou@31#.
They also assumed a slipping model and confirmed that
cous effects would give an intrinsicb51 behavior for small
capillary numbers, but they proposed a capillary-wave dis
pation mechanism forCa,1023 that modified the result. In
their picture, a contact line moving across a rough surf
performs nearly periodic jumps with a frequency that d
pends on the mean spacing between defects and the vel
of the line. The periodic motion excites capillary wav
propagating along the interface and this is believed to be
dominant dissipation mechanism forCa,1023. The analy-
sis results in 2,b,`, depending on the smoothness of t
heterogeneities. Mesa defects giveb52.

C. Experimental results

Similar to the theoretical models, experimental studies
ing different techniques in different systems have found
wide range of values for the pinning exponentb over differ-
ent ranges ofCa. The results show that the microscop
details near the contact line are important. We briefly revi
the most relevant literature below in chronological order.
summary is given in Table II.

Schwartz and Tejeda@21# measured the dynamic conta
angle by dipping filaments with various degrees of roughn
into several liquids. The data suggest 1<b<3 for capillary
numbers in the range 1025,Ca,1. The degree of rough
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TABLE II. Experimental results for the critical exponentb.

Reference Experiment Ca b

Dynamic contact angle measurements
Schwartz and Tejeda~1972! @21# dipping cylindrical filaments~plastic, metal! with various 102521 123

degrees of roughness into several liquids~organic liquids,
water!

Jianget al. ~1979! @41# liquid-air interfaces in capillaries~silicone fluids! ,1022 '1.4
Rillaerts and Joos~1980! @43# organic liquids~parafin oils, aqueous glycerol solutions! 4310242431022 '2

in prewetted capillaries
Ishimi et al. ~1986! @37# polyester tapes immersed into various liquids 102621022 2

~water, different oils, and alcohols!

Mumley et al. ~1986! @36,46# capillary rise for liquid/liquid systems~glycerol–water
solutions/ several hydrocarbons and silicones!

102521022 '2

Brackeet al. ~1989! @47# plastic tape immersed into several liquids~corn oil, aqueous 33102321021 '2
glycerin, ethylene-glycol solutions!

Ström et al. ~1990! @48# dipping plate method using various solid/liquid systems 102721024 '3/2
~polystyrene, polytetrafluoroethylene/silcone oils, polyethy-
lene glycols, paraffin oil, glycerol!

ac method using the pressure response of liquid/liquid interfaces in capillaries
Stokeset al. ~1990! @49# glycerol-methanol mixtures/mineral oils 5310252531024 2.5(4)
Kumar et al. ~1995! @52# water/alcanes 102621024 5(1)
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ness did not seem to affect the exponent. Jianget al. @41#
analyzed the data obtained by Hoffman@42# who measured
dynamic contact angles of liquid-air interfaces in capilla
tubes. They foundb'1.4 for 331025,Ca,1022. Ril-
laerts and Joos@43# used several organic liquids to determi
the dynamic contact angle in prewetted capillaries and t
found thatb'2 for 431024,Ca,431022.

To test their theoretical predictions, Ishimiet al. @37# ana-
lyzed data obtained by Kennedy and Burley@44# and those
by Guthoff and Kendrick@45#. The experiments involved
dipping polyester tapes into various liquids~water, different
oils, and alcohols! and measuring the dynamic contact ang
Over a range of 1026,Ca,1022, the data fitb52 with an
average deviation of 3.8% for the contact angle.

Mumley et al. @36,46# studied capillary rise of a pola
liquid ~glycerol-water solution! displacing a nonpolar liquid
~several hydrocarbons and silicones!. The tubes were prewet
ted with the wetting fluid and then either used directly with
wetting film present or dried before the experiment. F
1025,Ca,1022 their data are consistent withb'2.
Bracke et al. @47# made dynamic contact angle measu
ments using plastic tapes~e.g., polyethylene! immersed in
several liquids~corn oil, aqueous glycerin, and ethylen
glycol solutions!. They also foundb'2 for velocities corre-
sponding to 331023,Ca,1021.

Using a dipping plate method for various solid-liquid sy
tems, Stro¨m et al. @48# obtained b'3/2 for 1027,Ca
,1024. The liquids studied included silicone oils, polyet
ylene glycols, paraffin oil, and glycerol. The solids used
cluded polystyrene and polytetrafluoroethylene. Their res
agree with the smallCa limit of Tanner’s law for complete
wetting, but only some of the their systems were complet
wetting such that a precursor film was present. The data f
the partially wetting systems fitted equally well to the sa
exponent.
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In more recent years, Stokeset al. @49# used a different
technique@50,51# to determine the exponentb for a liquid-
liquid meniscus in a capillary tube. They applied an ac v
locity perturbation on top of a uniform dc velocity and me
sured the nonlinear pressure response. The meniscus ha
possible modes of oscillation: it can slide back and forth a
whole and it can flex like a vibrating membrane. Due to ma
conservation, the two modes are coupled. By keeping
modulation frequency below a threshold~of the order of 1
Hz!, the flexing motion was suppressed and the contact
slides rigidly on the surface. The ac amplitude was sm
compared to the dc velocity to ensure that the meniscus
ways moves in the forward direction. The instantaneous
locity variation causes changes in the dynamic contact an
and the driving pressure, which correspond toud and F in
Eq. ~14!. For low capillary numbersCa, the viscous pressure
drop can be ignored and the ac pressure response ma
regarded as due entirely to changes in the contact an
Thus by detecting the pressure oscillation and analyzing
harmonics with Eq.~14!, the exponentB ~or 1/b) can be
determined@31#. Stokeset al. used a glycerol-methanol mix
ture as the more wetting fluid to displace a mineral oil. F
531025,Ca,531024 they foundb'2.5(4). In asubse-
quent experiment using the same ac method, Kumaret al.
@52# obtainedb'5(1) for water-alkane interfaces over th
range 1026,Ca,1024. We note that because these expe
ments measureB, a small absolute errorDB can result in a
large absolute error forb, though the relative errorsDB/B
andDb/b are the same. The large differences inb between
these experiments may be attributed to the fact that one u
a mixture while the other used a pure liquid. The viscosity
these liquids and their interactions with the solid surfaces
also different.
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III. CAPILLARY RISE AND FALL

A. Washburn „mean-field… dynamics

In our study we chose to use capillary rise and fall
measure the exponentb because a wide range of capilla
numberCa could be achieved. We were able to meas
velocities in the range of 1022,y,104 mm/s, which corre-
sponds to 10210,Ca,1024, a range that is both wider an
lower than any previous study. To keep the chemistry l
complicated we used deionized water and cleaned glass t
in a vertical setup. A main assumption in our analysis is t
the contact angle in our system is constant forCa,1027.
For 1027,Ca,1024 where other studies have found var
ing dynamic contact angles, we did not find any eviden
that it affected the macroscopic dynamics. Our experimen
somewhat similar to the controlled-force method describ
by Raphae¨l and de Gennes@38# and Joanny and Robbin
@39#, except that the force is not held constant. The sys
evolves under gravity and therefore approaches the pin
threshold in a self-organized manner. In this way all ext
neous effects introduced by an external driving device~e.g.,
a mechanical pump! at low capillary numbers are eliminated
By performing both capillary rise and fall experiments, w
are able to estimate the size of the defect strength and
pinning region. In addition, we can test if the critical beha
ior is different for the advancing and receding conta
line.The presence of a wetting film is expected to play d
ferent roles in the two cases. In order to understand the
ning region, however, it is necessary to first understand
mean-field behavior in the absence of disorder.

Historically, Washburn@1# was the first to analyze th
flow of liquid inside a capillary tube driven by a consta
capillary pressure~contact angle!. Figure 2 defines the vari
ables in a capillary rise experiment. The equation of mot
is obtained by equating the viscous damping force to the
driving force due to surface tension and gravity,

8ph~h1h0!
dh

dt
52prg cosu2pr 2rgh. ~16!

Hereh is the height of the liquid column above the reservo
h0 is the length of capillary tube immersed in the liquid,r is
the radius of the tube, andr is the density of the liquid.
Inertial forces can be ignored in the overdamped limit wh
the tube radius is below a critical valuer c . It has been
shown that@53#

FIG. 2. Different height variables are shown in this illustrati
of a capillary rise experiment.Hc is the same asHcr in Sec. III B.
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r c5S 32h2g cosu

r3g2 D 1/5

. ~17!

For our system with water and air at room temperature,
expression givesr c'0.4 mm. Departure from the Poiseuill
flow near the inlet and the meniscus are ignored in Eq.~16!.
It predicts an exponential approach to the equilibrium hei

Heq52g cosu/rgr ~18!

with a time constant

tw58~h01Heq!h/rgr2. ~19!

We observe thatHeq}r 21 and tw}(h01Heq)/r
2. So for

tubes with smaller radii, the columns would rise higher a
would take more time to reachHeq . Using a normalized
time variablex[t/tw and a normalized height variabley
[(h1h0)/(Heq1h0), Eq. ~16! can be expressed as

y
dy

dx
5~12y!. ~20!

Integrating with initial heighth5hi at time t50 yields the
full solution known as the Washburn equation:

x2xo52y2 ln~12y!, ~21!

wherexo52yi2 ln(12yi) andyi5(hi1h0)/(Heq1h0).

B. Critical dynamics of pinning

As the water meniscus approaches the equilibrium hei
the driving force on the right-hand side of Eq.~16! dimin-
ishes and the random pinning forces become increasin
important. We expect the initial rise to obey the Washbu
dynamics, followed by a crossover region, and finally ente
critical pinning region as the velocity tends to zero. For ca
illary rise, the meniscus would stop at a heightHcr below the
equilibrium heightHeq ~see Fig. 2!, but for capillary fall, the
meniscus would be pinned at a heightHc f aboveHeq . The
difference (Hc f2Hcr) gives an estimate for the size of th
critical region. We found that the onset of critical behavi
roughly corresponded to capillary numbersCa,1027 in our
experiment. It is reasonable to assume that the average
tact angle isindependentof the velocity in this range. Mi-
croscopically, the contact line is distorted and so the lo
contact angle must vary with position. The apparent sta
advancing~receding! angle for capillary rise~fall! is ob-
served on a macrospic scale when the meniscus comes
stop and it should correspond to some kind ofaveragevalue.

The critical pinning force for capillary rise is given by

Fc5pr 2rg~Heq2Hc![pr 2rgHgap , ~22!

where we have usedHc to denoteHcr . For low Ca, we can
ignore the viscous force and the net driving force is given

F5pr 2rg~Heq2h!. ~23!

SubstitutingF and Fc into Eq. ~1! gives the equation of
motion near the pinning threshold:
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y5
dh

dt
5yoS Hc2h

Hgap
D b

. ~24!

For bÞ1, integrating Eq.~24! from initial time t1 and height
h1 yields

h~ t !5Hc2~Hc2h1!@11A~ t2t1!#1/(12b), ~25!

where A5(b21)yo(Hc2h1)b21/Hgap
b . This solution has

the feature that ifb,1, h stops atHc after a finite time
(t2t1)521/A. If b.1, h approachesHc algebraically as
t→`. In the special case ofb51, the integration of Eq.~24!
results in an exponential approach toHc

h~ t !5Hc2~Hc2h1!e2(t2t1)/t1, ~26!

where t15Hgap /yo . Figure 3 illustrates the qualitativel
different behavior of Eq.~25! for different values ofb. We
note that the dynamics are the fastest forb,1: the contact
line reachesHc after finite time. For large values ofb, the
dynamics are very slow and may not be easily distinguis
from a logarithmic function. Other empirical functions su
as a stretched exponential or an algebraic approach can
show similarly slow behavior. Fitting data to these differe
functions enables us to assess the reliability of the fitt
parameters we obtained and the overall meaning of the in
pretation. Since both capillary rise and fall can be perform
in the same tube and our data in Sec. IV show thatHeq
'Hc f , we can take (Hc f2Hcr) to be the same asHgap .
This is a useful indicator of the pinning strengthFc . It can
also be used as an estimate of the size of the critical reg
Having these estimates reduces some uncertainties in
data analyses.

IV. EXPERIMENTAL DETAILS

A. Samples

The capillary tubes that we studied have inner diame
~ID! ranging from 180 to 400mm. Two types of tubes with
different interior wall roughness were used. We shall refe

FIG. 3. The value of the exponent can cause qualitatively
ferent behavior in how the water column heighth approaches the
pinned positionHc . Following Eq.~24!, there are three scenario
~i! for b,1, the meniscus is pinned at a finite timet5t121/A
~with A,0); ~ii ! for b51, h approachesHc exponentially, and~iii !
for b.1, h approachesHc algebraically. Case~iii ! may resemble a
logarithmic or stretched exponential function ifb is significantly
larger than unity.
d

lso
t
g
r-
d

n.
he

rs

o

these as typeR and S, for rough and smooth walls, respe
tively. Under both optical and scanning electron~SEM! mi-
croscopes, theS tubes show no evidence of roughness do
to a nanometer resolution. Figure 4 shows SEM picture
different magnifications and the difference in roughness
tween the two types of tube wall is evident at every scal

TheR tubes we used have ID’s of 250, 310, and 410mm.
The S tube ID’s were 180, 200, 250, 300, and 355mm. The
outside diameter for both types was about 0.5 mm and
length was about 30 mm. Both theR and theS tubes were
made of borosilicate, low expansion, type-I glass~Corning
Code 7740!. TheR tubes were obtained from ACE Glass In
and theS tubes from Friedrich & Dimmock. To clean an
prepare the tubes for the experiment, we flow 400 ml of 1
hydrochloric acid through it in about an hour. This was fo
lowed by approximately the same amount of deionized wa
at the same rate for rinsing. Finally, the capillaries we
boiled in deionized water for about 8 h. By this process,
glass surface was well hydrated and reproducible res
were obtained, though we probably did not remove all co
taminants. In particular, because no organic solvents w
used, some organic contaminants might be present. Imm
ately after the cleaning procedures, the capillaries w
placed in the experimental apparatus.

-

FIG. 4. The interior wall roughness of typeR and typeS capil-
laries can be seen with an optical microscope@~a! and ~b!# and a
SEM @~c!–~f!# using a wide range of magnifications. TheR tubes
@~a!, ~c!, and ~e!# clearly have a much higher level of roughne
compared to theS tubes@~b!, ~d!, and~f!#. The white spots on the
SEM pictures are small glass particles left on the surface for m
ing position.
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B. Apparatus

Figure 5~a! shows a schematic drawing of the setup. T
capillary stands vertically in a beaker containing deioniz
water. Attached to the top of the capillary is a Teflon tubi
that connects it to a syringe that is used to raise or lower
water column to its initial height. A valve connects the tu
ing to a small cup half-filled with water which has a sm
hole on the cover plate. The purpose of the cup is to prov
a 100% relative humidity atmosphere at ambient press
When the valve was opened, the capillary was expose
this atmosphere so that water loss due to evaporation
negligible. The water column height was found to be sta
over a long period of time. Each run of the experiment beg
by having the valve closed and using the syringe to set
initial column height. The valve to the buffering cup wa
then opened to let the meniscus rise or fall in a se
organized manner.

The meniscus was illuminated with a fiber optic lig
source positioned below the beaker because we found
the best intensity contrast between the meniscus and
background was achieved when the light came directly fr
below. The use of the optical fibers put the lamp far aw
from the system and minimized the disturbance of a h
source. To observe the pinning dynamics, an inspection
croscope was mounted horizontally and coupled to a cha
coupled device~CCD! camera. The position of the micro
scope was adjusted such that the center of the image

FIG. 5. ~a! An illustration of the experimental setup and da
acquisition system.~b! A typical gray-scale image of an illuminate
meniscus seen with the video microscopy system.~c! Binary bitmap
image of the edge of the meniscus in~b!, obtained by a simple edg
detection algorithm.
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coincided with the equilibrium height. This enabled us
perform rise and fall experiments without repositioning. T
vertical field captured by the camera was 3.5 mm over 6
pixels, which corresponds to a resolution of about 5
mm/pixel. At set time intervals, the video image was dig
tized and processed by a microcomputer to determine
meniscus position. A typical gray-scale image is shown
Fig. 5~b!. The intensity pattern results from the curved m
niscus reflecting the light coming from below and pass
through the cylindrical sidewall. This pattern remains ess
tially the same across the imaging field. By choosing
proper threshold, the gray-scale image was converted
binary bitmap image for edge detection. Figure 5~c! shows
the outline of the meniscus after image processing. A
removing noise by image editing, the lower edge of the m
niscus was identified and the pixel coordinates were use
compute the average position of the meniscus. This giv
the relative heighth8(t) of the water column within the im-
aging field. The noise in the data came primarily from t
resolution limit and intensity contrast of the image. We es
mated that the uncertainty was aboutDh8560.13 pixel.

Data far from the pinning threshold were collected usin
wide-angle~8-mm focal length! camera lens instead of th
microscope. An image field of 14 cm was captured. The f
dynamics had to be recorded onto video tape and pla
back frame by frame for analyses. The absolute height of
meniscus above the beaker’s water level~h! was observed
visually on the video monitor. The accuracy (Dh560.8
mm! was limited by several factors: the resolution of t
video system, the distortions of the picture due to reflectio
in the capillary tube, and the contrast in the image. The ti
t was determined to an accuracy of aboutDt5610 ms.

C. Temperature stability

Temperature stability is of critical importance in the e
periment, especially in the pinning region. A slow change
temperature can result in a slow movement of the con
line that has nothing to do with pinning. The dominant effe
comes from the temperature dependence of the surface
sion g, which directly affects the equilibrium heigh
Changes in the viscosity is unimportant because the flow
very slow. Differential thermal expansion of glass and wa
is a minor effect. As shown in Fig. 5, the main parts of t
apparatus are enclosed in a temperature controlled and
mally insulated chamber. Figure 6~a! shows the column
height data from a series of rise and fall experiments fo
300-mm-diamS tube taken without temperature control. Th
drifting ambient temperature was recorded and displayed
the same plot. We note that the temperature dropped alm
linearly during the time of the experiment at an approxim
rate of 2.2 mK per minute. The equilibrium heightHeq was
found to rise in a similar fashion becauseg increases with
decreasingT. The dotted line between the rising and fallin
data indicates the rising trend ofHeq , the slope of which was
about 0.13 pixel per minute. Dividing the two rates yields
ratio DHeq /DT'257 pixel/K. With our resolution of 5.5
mm/pixel, this corresponds to a change in the equilibriu
height DHeq'310 mm for a temperature change ofDT'1
K. Since the equilibrium height for the 300mm ID capillary
is Heq'10 cm, the percentage change isDHeq /(HeqDT)
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5266 PRE 61ERIK SCHÄFFER AND PO-ZEN WONG
'0.3% K21. This is about the same as the thermal coe
cient for the surface tension of water (20.2% K21).

Figure 6~b! shows a typical set of data taken in the te
perature controlled chamber. Over a period of 2 h the tem-
perature variation remained within610 mK. For a single
rise and fall experiment that lasted about 15 min, the te
perature was stable to within a few milli-Kelvin. The equ
librium height for several consecutive runs over this 2-h
riod showed no drift. In our later analyses of pinning, w
used only runs for whichDT,64 mK. This corresponds to
a change in equilibrium height ofDHeq'1 mm ~'0.2 pixel!,
about the same as the overall noise level. The tempera
sensors we used were suspended freely in air. Since the
paratus has a much larger thermal mass than the sensors
safe to assume that the temperature variations of the w
inside the tubes were less than what we recorded.

In addition to monitoring the temperature stability of th
equilibrium height, we measured the temperature grad
along the length of the capillary tube. Three sensors w
spaced evenly along the 30 cm length of the tube. A vert
temperature gradient of 23~1! mK/cm was observed. This
corresponds to a change ofDT'0.2 mK over the size of the
pinning region ('100 mm) we analyzed. Therefore, we ca
assume that the data were not affected by spatial and tem
ral temperature variation in any appreciable way.

FIG. 6. If the temperature is not stable, consecutive capill
rise and fall runs would result in different final heights. This
mainly due to the fact that the surface tension of water changes
temperature by about 0.2%/K.~a! Without using temperature con
trol, we find that a temperature rise ofDT'1 K would cause a drop
in the meniscus height by about 57 pixels ('310 mm). ~b! With
temperature control, our setup was typically stable to within a f
millidegrees over an hour and the menicus height did not chang
more than a pixel. The data in both plots were taken with a 300-mm
diam S tube.
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V. RESULTS AND ANALYSES

A. Washburn behavior versus critical behavior

Figure 7 shows the rise and fallh(t) data taken with a
250-mm-diam S tube on a coarse scale. The solid lines a
fits to Eq. ~21!, the Washburn equation. The two fitting p
rametersHeq and tw were obtained both from the rise an
fall data. They were also calculated from Eqs.~18! and~19!
using the known experimental parameters and assuminu
50°. Table III lists the three sets of results and they are
good agreement. Small differences can be attributed to
fact thatu may be nonzero or velocity dependent, and th
may be small hystereses between advancing~rise! and reced-
ing ~fall! experiments. In any event, there is no obvious e
dence for pinning on the plotting scale that spans 13 c
However, the magnified scale in the inset shows that ther
actually a gap of about 1 mm between rise and fall after
seconds. This gap is actually relatively large among
many runs we made and it results from the fact that the t
was not used immediately after cleaning. The surface s
was altered by simply exposing it to air.~The molecules
adsorbed on the surface change with the environment and
rate of change depends on many factors such as tempera
pressure, and adsorption energy.! The gap was not readily
visible only because the video resolution was limited toDh
560.8 mm for the coarse scale data. With the higher re
lution acheived by the microscope, we found that the con
line came to a complete stop. In contrast, Fig. 8~a! shows the
high resolution data obtained in a 180-mm S tube immedi-
ately after it was cleaned.h8 is the relative position within

y

ith

by

FIG. 7. Low-resolution capillary rise and fall data for a 25
mm-diamS tube are well described by the Washburn equation. T
fitting parameters are given in Table III and they agree well w
theoretical values calculated by assuming a zero degree co
angle. The inset shows a magnified region near the equilibr
height. The difference between the final heights of rise and fall w
barely detectable without the use of a microscope. The data w
taken at 24.1°C.

TABLE III. Fitting results from the data displayed in Fig.
~250-mm ID S tube! and theoretical values for capillary rise usin
the Washburn equation (u50 °).

Heq ~cm! tw ~sec!

Rise 11.43~1! 5.8~3!

Fall 11.45~1! 5.0~3!

Washburn 11.75 5.6
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PRE 61 5267CONTACT LINE DYNAMICS NEAR THE PINNING . . .
the viewing frame~differs fromh by a constant! and it shows
a gap of about 15mm. We note that the Washburn equatio
fits the falling data completely andtw agrees within 2% with
both the value obtained from the coarse scale data and
calculated from Eq.~19!. The final heightHeq8 within the
frame is reproducible within 0.5 pixel. The higher magni
cation in Fig. 8~b! shows no difference between the fits to t
mean-field exponential approach and a power law withb
'1. Thus, the falling data show no evidence of pinning
theS tube and this lends confidence to the fact that the tu
were sufficiently clean. However, we note that the rising d
in Fig. 8~c! do deviate from the Washburn fit significantly
late times. Fitting them to Eq.~25! gives b51.39, which

FIG. 8. ~a! High-resolution capillary rise and fall data obtaine
with a 180-mm S tube are compared to the Washburn equati
Only the rise data show significant deviations at later times. T
Washburn time constants obtained from the rise@17.8~3! s# and fall
@17.1~3! s# data are only slightly larger than the calculated va
~16.7 s!. The experimental values are adjusted toh050 at 20°C.~b!
The fall data at the highest spatial resolution are well described
an exponential function that corresponds tob51. Fitting the data to
an algebraic form results in an exponent very close to uni
('1.09). ~c! The high-resolution rise data at late times are b
described by a power law. The exponentb51.39(1) in this ex-
ample. The Washburn equation fits the early time data well but f
at later times.
at

s
a

suggests that pinning effects are present. This contrast
tween the rise and fall data holds true for all theS tubes, but
the values ofb varies over a wide range: from 1.1 to 4
Figure 9 shows several fits of the rising data obtained w
different tube diameters. Fits to the corresponding falli
data are not shown because they are all similar to Fig. 8~a!,
well described by the Washburn equation in every case.

For theR tubes, the coarse scale data are similar to Fig
and they fit the Washburn equation well. However, the h
resolution data in the pinning region are different from Fig
8 and 9. Figure 10 shows several sets of falling data obtai
consecutively in a 250-mm-diam R tube. Each run lasted
about 15 min and the starting times are indicated. Th
clearly show the stick-slip behavior assumed in the sca
theories. We did not attempt to determine the avalanche
distribution, in part because of inadequate resolution in m
suring the size, but also because the events are corre
among different runs in the same tube.~It was unfeasible to
study a large number of tubes.! We note, for example, every
run in Fig. 10 shows sticking ath8'0.6 mm. However, the
time it took to overcome the pinning is random@54#. This
implies that either the disorder is not completely quenched

.
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t

ls

FIG. 9. High-resolution capillary rise data forS tubes with dif-
ferent ID’s ~200, 250, and 300mm) all fit the power-law form and
not the Washburn equation. However, the exponentb varies from
case to case and there is no evidence of a universal value.
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5268 PRE 61ERIK SCHÄFFER AND PO-ZEN WONG
the background temporal noise is important. The history
the system may also play a role because each rise and
event can alter the adsorbed water molecules on the su
and they become part of the disorder for the next event
addition, discrete movement of the entire meniscus sugg
that the correlation length exceeds the system size (j;r ), in
which case fitting the data to Eq.~25! would be inappropri-
ate. Such analyses are only valid when small parts of
contact line undergo discrete jumps while the average p
tion of the line appears to change smoothly. In other wor
the roughness in theR tubes is too large and the observ
stick-slip behavior could be caused by finite-size effects
theS tubes, the surface roughness is weak and the movem
appeared to be continuous, but the disorder was shie
from the contact line by a wetting film during the fall expe
ment. Only in the rise experiments was the power-law
havior observed.

B. Waiting-time effect

To test the above explanation, we performed repetit
runs in S tubes by varying the waiting time (Dt) between
successive rise experiments because the structure of the
ting film is expected to change duringDt and this would
have an effect on the data. We variedDt in the following
manner. We first closed the valve leading to the water cap
that the pressure above the water column could be contro
by the syringe. In each run, the meniscus was first raise
the top of the image field to fully wet the interior wall. It wa
then lowered beyond the imaging field. After some time,
opened the valve and let the water column rise. Although
waiting position of the meniscus was not directly observ
we tried to keep it the same by displacing the same volu
of air with the same flow rate that resulted in a menisc
velocity of about 1 mm/s.Dt is measured from the momen
the meniscus passesHeq8 on its way down and the moment
reenters the frame on its way up. This is the total time av
able for the wetting film to reorganize. We found that the r
data were not reproducible. Figure 11 shows that the ris
generally slower with increased waiting timeDt, and this
corresponds to a largerb. It is important to emphasize tha
Dt only affects the data near the pinning threshold and

FIG. 10. High-resolution capillary-fall data from a 310-mm R
tube show stick-slip behavior. Consecutive runs do not show
actly the same trace, but there are clearly strong pinning defec
certain positions, e.g.,h8'0.6 mm. That the amount of time it too
to depin from these defects varied from run to run implies t
either the disorder is not completely quenched, or that therm
temporal noise play an important role.
f
all
ce

In
sts

e
i-

s,

n
nt

ed

-

e

et-

so
ed
to

e
e
,
e
s

l-
e
is

t

the data far away. Fits of the early time rise data in differe
runs showed that the Washburn time constantstw was insen-
sitive to the waiting time. The details of these fits were doc
mented elsewhere@3#. Similar tests of waiting time effects
were carried out for the falling experiments and we fou
that the data were reproducible to60.5 pixel, within experi-
mental tolerance. Fits to Eq.~25! always resulted in an ex
ponentb consistent with unity. We also fitted the data to t
exponential function of Eq.~26! that corresponds tob51.
We found that the resulting parameters (Hc ,t1) agreed with
(Heq ,tw) obtained from Washburn fits of the coarse sc
data. This result reinforced our conclusion that there was
detectable pinning effects in the falling experiments.

C. Empirical fits of the data

Since the analyses of the capillary rise data did not re
in a unique value forb, one may question if Eq.~25! is the
correct description and whether other empirical functio
may fit the data better. To address this issue, we fitted
data to three different empirical functions:

h~ t !5Hc2
Hc2h1

11C ln@11~ t2t1!/t1#
, ~27!

h~ t !5Hc2
Hc2h1

11@~ t2t1!/tp#p
, ~28!

and

h~ t !5Hc2~Hc2h1!expF2S t2t1

ts
D sG . ~29!

All three functions begin from the initial condition (h1 , t1)
and approachHc ast→`. The use of logarithm, power-law
and stretched exponential is intended to capture a wide ra
of dynamical behavior empirically. Each of these functio
was also constructed to have three adjustable parameter
like Eq. ~25! so that a fair comparison of the fitting errors ca
be made. For each data set over the same fitting range, fi
these functions were performed and the standard devia
dh of each fit was recorded. A fit of the same data to Eq.~25!
was also carried out to obtain a standard deviationdhb .

x-
at

t
l/

FIG. 11. Successive capillary rise experiments using a 180-mm
S tube reveal that the waiting timeDt before the start of the rise
affected the result. A longer waiting time resulted in slower rise a
a larger exponentb. The horizontal dotted line indicates the fin
position of the falling column which can be taken as the equilibriu
height. It was reproducible to within63.5 mm.
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Figure 12 depicts the ratiodh/dhb for various data sets tha
correspond tob between 1 and 4. We note that for data s
that correspond tob.2.5, all three empirical functions fi
the data about equally well as Eq.~25!. However, for the data
sets that correspond tob,2.5, they give larger errors tha
Eq. ~25!. Only the algebraic function matches Eq.~25! on
some data sets. The other two functions givedh up to four
times as large asdhb . Thus Eq.~25! gives the best descrip
tion of the data overall, but the algebraic function in Eq.~28!
works almost as well.

The standard deviationsdhb of the fits to Eq.~25! are
depicted in Fig. 13~a!. We find that they are on the order o
the intrinsic noise and resolution of our apparatus (Dh8
560.13 pixel! and there are no correlations with the tu

FIG. 12. Fitting the data to several empirical functions usua
give errors that are larger than the power-law fits. The stand
deviation of the empirical fits (dh) are normalized by the corre
sponding one for the power-law fit (dhb). Overall, the power-law
describes the data best, though the runs withb.2.5 are quite well
described by other functions.

FIG. 13. ~a! Standard deviations of the power-law fits,dhb , are
plotted against the ID’s of the tubes. Each point represents a s
rate run. Thatdhb is less than 1 pixel shows that the fits work ve
well. ~b! The exponentb obtained for different tubes versus th
ID’s. Note that all capillary fall runs giveb close to unity, but the
rise experiments haveb between 1 and 4 regardless of the tu
diameter.
s

diameter. For the falling data, the values ofdhb are usually
slightly smaller than those for the rising data. This may
due to the fact that the disorder is shielded by the wett
film and there is less intrinsic noise in the dynamics. Figu
13~b! shows the exponentsb obtained for the various tube
sizes. We note thatb is always larger than unity, rangin
between 1 and 4. The values show no systematic trend
the tube radii, but there is a clear difference between ris
and falling columns. For the falling experiments,b is always
close to unity, but for the rising experimentsb varies widely.
It is safe to say that we did not observe universal behav

D. Strength of disorder

In addition to the actual values of the exponentb, it is
also important to know how the strength of disorder affe
the size of the critical region and other parameters in the
For example, if the fits were not purely empirical, one wou
expect the critical region to scale with the strength of t
disorder in the system. Since the falling experiments give
equilibrium heightHeq for every tube and the pinning heigh
Hc is known from the rising experiment,Hgap[ Heq2Hc is
a natural measure of the disorder for every tube. To iden
the critical region, we show in Fig. 14 plots of the veloci
y5dh8/dt versus the reduced driving force f
[(Hc82h8)/Hgap for two different cases. The two data se
are replots of the originalh versust data shown in Figs. 9
and 11. The fits to Eq.~25!, not Eq.~24!, are represented by
straight lines on the log-log scales. It can be seen that
noise in the velocity data is much worse than theh versust
data because of numerical differentiation, and the problem
most severe in the low velocity limit. Data points at hig
velocity not used in the original fits are included to show t
departure from power-law behavior. We observe that
power-law fits in Figs. 9 and 11 hold over two to three d
cades in the velocityy ~or Ca), which is as good or bette
than previous studies. Whenb is close to unity~1.24!, the
data span a similar range inf. For largerb(52.05), the range
in f is necessarily reduced because the velocity data reach
noise floor at smallf values. We should note that both fi
have an upper limit nearf '4 and Ca'1027. They also
have about the same lower limit in the velocity (Ca
,1029), which is smaller than most previous experimen
Although only two cases are shown here, we found sim

rd

a-

FIG. 14. Interface velocityy5dh8/dt ~or capillary numberCa)
are plotted against the reduced driving forcef 5(Hc82h8)/Hgap on
log-log scales for a 180- and a 200-mm S tube. Note that the power
law behavior of Eq.~1! was typically observed forf ,4, but the
exponentb, as given by the slope of the plot, is nonuniversal.
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5270 PRE 61ERIK SCHÄFFER AND PO-ZEN WONG
critical regions in all the fits. This suggests that there
some underlying physical reasons for the form of Eq.~24!
despite the fact that there appears to be no universality in
exponentb.

In our analyses, we also explored if the strength of dis
der affected either the exponentb or the amplitudey0 in Eq.
~24!. Figure 15 shows howHgap is correlated with these two
parameters. We observe thatb is generally smaller for large
values ofHgap . This could be explained by the fact th
stronger disorder would cause the movement to come
more abrupt stop and, according to the behavior depicte
Fig. 3, that corresponds to a smaller exponent. In contr
the data shows that the amplitudey0 increases strongly with
Hgap . An empirical fit to the formy0 }Hgap

x results in a
large exponentx53.1(3). Thecause of this behavior is un
clear. Although one would expect stronger disorder to ca
the velocity to deviate from the Washburn behavior mo
readily, this effect is already accounted for in Eq.~24! by
using Hgap to scale the driving force. The real reason
perhaps that because all the fits to Eq.~24! have about the
same upper limits fory andf, smaller exponents must corre
late with larger amplitudes. A plot ofy0 versusb confirmed
such a correlation and it exhibits about the same leve
scattering as Fig. 15~a!.

Figure 15 may not be a fair representation of the effects
disorder becauseHgap is clearly dependent on the tube r
dius r and we have not corrected for this intrinsicr depen-
dence. PhysicallyHgap must go to zero asr→`. To com-
pare the strength of the disorder in different tubes, we sho
find the r dependence and normalizeHgap accordingly. We
note that, assuming uncorrelated disorder, the threshold

FIG. 15. Hgap is a measure of the disorder strength.~a! and~b!
show the empirical correlations betweenHgap and the two param-
etersb andy0 in Eq. ~1!. Each point in the plot is obtained from
pair of consecutive rise and fall runs. There is less scattering in~b!
and it suggests a proportionalityy0}Hgap
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ning forceFc is proportional to the square root of the numb
of defects encountered by the contact line. Since the len
of the contact line is 2pr , we expectFc}Ar . The actual
value of this force is given bypr 2rgHgap . Thus we can
write

pr 2rgHgap5Fc}Ar , ~30!

which gives

Hgap}r 23/2, ~31!

consistent with the expectation thatHgap→0 as r→`. A
normalized measure of disorder for different tube radii m
be given by

H̃gap[~Hgapr
3/2!. ~32!

Similarly, based on Eqs.~18! and~19!, we expect the veloc-
ity in different tubes to have an intrinsicr dependence given
by Heq /tw}r 2. Thus it is appropriate to define a rescal
velocity

ỹ0[y0 /r 2 ~33!

for different tube radii Figs. 16~a! and 16~b! show plots of
H̃gap versusb and ỹ0, respectively. They show qualitativel
the same correlations seen in Fig. 15 with about the sa
level of scattering. A fit of the data in Fig. 16~b! to the form
ỹ0}H̃gap

x results inx55. This may be purely empirical con
sidering the scattering of the data points.

Taken together, these results show that Eq.~24! describes
the data very well. The fitting parameters show reasona

FIG. 16. Following Eqs.~32! and~33!, Hgap andy0 are rescaled

to remove their intrinsicr dependence. However, plots ofH̃gap

versusb in ~a! andH̃gap versusỹ0 in ~b! do not show less scatterin
as compared to Fig. 15. We attribute the scattering to unkno
microscopic changes on the surface.
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PRE 61 5271CONTACT LINE DYNAMICS NEAR THE PINNING . . .
correlations with the strength of disorder, but there is
evidence of a universal scaling exponent. The waiting ti
dependence suggests that the wetting film on the sur
plays a crucial role in the pinning dynamics. Clearly, wh
the film has more time to reorganize, wet or dewet, it wo
alter the exposure of the surface roughness. Whether
physical changes are discrete molecular movements or
tinuous hydrodynamic flow~spreading or draining! is beyond
our detection in this experiment.

VI. NUMERICAL SIMULATION

A. A one-dimensional model for theR tubes

The analyses in the preceding section cannot be applie
the rough~R! tubes because the stronger disorder caused
contact line to execute discrete jumps near the pinn
threshold. To better understand this behavior, we carried
a numerical simulation to compare with the data. We n
that the stick-slip behavior seen in Fig. 10 results from
fact that the sizes of the avalanches are not much sm
than the total length of the contact line, i.e., it is a kind
finite-size effect. In the extreme limit, the entire contact li
executes discrete jumps and the system becomes effect
one dimensional. By studying a 1D model with quench
disorder, we can determine if the experiment was actuall
that limit and what effects are important in the real system
In addition, we can investigate the effects of the def
strength and spatial correlations which we cannot easily c
trol in the experiment. Our starting point is a generaliz
version Eq.~16!,

d

dt Frpr 2~h1h0!
dh

dt G52prg cosu2pr 2rgh

28ph~h1h0!
dh

dt
1Fd~h!,

~34!

which is just a direct application of Newton’s second la
The left-hand side is the rate of momentum change of
fluid column. The details of the flow field near the inlet a
the meniscus are ignored.~See Ref.@3# for a discussion of
this approximation.! The relevant forces are on the righ
hand side:Fd(h) represents the quenched random pinn
forces distributed along the direction of motion. Using t
normalized time and height variables (x,y) defined for Eq.
~21!, the equation can be expressed in a dimensionless fo

1

a

d

dx Fy
dy

dxG5~12y!2y
dy

dx
1F~y!, ~35!

wherea58twh/r 2r, andF(y)5Fd(h)/@pr 2rg(Heq1h0)#
is the defect force normalized by the weight of the equil
rium water column. By assuming different amplitudes a
spatial correlations forF(y), we can integrate the equatio
numerically to see howy(x) compares to the experiment
rise and fall data. The techniques of integration are stand
@55# and they are described in details in Ref.@3#.
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B. Results

The first type of defects we studied are uncorrelated
and bumps on the surface@see Fig. 4~e!#. The pinning force
due to a single pit is depicted in the inset of Fig. 17~a!. It has
the general feature of having a positive maximum follow
by a negative minimum asy increases. This shape was su
gested by Raphae¨l and de Gennes@38#. For simplicity, we
used the derivative of a Gaussian. The change in sign iF
with increasingy means that a rising contact line wou
speed up on approaching the pit and slow down after pas
the deepest point. A falling contact line would do the sa
with decreasingy. A bump on the surface can be represen
by reversing the sign ofF in the inset of Fig. 17~a!: the
contact line would first deccelerate and then accelerate u
passing through it. The traces on the left half of Fig. 17~a!
represent the same force profileF(y) with three different
pinning strengths and those on the right half of the figure
the corresponding simulated capillary rise data. The stand
Washburn behavior is included as reference and represe
by the smooth solid line. The force profile was obtained
placing 300 pits randomly in the last 1% of the rise belo
the equilibrium height. For simplicity, the size and streng
of all the pits were kept the same. The distance between
maximum and minimum ofF(y) was set at 531024 ~or 5%

FIG. 17. Examples of simulated capillary rise data using
one-dimensional model represented by Eq.~35!. The random pin-
ning force F(y) in ~a! is generated by superposition of 300 ra
domly placed defects, each having the same strength and the
form shown in the inset.F(y) in ~b! has power-law correlations tha
correspond to self-affine surface roughness. In each plot, we s
three simulated rise curves that correspond to three different am
tudes inF(y).
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5272 PRE 61ERIK SCHÄFFER AND PO-ZEN WONG
of the region of investigation!. The pinning strength was var
ied by changing the maximum force (Fmax) of the single
defect. The three cases in the figure haveFmax5631024, 9
31024, and 1231024. ~By definition, F51 corresponds to
the weight of the equilibrium fluid column inside the tub
and it has a length ofHeq1h0.! As one would expect, with
increasingFmax, the contact line stops at a lower positio
This pinned position is always slightly below a negative pe
in F(y), i.e., the contact line stops when it encounters a lo
maximum in the~downward! pinning force and does no
have enough momentum to go over the barrier. Before rea
ing the final position, the contact line barely passes o
several barriers and its velocity would come close to z
each time. Thus they(x) data resemble the experiment da
in Fig. 10. That the repetitively runs in the real experime
ended in different final positions may be explained by
fact that there were changes in the wetting film thickness
they modified the overall strength of the pinning force. Ho
ever, an important difference from the 3D real system is th
while the velocity speeds up and slows down in the simu
tion, there are no genuine singularities or true stick-s
events. In other words, even when the real contact line
limited by finite-size effects, it still has an infinite number
different configurations. If a part of the line is pinned by
strong defect, other parts can slowly rearrange themse
When the elastic energy stored in the deformed line beco
larger than the potential barrier of the strong defect, it c
result in a jump over the defect. This is the essence of a
lanches and it cannot be represented by the 1D model.
other important feature of Fig. 10 is that the amount of tim
the contact line takes to depin from a strong defect va
from run to run. In contrast, the simulated behavior is de
ministic. This can be attributed to the fact that there
always background temporal noise and vibrations in the
system that can help sections of the contact line get o
small barriers. This effect is also absent in the model.

To contrast with the uncorrelated pits model discus
above, we studied the effect of defect forces with algebr
spatial correlations. The force-force correlation isassumedto
be given by

G~r ![^@F~y!2F̄#@F~y1r !2F̄#&y}r 2a, ~36!

where F̄ is the average force,r is a spatial distance ove
which the correlation is calculated, and^ &y denotes an av-
erage over all possible choices ofy. The left half of Fig.
17~b! shows an example of a defect force profileF(y) over a
1% distance below the equilibrium height. It was genera
with a51/2 and the~fractal! Hausdorff dimension of the
profile is given by@56#

DH522a53/2. ~37!

This kind of force profiles may be applicable to surfaces w
correlated chemical defects or geometric roughness, but t
is no first-principle proof of how these surface propert
affect the exponenta. The algebraic form of the force cor
relation is intuitively reasonable and offers a comparis
with the uncorrelated model above. The technique for gen
ating the profile is described in Ref.@3#. We note here only
that both the rms force fluctuationsA and the fractal dimen-
k
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sion DH can be varied independently. The right half of Fi
17~b! shows how the simulatedy(x) data~dotted line! com-
pared with the referenced Washburn behavior~solid line!. A
third trace ~dashed line! shows the simulated data for th
same roughness profile with half the force strength. As
Fig. 17~a!, the weaker pinning force results in a higher fin
position. In both cases, the eventual pinned position co
sponds closely to a local maximum in the downward for
Unlike Fig. 17~a!, however, there are no other well-define
sticking points where the velocity is nearly zero. The reas
is that the defect force fluctuates randomly at a length sc
equal to the resolution we carried out the integration and
the neighboring peaks and valleys in theF(y) curve coun-
teract the effects of each other. They cause the contact
velocity to fluctuate on the same length scale without com
near a complete stop until the line comes to its final positi
To understand this effect better, we carried out the simu
tion with different values of the fractal dimensionsDH and
rms force strengthA to see how they affect the final pinne
height Hc . For eachDH , 100 different force profiles were
generated, and the rms force of each was varied betwe
and 0.004 in increments of 0.0005. Equation~35! was inte-
grated for each case to determine the pinned heights
averaged over the 100 realizations. Figure 18~a! shows an
example ~with a50.1 or DH51.9) of how the pinning
height Hc changes with increasing rms forceA. The differ-
ence betweenHc and the equilibrium heightHeq is expressed
in terms of a dimensionless variabledHc5(Heq2Hc)/Heq
and we found thatdHc increases linearly withA. The error
bars indHc represent the standard deviations in the 100

FIG. 18. In the 1D simulation of capillary rise with spatiall
correlated pinning force, the pinned heightHc depends on both the
exponenta (522DH) defined in Eq.~36! and the rms forceA. ~a!
shows thatHc decreases linearly withA for a given value ofa. ~b!
shows that the sensitivity ofHc is strongest fora between 0.3 and
0.6, orDH between 1.4 and 1.7.
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alizations. The sloped(dHc)/dA for different fractal dimen-
sion DH are summarized in Fig. 18~b!. It is interesting to
note that the maximum slope occurs with intermediate val
of DH , or a'1/2.

VII. DISCUSSIONS AND CONCLUSIONS

A. Summary of experimental results

We have studied the dynamics of capillary rise and
over a range of contact line velocity that spans appro
mately six decades: 1022 mm/s,y,104 mm/s. This corre-
sponds to capillary numbers over a range 10210,Ca
,1024. There are two regions of distinct behavior. ForCa
*1027 we find that the results are well described by Wa
burn equation and the surface disorder is unimportant.
Ca&1027, there is much evidence that the microscopic d
tails near the contact line affect the macroscopic beha
considerably. Surface roughness is only one of many p
sible sources of influence though it has often been the fo
point of theoretical discussions. There are many other fac
that can play a role in real systems and it is difficult to isol
the effects of surface roughness to compare with the theo
Nevertheless, our results provide useful information and
sights on contact line dynamics.

By using a microscope to visualize the meniscus near
pinning threshold, we were able to directly observe stick-s
behavior in those capillary tubes with rough interior wal
This lends support to the qualitative picture of dynam
phase transitions in systems with quenched disorder@11#.
However, in the consecutive rise and fall runs, we found t
the amount of time it took for the contact line to depin fro
the strong defects was random. This implies that either
disorder in the system was slowly changing, or that
thermal/temporal noise in the system played an impor
role. These two possibilities cannot be distinguished. T
fact that we were able to resolve individual avalanches
plies that the data were limited by the finite size of the s
tem and they cannot be compared to the continuous beha
of Eq. ~25!. Unfortunately, we were unable to study the s
tistical behavior of the stick-slip dynamics in terms of t
time and size distributions of the avalanches because it
impractical to study a large number of sample tubes w
different disorder configurations. In order to determine
exponentb in Eq. ~25!, we could only use capillary tube
with much weaker disorder so that the individual avalanc
were below our experimental resolution and the length of
contact offers sufficient statistical averaging. TheS tubes we
used appear to meet these criteria and they gave results
were distinctly different from theR tubes.

In fitting the S tube results to Eq.~25!, we found that the
falling data always gaveb'1. Since the exponential func
tion in Eq. ~26! also corresponds tob51, we fitted the fall-
ing data to the exponential form. We found that the tim
constant was always consistent with the Washburn valuetw ,
which could be determined independently by either fitti
data far from the pinning threshold or by direct calculati
using Eqs.~18! and ~19! with the known experimental pa
rameters. The final height within the image field (Heq8 ) was
found to be reproducible to within63.5 mm upon repeated
falling runs in the same tube. The variation results fro
changes in the surface tension due to small instabilities in
s
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temperature. By applying a small offset to the data to co
pensate for the change in surface tension, the data from
ferent runs all fell onto a single curve. We can therefo
safely conclude that our falling experiments with theS tubes
were free of pinning effects within experimental resolutio
The same cannot be said about the capillary rise exp
ments.

For the rising data in theS tubes, we found that fits to Eq
~25! always gaveb.1 and the result varies from run to run
The final height of each run always came within a few m
crons of the falling data@see Fig. 8~a!#. It implies that the
disorder experienced by the rising contact line was extrem
weak, yet the effects are clear because the Washburn e
tion and the exponential function do not fit the data near
pinning threshold. The algebraic form of Eq.~25! fits the
data the best, but the exponentb varies between 1 and 4
clearly inconsistent with the RG prediction ofb'2/3 @15#.
The larger observed exponent implies slower dynamics. O
possible explanation is that the theory does not take
account the fact that the fluid volume is a conserved quan
and the movement of the contact line requires a finite amo
of time to transport the fluid according to the appropria
hydrodynamic equations. Instead, the theory only conside
the energetics associated with the interfaces joint at the c
tact line. This is analogous to treating domain-wall dynam
in a magnetic system in which a cluster of spins can all
instantaneously to cause an avalanche. That the dynami
such systems with nonconserved order parameters is fa
than those with conserved order parameter is well establis
in the study of equilibrium phase transitions@57#. We expect
the same to hold for dynamical phase transitions but thi
not a solved problem. We should also emphasize that eve
such theoretical analyses exist, they would not explain w
repeated runs could give different values ofb. Clearly, other
~nonuniversal! effects specific to the system have to be co
sidered.

B. Effects of viscous dissipation

The first effect to consider is viscous dissipation asso
ated with the breakdown of the no-slip boundary conditi
near the contact line. We note that the derivation of Eq.~25!
is based on the assumption that the contact angle is inde
dent of velocity, which is unphysical. A more correct trea
ment of capillary rise should include a velocity-depende
dynamic contact angle in Eq.~16! and analyze the
asymptotic behavior in the low velocity limit. The usual r
lationship used for the dynamic contact angle is~see e.g.,
@31#!

cosud5cosua2ACaB2DS ln
L

l s
DCa, ~38!

whereua is the static advancing contact angle. This equat
is a modification of Eq.~8! with an added term linear inCa.
It arises from the intrinsic viscous stress which is alwa
more important at higher velocities.L is a macroscopic cut-
off length related to the system size andl s is the microscopic
slipping length of the order of 10 Å .D ('5) is a dimen-
sionless constant. The nonlinear term on the right-hand
of Eq. ~38! is more important in the low velocity limit
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because the exponentB51/b,1 in our system. Substituting
ud for u in Eq. ~16! and dividing the entire equation b
2prg yields

4

r
~h1h0!Ca5cosua2ACaB2DS ln

L

l s
DCa2

rgr

2g
h.

~39!

Solving for h1h0 gives

h1h05
1

~4Ca/r !1~rgr/2g!

3Fcosua2ACaB2DS ln
L

l s
DCa1

rgr

2g
h0G .

~40!

For low capillary numbers and under typical experimen
conditions (Ca<1027, r'0.1 mm!, the ratio of the two
terms in the denominator is (4Ca/r )/(rgr/2g),0.06%.
Hence we can ignore theCa-term in the denominator of Eq
~40! and simplify it to

h5
2g

rgr Fcosua2ACaB2DS ln
L

l s
DCaG . ~41!

The relative importance of the linear and nonlinear terms
Ca is illustrated Fig. 19, where we plot their ratio as a fun
tion of Ca over a range that covers the pinning region in o
experiment (10211,Ca,1027). The numerical values use
in calculating the ratio are given in the figure and they
typical of the experimental parameters reported in the lite
ture @49,31,41,47,52#. We calculated the ratio for two value
of b. Even for b not much larger than unity, the linea
Ca-term contributes no more than 5% at the highest veloc
Using Eq. ~41! to fit some of our data confirmed that th
viscous dissipation represented by this term is unimpor
@3#. Thus, to a good approximation, the linear term can
ignored, and Eq.~41! is reduced back to Eq.~24!. This rules
out the possibility that our data were affected by visco
effects and justifies our use of Eq.~25! for analyses.

FIG. 19. A plot of the ratio of the linear to the nonlinear term
Eq. ~41! for b51.5 andb52 shows that, even forb not much
larger than unity, the linear term inCa contributes less than 5% fo
Ca,1027.
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C. Effects of controlled velocity versus controlled force

A more important point to consider is whether the cont
line is driven by a constant force or driven at a const
velocity, a subtle distinction emphasized by Raphae¨l and de-
Gennes@38#. With an imposed velocity, the contact lin
would sweep across all surface defects no matter how str
they are, because the elastic energy due to the surface te
would always exceed any pinning barrier when theaverage
position of the line is moved far beyond the defect. T
power-law behavior of Eq.~24! results from averaging ove
the fluctuating force on the line, which is alwaysnonzero.
The situation is different in a real experiment such as o
where the applied force is given~though not necessarily hel
constant! and the velocity is allowed to fluctuate. For certa
realizations of the surface disorder, the contact line m
move at a velocity much less than theaveragevelocity that
corresponds to the given applied forceF, including y50.
This is because the threshold pinning forceFc represents an
average over all realizations for an infinite system; it is n
the property of any single realization. A real contact line is
finite length and it does not sample all possible realizatio
of the disorder of a given strength in a single sample tu
Every experimental realization eventually stops in ay50
state, but the residual forceF is likely to be still above the
average pinning forceFc , because once the line stops, it c
no longer explore other configurations.

The problems associated with a controlled-force exp
ment can be viewed in different ways. First, we note that
theoretical velocityy is given by the statistical averag
^dh/dt&. In the experiment, the travel distanceDh is set by
the image field and the real measurement is on the tra
time Dt, which varies from run to run. Thus the measur
velocity reflectsDh/^Dt& while the theoretical velocity actu
ally corresponds toDh•^1/Dt&. In general, we expec
1/̂ Dt&Þ^1/Dt&. In a constant-velocity experiment, this di
tinction is unimportant because the system spends equal
in each configuration. In a controlled-force experiment,
system spends more time in the deeper metastable state
the inequality holds. Hence the disagreement between th
and experiment is actually not surprising. This problem
compounded by the fact that real contact lines are of fin
length and real experiments do not sample all possible r
izations of the disorder or all possible line configurations.
appreciate these effects, we can consider how the idea
havior depicted in Fig. 1 would be affected. The propos
physical picture near the critical point is that sections of
contact line would be pinned for a long time and depin v
avalanches triggered by small movements in other secti
For a finite-size system, the metastable section can be
entire line, hence a slowly moving state (y'0) for the infi-
nite system can become a truly pinned state (y50) for a
finite-size system. Even for an infinitely long line, ina
equate statistical sampling implies that the threshold forceFc
is ill defined, becauseFc is defined theoretically as an ave
age value for all realizations of the disorder. An experime
performed with a single tube can in fact reach a pinned s
when the driving forceF is still above this theoretical thresh
old Fc . A constant-velocity experiment, by definition, doe
not sample any of they50 states, but a controlled-forc
system can be trapped in one indefinitely. In other words,
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y50 states have no effects on constant-velocity systems
they have the strongest effects in controlled-force exp
ments, because the difference between 1/^Dt& and ^1/Dt& is
accentuated by these pinned states.

Another important factor to consider is the role ofstrong
deformationsin the line shape. Theories in the spirit of E
~9! assume weak deformation in the sense that the line sh
is represented by a single-valued function. The possibili
that strong surface defects may cause overhangs or com
ruptures are excluded. Figure 20 illustrates a common p
nomenon: when a drop of water passes over a dirty g
surface, smaller droplets are left behind. This is the resul
strong pinning defects that cause a moving contact line
first form overhangs and then break off. These strong fl
tuations occur when the velocity is held constant and
applied force is allowed to fluctuate with no upper bound.
a controlled-force experiment, these fluctuations are s
pressed because they are separated from the weakly fl
ating modes by large energy barriers. Near the pinn
threshold, the net driving force is weak and the line would
stopped by the barriers instead of passing over them.

D. Concluding remarks

We argued above that there are intrinsic reasons for
experiment to disagree with the theories and, in fact, it is
unreasonable to find different behavior from run to run b
cause the disorder may not be completely quenched
small background noise is unavoidable. There is much
dence that small changes in the system can lead to l
differences in the result. Theoretical predictions summari
in Table I actually support this conclusion. We note th
most of the mean-field theories predict pinning exponentb
in the range of 1/2<b<2. The capillary-wave excitation
mechanism proposed by Sheng and Zhou@31# predicts 2
,b,`, with the exact value depending on the smoothn
of the edge of the surface defects. These theories all con
some microscopic details, such as the wettability of the s
face, the character of the heterogeneities in the system
mechanism by which the contact line advances, and

FIG. 20. After a large water drop passes over an uncleaned g
slide, many micron-size droplets remain stuck on the surface
they can be seen readily under an optical microscope. The exist
of these droplets implies that there are strong deformations in
moving contact lines that are excluded from the theories. Th
fluctuations are more important in constant-velocity systems tha
controlled-force systems.
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range of capillary numbers considered. Clearly, the det
matter. Although we did not observeb,1 as predicted by
the renormalization-group analyses, that possibility is
completely excluded, because we did not analyze runs
haveHgap larger than several hundreds of microns. In tho
runs, the rise stopped abruptly, which is not inconsistent w
the b,1 behavior depicted in Fig. 3. However, since t
h(t) data up to the pinned position are well described by
Washburn equation, we cannot distinguish whether the
is pinned by a single strong defect or if there is actually
small critical region which we could not resolve. The ma
point we want to emphasize here is that the variability in o
experimental results forb is consistent with the fact that th
theoretical value also varies widely with the details of t
models, even though they all result in the same power-
form.

The variability or irreproducibility of our experimenta
results should be distinguished from the findings of oth
earlier experiments as summarized in Table II. There
many factors that could have affected the previous exp
ments but not ours. First, we have shown that the meas
ments were sensitive to small changes in the temperature
to thermal effects on the surface tension. Durianet al. @58#
have also noted that, in their capillary rise experiments us
binary liquid mixtures, the thickness of the wetting lay
changes withT and it can affect the results. As a result, w
only analyzed data from runs withDT,64 mK. In contrast,
many previous experiments were performed at room te
perature with much less stability. For example, Muml
et al. @36# stated a temperature stability of 2162 °C. Second,
we have used deionized water as both the cleaning and
measuring liquid to minimize chemical complications. Ma
studies used immiscible liquids or liquid mixtures for whic
the surface chemistry is either complicated or unknown. T
protocols for cleaning the surface undoubtedly varied
well, and they may have eteched the surface or left beh
foreign molecules. These factors are probably responsible
the very weak surface disorder in our system such that
experiment had to be performed down to a much lower ra
of capillary numbers. Since physical mechanisms opera
at a different range ofCa could be quite different, our result
may not be directly compared to many earlier studies. T
Eq. ~1! was uniformly adopted to fit the data could be ac
dental. We note, for example, Stokeset al. @49# observed a
static advancing contact angle of 65° and a receding angl
45°. This large difference implies that their system h
much stronger disorder than ours and their measurem
were made at capillary numbers several orders of magnit
higher. There is noa priori reason to believe that the sam
mechanisms are operative in the two studies and that
results should agree. A related issue is that most experim
did not clearly identify the critical region or established
mean-field region with different behavior. In contrast, w
have shown that the mean-field Washburn equation desc
the falling data completely and worked well for the risin
data to within 100mm from the pinned height. In Sec. V D
we noted that Fig. 14 and other similar plots of our da
consistently found that the upper limit of power-law beha
ior occurs at a reduced driving forcef '4. The power-law
form of Eq. ~1! is typically obeyed over two decades in v
locity, down to our noise level. Thus, despite the variabil
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in the exponentb, there is some consistency in the size
the critical region and it lends some confidence that Eq.~1! is
not purely empirical.

Perhaps the most important findings in our experiment
that the dynamics of the capillary rise and fall are differe
near the pinning threshold and that the waiting time affe
the rise dynamics. These are compelling evidence that
nature of the wetting film on the surface plays a crucial r
in the macroscopic contact line dynamics. That a lon
waiting time resulted in slower dynamics, a larger gapHgap
and a larger exponentb are intuitively reasonable as w
expect the wetting film to become thinner with time a
expose more surface defects. Similarly, that the reced
contact line in the falling column showed no pinning effec
can be explained by the fact that it always leaves behin
wetting film that shields the surface defects. It is interest
to note that, in a recent study, Salmeronet al. @59# used
scanning probe microscopy to investigate water films
sorbed on mica surfaces. They found that the 2D structur
molecular layers changed with time at various humidity le
els. Changes on the scale of a few microns were seen
few minutes, presumably caused by thermal excitations.
though our experiments were performed in 100% relat
humidity, we may expect similar thermal fluctuations in t
film thickness over the same time scale. Thus the disorde
the system is not completely quenched. To the extent tha
believe the wetting film plays a crucial role, it is then n
surprising that the data varied from run to run even if th
were no other changes in the system.

From a theoretical point of view, the fact that the wetti
film affects the dynamics is a logical conclusion. As me
tioned in Sec. II B, molecular-dynamics simulations ha
demonstrated that the conventional no-slip boundary co
tion in continuum hydrodynamics breaks down near the c
tact line. The stress singularity associated with the con
line is removed by introducing aslipping length ls'10 Å ,
which is comparable to an adsorbed wetting film. Clearly,
the presence of such a film, the liquid-vapor meniscus jo
onto it smoothly and this would have an effect on the flu
motion. In particular, if the film thickness or its thermal flu
m-
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tuations are comparable to or larger thanl s , the contact line
becomes ill defined. Such molecular-scale details in theslip-
ping regionnear the contact line would ultimately control th
macroscopic dynamics. We should note that Durianet al.
@58# have also independently concluded that microsco
changes of the wetting layer inside a capillary tube can h
dramatic effects on the macroscopic behavior. To carry
reasoning one step further, we must conclude thatall micro-
scopic details near the contact line on the size scale ofl s are
important, regardless of whether they are related to surf
roughness, wetting films, or molecular interactions. This
because the slipping region becomes the bottleneck of c
tact line dynamics near the pinning threshold and the na
of this bottleneck determines how the water molecules wo
move through it.

Lastly, we should reemphasize that while the existence
avalanches has been confirmed, the prediction of univers
in dynamical phase transitions was not borne out by
study. This may be no fault of the theory in the sense tha
or near the pinning threshold, the system is simply in a m
delicate state which is infinitely sensitive to any perturbatio
Real physical systems invariably have many perturbati
that would cause the behavior to deviate from the sca
predictions. In approaching a dynamical transition, ea
small imperfection leads the system further down a path
departs from the ideal behavior and the effect is cumulat
This may be why the universality predictions have not be
confirmed inanyexperimental system, yet the avalanche b
havior is often observed. If the avalanche models could
generalized to incorporate the details of the transport mec
nism and the effects of conservation laws, it will undoub
edly add to our understanding of the problem.
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