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We explain and demonstrate a new method of force and position calibrations for optical tweezers
with back-focal-plane photodetection. The method combines power spectral measurements of
thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does
not use the drag coefficient of the trapped object as an input. Thus, neither the viscosity, nor the size
of the trapped object, nor its distance to nearby surfaces needs to be known. The method requires
only a low level of instrumentation and can be applied in situ in all spatial dimensions. It is both
accurate and precise: true values are returned, with small error bars. We tested this experimentally,
near and far from surfaces in the lateral directions. Both position and force calibrations were
accurate to within 3%. To calibrate, we moved the sample with a piezoelectric translation stage, but
the laser beam could be moved instead, e.g., by acousto-optic deflectors. Near surfaces, this
precision requires an improved formula for the hydrodynamical interaction between an infinite plane
and a microsphere in nonconstant motion parallel to it. We give such a formula. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2356852�

I. INTRODUCTION

In order to use optical tweezers as a quantitative instru-
ment for position and force measurements, the detection sys-
tem must be calibrated. One calibration method interprets
the power spectrum of thermal Brownian motion of a
trapped object.1–4 Another calibration method interprets the
displacement of a trapped object in response to a known flow
past it.4–6 Both these methods require that the drag coeffi-
cient of the trapped object is known. Here we combine the
two methods into one. Then there is no need to know the
drag coefficient.

Mathematically speaking, the combined method mea-
sures an extra quantity that allows the elimination of the drag
coefficient from the calibration procedure. This has some

advantage: Methods that use the drag coefficient as input use
the Stokes law to calculate it, hence rely on assumptions
about the object’s shape and radius and about the viscosity of
the surrounding fluid. This contributes to the error on the
final calibration, as do hydrodynamical interactions with
nearby surfaces.7

With the combined method presented here, these sources
of error have been eliminated. The drag coefficient of the
trapped object can, in fact, be measured with the present
method, and this with precision, as shown below. Finally, the
method presented here is simpler to implement and requires
less instrumentation than other methods that use additional
lasers8,9 or acousto-optic deflectors �AODs�.10

II. MATERIALS AND METHODS

Measurements were done with two different optical
tweezers systems. Both use the trapping laser for position
detection in the back focal plane. One system has a long
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working distance and was used to test the method far from
surfaces �30 �m�: This experimental setup is described in
detail in Ref. 11 and briefly here. The instrument is based on
a custom-built inverted microscope with a Nikon, 60�, 1.2
numerical aperture �NA�, 0.2 mm working distance, Plan-
Apo, water-immersion objective. The laser is a 1064 nm,
Nd:YAG �Spectra-Physics Millennia IR�. Position detection
is done with a position-sensitive photodiode �UDT DLS-20�.
Flow cells with a volume of 10 �l �dimensions of 8�20
�0.06 mm3� were assembled by placing a coverslip on top
of a microscope slide separated by spacers of double-sided
sticky tape. A dilute aqueous solution of beads was flowed
in, and the ends were sealed with nail polish to avoid sample
evaporation. The flow cell was mounted upside down on a
Physik Instrumente piezoelectric translation stage �P-527.2
C1�.

The other system has a short working distance and was
used to test the method close to surfaces �0–3 �m�: This
experimental setup is described in detail in Ref. 12. Briefly, it
consists of a modified Zeiss Axiovert 135 TV microscope
equipped with a Zeiss, 100�, 1.3 NA, Plan-Neofluar, oil-
immersion objective. The laser is a 1064 nm, Nd:YVO4

�Smart Laser Systems GmbH, Berlin, Germany�. Position
detection is obtained with a standard quadrant photodiode,
QP50-6SD �Pacific Silicon Sensors Inc.�. Signals were re-
corded with a 24 bit data acquisition card �NI 4472, National
Instruments� which has a 45 kHz alias-free bandwidth. Tem-
perature was measured with type-T thermocouples, accurate
to within 0.1 °C �IT-23 Physitemp, Clifton, NJ, U.S.A.�.
Flow cells with a 3-mm-wide channel were assembled by
placing a 18 mm2 coverslip on top of a No. 1.5 22 mm2

coverslip separated by a layer of Parafilm. The Parafilm was
melted by placing the sample on a 100 °C hot plate. Cooling
then glued the coverslips together. Microspheres suspended
in an aqueous 0.1 M KCl solution were flowed in, and the
ends were sealed with vacuum grease to avoid sample evapo-
ration. The flow cell was mounted on a Physik Instrumente
piezoelectric translation stage �P-733.2 CL� with built-in ca-
pacitance position detection precalibrated to within 0.1%.
For measurements close to the surface, the coverslips were
coated with Pluronic® F127 �Sigma� on top of a thin poly-
mer layer �Teflon® AF 1600, DuPont� as described in Ref.
12. This protocol minimized static bead-surface interactions.

The following beads were used: silica beads from Bangs
Laboratories �Fishers, IN, USA�, catalog code SS04N, lot
number 5303, were 1.54 �m in diameter with a coefficient of
variation �standard deviation divided by the mean value� of
10% listed by the manufacturer. Polystyrene microspheres
from Polysciences �Warrington, PA, USA�, catalogue num-
ber 07307, lot number 50602, were 528 nm in diameter with
a 2% coefficient of variation listed by the manufacturer.
Transmission electron microscopy �TEM� of the latter micro-
spheres indicated a 1.2% coefficient of variation.

III. THEORY

In the following we present the theory for a calibration
procedure in which the flow cell is moved sinusoidally a
known distance relative to the trapping laser by a piezoelec-

tric translation stage. If, instead, the trap is moved a known
distance relative to the flow cell, the same formulas apply,
provided that the detector is placed in the back focal plane of
the condenser.

In order to keep the presentation as simple as possible,
we use Einstein’s simple theory for Brownian motion. The
presentation given here carries over unchanged to the full,
hydrodynamically correct theory, including possible filters,
electronic and/or parasitic.2,3 We present the relevant formu-
las in Appendix D.

A. Equation of motion

A microsphere suspended in water is trapped with opti-
cal tweezers inside a flow cell. The stage moves the flow cell
sinusoidally relative to the optical trap with a frequency fdrive

and an amplitude A, see Fig. 1, while the trap remains at rest
in the laboratory system. The position of the stage as a func-
tion of time t is

xdrive�t� = A sin�2�fdrivet� . �1�

The stage velocity vdrive�t�� ẋdrive�t� also corresponds to the
velocity of the water in the flow cell far away from the bead,
since the water is at rest relative to the flow cell �see Appen-
dix B�. Ignoring hydrodynamical and inertial effects, the
Langevin equation of motion for a spherical bead in the trap
is

��ẋ�t� − vdrive�t�� + �x�t� = FT�t� , �2�

where x�t� is the position of the bead relative to the center of
the trap, � is the drag coefficient, and � is the trap stiffness.
The first term on the left-hand side is the drag force, which is
proportional to the velocity of the bead relative to that of the
stage. The second term on the left-hand side is the trapping
force. The right-hand side is the random thermal force driv-

FIG. 1. Positions of the piezostage �a� and the trapped bead �b� for a stage
moving sinusoidally with frequency fdrive=32 Hz and amplitude A
=150 nm in the x direction. �a� Left, time series of stage position; right,
histogram of the x coordinate of the stage position. The sinusoidal move-
ment results in two clear maxima. �b� Left, time series of the bead’s x
coordinate in volts, as given by the signal from the photodiode. The ampli-
tude of the sinusoidal response is smaller than the amplitude of the thermal
motion. Consequently the sinusoidal shape is masked by the Brownian mo-
tion of the bead, and the maxima associated with the sinusoid disappear in
the histogram of visited positions �right�.
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ing the Brownian motion. It is assumed to have the statistical
properties of white noise,

FT�t� = �2�kBT��t� = ��2D��t� , �3�

where kBT is the Boltzmann energy at absolute temperature
T, the diffusion coefficient is given by Einstein’s relation
D=kBT /�, and � is the normalized white noise expressed
with Dirac’s delta function �,

���t�� = 0, ���t���t��� = ��t − t�� . �4�

Here �¯� denotes the expectation value that results from
averaging over the thermal noise.

B. Solution to the equation of motion

Since the equation of motion �2� is linear with two force
terms, FT and �vdrive, its general solution can be written as a
sum of two terms, one for each force,

x�t� = xT�t� + xresponse�t� , �5�

after transient initial behavior has died out. Here,

xT�t� = �2D	
−�

t

dt�e−2�fc�t−t����t�� , �6�

xresponse�t� =
xdrive�t − tlag�

�1 + �fc/fdrive�2
, �7�

where we have introduced the corner frequency fc

=� / �2��� and tlag= �arctan�fdrive / fc�−� /2� / �2�fdrive�. Fig-
ure 1�b� shows an example of an experimentally determined
trajectory x�t� of a bead in a trap, as described in Eq. �5�.
In this case, the stochastic thermal motion dominates and
almost hides the driven, deterministic component of the
motion.

In principle, we now could calibrate by fitting xresponse�t�
in Eq. �7� to data like those shown in Fig. 1�b�. However, this
is not a reliable procedure.13 Instead, we Fourier transform
theory and data to the frequency domain where parameters
are determined with optimal precision because the theory is
simpler there.

C. Power spectrum

From Eqs. �5� and �6� it follows that the Fourier trans-
form of x�t� is

x̂�f� = 	
−�

�

dt ei2�ftx�t� =
�̂�f��2D

2��fc − if�

+
Aei2�ftlag

2i�1 + �fc/fdrive�2
���f + fdrive� − ��f − fdrive�� ,

�8�

where �̂�f� is the Fourier transform of ��t�. Consequently, the
expectation value for the one-sided �f 	0� power spectral
density �PSD� of the bead positions is14

P�f� =
2�
x̂�f�
2�

tmsr
= PT�f� + Presponse�f�

——→
tmsr→�

D

�2�f2 + fc
2�

+
A2

2�1 + fc
2/fdrive

2 �
��f − fdrive� ,

�9�

where tmsr is the measurement time �see also Eq. �8� of Ref.
2�. This PSD consists of the familiar Lorentzian �first term,
PT�, plus a delta-function spike �second term, Presponse� at the
frequency with which the stage is driven. The Lorentzian
originates from the Brownian motion of the bead in the para-
bolic trapping potential and is hereafter referred to as the
“thermal background.”

IV. HOW TO CALIBRATE

Experimentally, positions are measured in volts, xvolt.
Assuming linearity,11,12

x�t� = 
xvolt�t� , �10�

positions are known in meters once the calibration factor 

has been determined. It can be determined from the mea-
sured PSD: From Eq. �10� it follows that the experimental
PSD Pvolt is measured in V2 s and

Presponse�f� = 
2Presponse
volt �f� . �11�

Here, Presponse
volt is known experimentally and, as can be seen

from Eq. �9�, so is Presponse, since A and fdrive are known a
priori and fc is known experimentally. So the calibration
factor 
 is the only unknown in Eq. �11�, hence determined
by this equation.

In practice the experimental measurement time is always
finite. This is taken into account in the expression for 

given below.

The procedure described here works in bulk and near a
surface. If used near a surface, the resulting calibration is
specific to the distance from the surface, so is the value
found for the drag coefficient. Faxén’s law �Eq. �D5� below�
and formulas in Ref. 12 and in Sec. 7.4 of Ref. 15 relate the
drag coefficient to its bulk value for the lateral and axial
directions, respectively.

A. Positional calibration

The desired calibration factor for distances is


 = �Wth/Wex, �
� = m/V, �12�

where Wex is the experimentally determined power in the
spike, measured in V2, and Wth is the same quantity mea-
sured in m2. The latter follows from Eq. �9�,

Wth = 	
0

fNyq

Presponse�f�df =
A2

2�1 + fc
2/fdrive

2 �
, �13�

whereas Wex is found by observing that in an experiment the
measurement time tmsr is not infinite, so the spike is no
longer a delta function. As detailed in Appendix C, its height
is now proportional to tmsr, and its width is also finite in
general. However, if tmsr is an integer multiple of the period
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of the stage movement, then the spike consists of a single
datum,16 see Fig. 2, and consequently

Wex = �Pvolt�fdrive� − PT
volt�fdrive���f , �14�

where Pvolt�fdrive� is the height of the spike, i.e., the experi-
mentally determined value of the PSD at fdrive, and
PT

volt�fdrive� is the PSD of the thermal background at fdrive.
Both are measured in V2 s. The width �f =1/ tmsr corre-
sponds to the frequency resolution of the PSD.

The thermal background in this expression can be treated
with three different levels of precision: �i� Do not subtract it
at all, if it is truly negligible compared to the height of the
spike. �ii� Interpolate its value from a plot of the power spec-
trum. This approach can also be taken if the PSD is contami-
nated with low-frequency power, that is external to the
model used here, e.g., from electronic noise or the pointing
instability of the laser beam. �iii� Use the value at fdrive of the
theoretical expression for the thermal background PT

volt�f� af-
ter it has been fitted to the experimental thermal background.

B. Force calibration

The trap’s force on a bead is �x. With the position de-
tection system calibrated, the displacement x is measured in
meters. To determine the trap stiffness �, we use the defini-
tion of fc and Einstein’s relation to write �=2�fckBT /D.
Next, we determine fc and Dvolt, the diffusion constant in
V2/s, by fitting the first term in Eq. �9� to the thermal back-
ground in the experimental PSD. Using D=
2Dvolt, we ar-
rive at a practical formula for force calibration:

�ex = 2�fc
kBT


2Dvolt . �15�

All variables on the right-hand side are measured experimen-
tally in the calibration process. The local temperature T of
the liquid can typically be determined with sufficient accu-
racy by direct measurement in or near the flow cell: T is the

absolute temperature, so an absolute error of 1 K results in a
relative error of only 0.3%.

As a side effect of this calibration procedure, we find an
experimental result for the drag coefficient,

�ex =
kBT


2Dvolt , �16�

where again all variables on the right-hand side are measured
experimentally in the calibration process.

Use of the hydrodynamically correct theory for Brown-
ian motion changes Eq. �12� only by replacing Wth with
Wth,hydro �see Appendix D�. The values found for �ex and �ex

with these equations do change, because more correct values
for fc and Dvolt result from fitting the thermal background
with the hydrodynamically correct theory. The value found
for Wex is also affected a little through the subtraction of the
thermal background in Eq. �14�.

V. EXPERIMENTAL RESULTS

In order to test the accuracy and advantage of the cali-
bration method described above, we here compare our ex-
perimentally determined values for the drag coefficient with
values calculated from vendor information. Deep in bulk, 21
silica beads with a diameter of 1.54 �m were studied with an
optical tweezers system with a water-immersion objective.
At various distances close to the coverslip ��3 �m�, 24
polystyrene beads with a diameter of 528 nm were studied
with an optical tweezers system with an oil-immersion ob-
jective. Fitting of the PSD to the thermal background re-
corded for each bead at each of its positions considered was
done with the highest possible precision, using either pub-
lished MATLAB routines17,18 or custom-written software in
LABVIEW.12 These fitting routines take into account hydrody-
namic corrections, aliasing, parasitic filtering in the photodi-
ode, and electronic filters in the data acquisition system.2,3

A. Measurements in bulk

First we measured the drag coefficient far from surfaces,
where �ex can be compared directly to Stokes’s formula �0

=6�R, with the bead diameter 2R=1.54 �m taken from
the specifications of the producer and the viscosity 
=0.93 mPa s calculated for water at the measured tempera-
ture, 23.0 °C. Beads were trapped near the bottom of the
flow chamber �silica beads are heavier than water� and
brought to the middle of the flow cell, 30 �m from the bot-
tom and the top, to minimize the effect of nearby surfaces.
The x axis—the direction of motion—was chosen perpen-
dicular to the long axis of the flow cell and perpendicular to
the direction of the incoming laser light �the z axis�. The
experimental parameters were A=208 nm and fdrive=28 Hz.
For each of the 21 beads, fc, Dvolt, and Wex were determined
from its power spectrum recorded in bulk.

The average of values measured for �ex was �ex

=13.4±0.2 nN s/m �mean±standard error �SE� on the mean,
n=21 beads�, and the standard deviation �SD� of measured
values for �ex was 0.8 nN s/m, i.e., the measured drag coef-
ficient showed a coefficient of variation of 6%, which is
consistent with the 10% variation in bead diameter listed by

FIG. 2. Power spectrum of a 528 nm diameter polystyrene bead held in the
laser trap with a corner frequency fc=2065±5 Hz. The sample moves sinu-
soidally with amplitude A=150 nm and frequency fdrive=32 Hz. The power
spectrum shown is the average of 100 independent power spectra. It consists
of a thermal background caused by Brownian motion, plus a spike at fdrive.
The sampling frequency was fsample=65 536 Hz, the measurement time for
each spectrum was tmsr=1 s, and the temperature was 24.4 °C. For a clear
illustration, the measurement time used here is eight times longer than the
one we typically use for calibration.
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the manufacturer because of our limited sample size.
The value for the average drag coefficient expected
from the manufacturer’s information is 13.5±0.3 nN s/m
�mean±SE�, where the SE was obtained by adding the errors
associated with viscosity and variation in bead diameter in
quadrature divided by n. These results suggest that our cali-
bration method is both accurate and precise.

B. Measurements near surfaces

In practice, experiments are often done close to a sur-
face, such as a coverslip. Working close to a surface—in our
case �3 �m—complicates standard calibration techniques,
especially if a high numerical aperture oil-immersion objec-
tive is used. In that case aberrations arising from a refractive
index mismatch at the glass-water interface cause a linear
decrease in stiffness away from the surface and a focal
shift.19–21

1. Acquisition and fitting
The experimental parameters were A=150 nm, fdrive

=32 Hz, fsample=65 536 Hz, tmsr=1/8 s, and T=24.4 °C.
The beads used had, according to the producer, a diameter of
2R=528 nm with a 2% coefficient of variation. Power spec-
tra that resulted from averaging 100 independent spectra
were fitted with a custom-written least-squares fitting routine
implementing a Levenberg-Marquardt algorithm �LABVIEW,
NI�. Each datum was weighted by its theoretical error bar.2

The propagated error on the fit parameters was calculated as
the square root of the diagonal elements of the covariance
matrix multiplied by the reduced �2 value. The fit was done
in the frequency interval �8 Hz:25 kHz�, omitting the single
datum at the stage frequency fdrive=32 Hz and using Eq.
�D2� for the thermal background, with Eq. �35� in Ref. 2
describing parasitic filtering.

For every trapped bead the calibration factor 
, the trap
stiffness �ex and the drag coefficient �ex were found at each
of 50 distances from the surface. The exact surface position
was obtained from a fit of Faxén’s law to the measured drag
coefficients, taking the focal shift into account; see Appendix
D and Ref. 12. Thus, the quoted values for �ex are the mea-
sured values extrapolated to bulk, hence directly comparable
to �0.

2. Temperature
We measured the temperature with a small thermocouple

introduced into the flow cell, while simultaneously recording
the room temperature and the temperature of the imaging and
condenser objectives. The temperatures of these two objec-
tives differed by 0.5 °C. The temperature inside the flow cell
was intermediate between these and was measured to within
0.2 °C. We estimated an upper limit of 0.5 °C for the local
temperature increase due to laser heating.22 Thus, the propa-
gated error on �ex in Eq. �16� would be less than 0.2% if the
uncertainty about the temperature were the only source of
error.

3. Drag coefficient
Figure 3 shows the experimentally determined values for

the drag coefficient �ex, here given in units of the theoreti-

cally expected drag coefficient, �0, for 24 individual beads.
The error bars on the individual data points are the propa-
gated errors from the fit to Faxén’s law and the uncertainty in
the temperature. This high precision results from the long
measurement time and the 50 determinations of �ex for each
bead. Any systematic error—e.g., an undetected error in the
specifications of the piezostage—will offset the mean value
of �ex, but will not change the position of the data points
relative to each other. In other words, systematic errors di-
rectly influence the accuracy of the method, but do not influ-
ence the precision. We check the accuracy by comparing �ex

to �0, including its estimated errors. The shaded area shows
the 2.3% error on �0 from the propagated uncertainty on the
viscosity �temperature� and the bead radius.

The average of the measured values for the 24 beads,
�ex, was 1.007±0.003 �mean±SE, n=24� in units of �0. As
seen in Fig. 3, the experimental value for an individual bead
may differ several percent from the theoretically expected
value �0, even if the average value does not. Thus, if �0 is
used for calibration, stochastic errors of several percent are
expected due to the polydispersity of the bead radii.

We were able to measure the polydispersity of the bead
population because the precision of our calibration method
�error bar on single-bead datum� was smaller than this poly-
dispersity. The coefficient of variation of the bead popula-
tion’s various �ex values was 1.5%, which is comparable to
the 2% coefficient of variation for the bead diameter listed
by the producer and the 1.2% measured independently by us
using TEM.

VI. DISCUSSION

The main strength of the calibration method presented
here is that it is independent of estimates regarding the drag
coefficient and that it can be performed on the location of the
experiment. It shares this strength with other methods,9,10 but
unlike those it does not require two laser beams or AODs.

The method presented here has some resemblance to a
method used in Refs. 23 and 24. There, a bead embedded in
a gel was driven sinusoidally through the detection laser, and

FIG. 3. Results from the calibration of 24 individual beads trapped close to
a surface. The circles show the measured drag coefficients Eq. �16�, extrapo-
lated to their bulk values according to Faxén’s law, in units of the theoreti-
cally expected drag coefficient in bulk. The error bars are the propagated
errors from the fitting routines used. The horizontal solid line and the two
dashed lines denote the mean ��ex�±SD of the 24 measurements. The accu-
racy of the method is illustrated by the agreement of the two values
�ex/�0=1.007±0.003 �mean±SE�. The shaded region denotes the estimated
2.3% uncertainty on �0.
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the resulting spike in the PSD was used to estimate the sen-
sitivity of the detection system. However, that method was
not in situ since the bead used for the calibration could not
be used for later experiments.

In Appendix A we discuss a number of issues associated
with the use of optical tweezers, in general, and our imple-
mentation of the calibration method, in particular.

VII. CONCLUSION: RECOMMENDED APPROACH

We suggest the following steps in experiments using a
piezoelectric translation stage.

�1� Trap the object of interest at the position of interest.
�2� Drive the stage at any frequency fdrive that does not ex-

cite resonances in the system. We typically used 16 or
32 Hz, low enough that the fluid moves with the stage
�see Appendix B�.

�3� Collect position data from the photodetection system
and the piezostage for a time tmsr that is an integer num-
ber of stage periods—i.e., tmsrfdrive= integer—to avoid
leakage and with a sampling frequency that makes the
number of data points, tmsrfsample, a power of 2, so the
PSDs of positions can be obtained by fast Fourier trans-
form �FFT�.

�4� Determine A and fdrive from the PSD of the piezostage
positions �or use previously calibrated values�.

�5� Determine Dvolt and fc from a fit to the thermal back-
ground in the PSD of the bead positions.

�6� Determine the value of the spike in the PSD at fdrive and
calculate 
 and � using Eqs. �12� and �15�.

In point 2, the suggested values for fdrive are powers of 2
for ease of calculation of the appropriate tmsr and fsample. In
point 5, we recommend using the full theory for fitting the
PSD if less than 10% systematic error is desired. The rel-
evant equations are given in Appendix D, in Refs. 2 and 3,
and software in Refs. 17 and 18.

VIII. OUTLOOK

A. Calibration of the axial direction

The total intensity of the laser light that impinges on the
position detector in the back focal plane contains information
about the displacement of the trapped object in the axial
direction, i.e., in the direction of the optical axis, the z axis.25

It is generally possible to calibrate this dimension by moving
the sample relative to the laser along the z axis. If AODs are
used to move the laser relative to the trapped object,10 this is
impossible. However, for spherical objects the bulk drag co-
efficient is the same in all directions, and it is sufficient to
determine the drag coefficient in one dimension in order to
calibrate all three dimensions. When working close to a sur-
face, the drag coefficient depends on the direction of motion.
However, if the bead is spherical and the distance to the
surface is known or determined as, e.g. in Sec. V B, it is
again sufficient to determine the drag coefficient in just one
direction. Faxén’s law and formulas given in Ref. 12 and in
Sec. 7.4 of Ref. 15 can be used to correct for the distance
dependence of the drag coefficient for the remaining lateral
and/or axial dimensions, respectively, depending on which

dimension was previously calibrated. This latter procedure
has been experimentally verified in Ref. 12. The precision
and accuracy were the same as for the lateral directions.

B. Imaging versus nonimaging positional
detection

Here we demonstrated our method using positional de-
tection in the nonimaging back focal plane of the condenser.
In the back focal plane an interference pattern is detected.
This pattern arises as the laser light scattered from the bead
interferes with the unscattered laser light.

Position detection in the image plane should also work,
if the laser trap remains stationary in the laboratory coordi-
nate system, while the flow cell is driven. For example, an
image of the bead could be projected onto a photodiode or a
camera. With such a setup, calibration can also be obtained
by simply moving the detector a known distance relative to
the image while recording the response.26

Another approach moves the trapping laser relative to
the flow cell, e.g., using AODs, galvano mirrors, or some
other beam-steering apparatus.1,10 This approach works if
back-focal-plane detection is used: A pure translation of the
laser in the image plane produces no signal in the back focal
plane, and only a motion of the trapped object relative to the
laser is detected. An advantage of this approach is that open
samples can be used because the sample is not moving.

C. In situ measurements

The method presented here is implemented strictly
in situ. Therefore, it should be applicable in situations that
have so far eluded accurate measurements of positions and
forces, e.g., when trapping spherical structures of unknown
refractive index and size in the interior of cells. The method
described here could also be used in microfluidic lab-on-a-
chip devices, for measuring forces, viscosities, or tempera-
tures inside micron-sized channels. Generally, position and
force calibrations should be possible in an arbitrary geom-
etry, because we do not need to know the corrections to the
drag coefficient due to the proximity of surfaces in the ap-
proximation used in Eq. �2�, where the frequency depen-
dence of the drag coefficient is neglected. More generally, all
that is needed for the present method to apply with precision
is a system that displays a linear response to forces, as in Eq.
�2�: The drag should be proportional to the trapped object’s
velocity, but may depend on frequency as in Appendix D as
long as the functional form of the frequency dependence is
known, or can be modeled, and the trapping force should be
Hookean.
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APPENDIX A: EXPERIMENTAL ISSUES

We considered the following issues in the implementa-
tion of our calibration method.

�1� Stage response. Piezostages have a finite response time,
but this is not a problem here, since we drive with a
sinusoidal signal. This is the signal, which another peri-
odic signal will degenerate towards, if its period is
shorter than the response time of the stage. Also, any
deviation from the chosen signal shows up in the experi-
mental power spectrum as distinct, isolated higher
modes at frequencies that are integer multiples of the
driving frequency.
Mechanical resonances of the experimental setup can be
excited. Our setups have resonance frequencies starting
at approximately 400 Hz. The excitation of a resonance
will give rise to additional power in the PSD at the reso-
nance frequency, hence is under experimental control.
Mechanical cross-talk between axes occurs, as seen in
Fig. 1. However, as the equations of motion are linear,
this does not influence the calibration.

�2� Photodiode response. Photodiodes may act as filters, but
the effect is well understood and can be measured and
accounted for.2,3,27 Depending on the type of diode used
�quadrant or position sensitive�, the linearity of the re-
sponse to bead displacements may also vary. The region
of linearity is easily found by moving a stuck bead
through the laser focus. The photodiode must be aligned
with the piezostage. This is achieved by driving the
stage along one of its axes while rotating the diode until
the power at the driving frequency is maximized for the
corresponding axis.

�3� Cross-talk. Cross-talk between the axial �z� and the lat-
eral �x and y� channels from a quadrant photodiode may
lead to underestimates of fc of up to 10%. This cross-
talk shows up as additional power in the PSD of the x, y
channels. Since the axial corner frequency is smaller
than the lateral ones,28 cross-talk raises the plateau of the
lateral signals. A likely source of the cross-talk is the
differences in amplification of the signals from the di-
ode’s four quadrants. By repositioning the diode relative
to the laser so that a small offset from the center position
�i.e., zero volts in x and y� is introduced, the cross-talk
can be minimized by maximizing the lateral corner fre-
quencies that are returned from fits to the PSD.2,12

�4� Laser heating of the liquid. The laser heats up the liquid
locally, resulting in a decrease in viscosity. We looked
for this effect by varying the laser intensity, but did not
find any such effect when working close to surfaces.
This result is to be expected because the glass coverslip
acts as a heat sink.22

�5� Hydrodynamic response of the sample. The calibration
method presented here is conditioned on the liquid co-
moving with the stage. In Appendix B we calculate the
response of the liquid to the oscillatory movement of the
stage. Close to the surface, the no-slip boundary condi-

tion entrains the liquid. Further into the sample, the de-
gree of entrainment depends on the height of the sample
d and the drive frequency. If d2�fdrive���1 mm2/s,
where � is the kinematic viscosity, the liquid comoves in
the entire flow cell.

�6� Shape of the trapped object. The only demand on the
trapped object is that it does not rotate in response to
forced movement, at least not in a manner that gives rise
to a response in the detection system. This condition is
fulfilled if the particle is spherical, or asymmetric but
strongly trapped. Due to the height dependence of the
drag coefficient, even a spherical bead rotates when
translated close to a surface. However, this rotation dis-
sipates a negligible amount of energy compared to the
translational dissipation15 and hence does not affect the
calibration. If the trapped object is elongated and weakly
trapped, it may wobble in the trap in response to the
oscillating liquid and give rise to detection of false
movement by the photodiode. But this is not a problem
with commercial microspheres because they are highly
spherical, as are many small biological objects such as
lipid droplets or vesicles.

�7� Shape of the trapping potential. Throughout this article
we assumed a parabolic trapping potential, but the
method is not limited by this assumption. By choosing
large drive amplitudes A, it is possible to map the shape
of the potential and calibrate it. This is done by analyz-
ing the higher modes of the bead’s motion that arise in
response to a sinusoidal drive in a nonlinear trapping
force field.

APPENDIX B: HYDRODYNAMICS

Sometimes it is desirable to work with a flow cell with
open ends, e.g., to facilitate the exchange of buffer solutions.
When the ends are open, the liquid between the two cover-
slips generally does not move with the same amplitude or
phase as the flow cell.

To estimate the size of this effect, we consider the mo-
tion of a liquid contained between two infinite, parallel
planes which are moved identically, parallel to themselves, in
a simple sinusoidal fashion. In an experiment, two of the
four sides of the flow cell are sealed, which increases the
drag force on the liquid. Also, the surface tension at the
openings helps force the liquid to move with the flow cell.
Thus, the result below for two infinite, parallel planes exag-
gerates the liquid’s motion—it is a worst-case scenario.

The velocity of the oscillating planes �the coverslips� is
zero in the y and z directions, and

vdrive = �A cos��t� �B1�

in the x direction, where �=2�fdrive. The only external
forces on the liquid are the shear forces arising from the
no-slip boundary condition between the liquid and the accel-
erated planes. The liquid moves with the accelerated planes
with a time lag determined by the balance between the iner-
tia of the liquid and the shear forces inside the liquid. Thus,
we see that the velocity of the liquid can be written as
u�x ,y ,z , t�= �u�z , t� ,0 ,0�.
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The equation of motion for the liquid is obtained from
the linearized Navier-Stokes equations with constant pres-
sure �see Ref. 29�:

�u

�t
�z,t� = �

�2u

�z2 �z,t� , �B2�

where � is the kinematic viscosity of the liquid. The relevant
solution to this equation can be written as

u�z,t� = a�z�cos��t� + b�z�sin��t� �B3�

=Aliquid�z�cos���t − tphase�z��� , �B4�

where Aliquid=�a2+b2 and �tphase=arctan�b /a�. The coeffi-
cients a and b can be found by substituting Eq. �B3� into Eq.
�B2�:

a = −
�

�
b� and b =

�

�
a�, �B5�

from which we find

a�� = − ��

�
2

a , �B6�

where the prime � �� indicates differentiation with respect to
z. The solution to Eq. �B6� is a linear combination of
exp���±1± i� /�2��� /�z� whose four coefficients are deter-
mined by the symmetry requirement a�z�=a�d−z� and the
boundary conditions a�0�=�A and a��0�=0:

a�z� = c1 cos� z − d/2

�
cosh� z − d/2

�


+ c2 sin� z − d/2

�
sinh� z − d/2

�
 , �B7�

where

c1 = �A
cos�d/2��cosh�d/2��

cos2�d/2�� + sinh2�d/2��
, �B8�

c2 = �A
sin�d/2��sinh�d/2��

cos2�d/2�� + sinh2�d/2��
, �B9�

and

� = �2�/� �B10�

is the depth of penetration of the shear wave into the fluid.
The expression for b follows from Eq. �B5� and is identical
to Eq. �B7� except for c1 and c2 swapping places. When
d�� the shear wave’s amplitude decreases exponentially as
a function of z. When d�� the liquid comoves with the
planes as a solid body.

With the parameters used in the experiment far from
surfaces, described in Sec. V, i.e., fdrive=28 Hz, the penetra-
tion depth �=103 �m is larger than the thickness of the flow
cell d�60 �m. With these parameters, the amplitude of the
liquid’s motion differs at most 0.25% from the amplitude of
the stage’s motion �see Fig. 4�. This result is independent of
the amplitude A but is quite sensitive to d and fdrive. Thus, if
working away from the surface it is important to choose fdrive

so that it matches the thickness of the cell, i.e., so that
d /��1.

It is illustrative to calculate the velocity of the liquid
midway between the two planes, since this is where the mo-
tion of the liquid differs the most from that of the planes:

u�d

2
,t = c1 cos��t� + c2 sin��t� �B11�

=Aliquid�d

2
cos���t − tphase�d/2��� , �B12�

where now Aliquid�d /2�=�c1
2+c2

2 and �tphase�d /2�
=arctan�c2 /c1�. When the coverslips are close together
or the drive frequency is very low d /2��1, and we have
u�d /2 , t�=vdrive�t�, i.e., the fluid comoves with the planes. If
the coverslips are far apart or the drive frequency is high Eq.
�B12� becomes

u�d

2
,t = 2�Ae−d/2� cos��t − d/2��, d � 2� , �B13�

i.e., the amplitude decreases exponentially as d /� grows and
the motion of the liquid is phase shifted relative to the mo-
tion of the planes. These behaviors are illustrated in Fig. 5.

FIG. 4. Hydrodynamic prediction of the response of the liquid to the motion
of the coverslips. Abscissa: Height above coverslip z. Ordinate: Amplitude
of liquid motion Aliquid�z�, Eq. �B4�, in units of the amplitude of the oscil-
lating planes Astage=A. Parameters are the same as used in the experiment far
from surfaces �fdrive=28 Hz, A=208 nm, T=23.0 °C�.

FIG. 5. Hydrodynamic prediction of the amplitude of liquid motion midway
between the two coverslips. Abscissa: The distance between two planes d,
measured in units of the penetration depth �, Eq. �B10�. Ordinate: Amplitude
of the liquid oscillations midway between the two planes Aliquid�d /2�, Eq.
�B12�, in units of the amplitude of the oscillating planes Astage=A. Notice the
plateau at unity for small values of d /� where the fluid moves with the
planes and the exponential decay to zero at larger values where the liquid no
longer follows the planes. The values of d /� for the experiments in bulk and
close to the surface are marked by a square and a circle, respectively.
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From this we see the importance of choosing a drive fre-
quency small enough for the fluid to follow the flow cell in
the region where the trap is to be calibrated.

APPENDIX C: POWER SPECTRAL DENSITY FOR
FINITE MEASUREMENT TIME

In Sec. III we calculated the PSD for the beads’ motion,
assuming infinite measurement time as well as continuous
sampling. In a real experiment, data are collected for a finite
time tmsr and with a finite sampling frequency fsample. In what
follows we are going to assume continuous sampling in time,
since the aliasing caused by finite sampling time �i� is irrel-
evant for the discussion here, �ii� is easily accounted for,2

and �iii� does not occur at all, if oversampling data acquisi-
tion electronics is used. Readers feeling uneasy about the
idea of continuous sampling need only remind themselves
that it is a mathematical ideal, a limit that is achieved in
practice by choosing fNyq= fsample /2� fc and, if aliasing oc-
curs, by leaving frequencies with significant aliasing out of
the analysis. Equations �H5� and �H6� in Ref. 2 indicate
which frequencies have significant aliasing for a given de-
sired accuracy.

For the finite-time continuous-time Fourier transform of
Eq. �5� we now have

x̃k = 	
−tmsr/2

tmsr/2

dt ei2�fktx�t� , �C1�

and the expectation value for the one-sided �fk	0� PSD be-
comes

Pk�tmsr� =
2�
x̃k
2�

tmsr
=

D + �fdriverkA�2tmsr

�2�fk
2 + fc

2�
, �C2�

where

rk =
1
�2

sin���fk − fdrive�tmsr�
�fk − fdrive�tmsr

�C3�

gives the shape of the spike in the PSD, referred to as
leakage;16 see Fig. 5 of Ref. 27 for peak shapes. Here, fk

=k / tmsr, where k is an integer. We have ignored cross terms
of the type sin���fk− fdrive�tmsr�sin���fk+ fdrive�tmsr� in Eq.
�C3�, as they are typically several orders of magnitude
smaller than the terms retained.

The recording time tmsr is easily chosen to be an integer
multiple of the period of the stage’s motion fdrive. It can be
done even after recording was finished, simply by discarding
an incomplete stage period from the recording. A simplifica-
tion is thereby achieved, fdrive= fk for some integer k, so the
spike consists of a single datum,

rk =
�

�2
� fk,fdrive

, �C4�

and the PSD becomes

Pk�tmsr� =
D

�2�fk
2 + fc

2�
+

fdrive
2 A2

2�fk
2 + fc

2�
tmsr� fk,fdrive

, �C5�

where � fk,fdrive
is Kronecker’s delta. This is the discrete ver-

sion of the expression given in Eq. �9�. We also see that the
height of the spike depends linearly on the measurement time

tmsr. When the measurement time is increased the spike ap-
proaches Dirac’s delta function,

tmsr� fk,fdrive
→ ��f − fdrive�, tmsr → � , �C6�

and the expression in Eq. �9� is regained.

APPENDIX D: HYDRODYNAMICALLY CORRECT
POWER SPECTRUM ANALYSIS

No general statement can be made regarding which ac-
curacy to expect from a Lorentzian fit. The importance of
omitted effects depends on several circumstances.2,3 As a
rule of thumb, we recommend the use of the hydrodynami-
cally correct theory for Brownian motion, if less than 10%
systematic error is desired. User-friendly software exists that
calibrates with the full theory,17,18 and one is left with fewer
concerns regarding reliability of results.

1. Hydrodynamically correct power spectrum

The hydrodynamically correct power spectrum of
Brownian motion of a microsphere that is trapped by a
Hookean force is

Phydro�f ,R/�� = PT
hydro + Presponse

hydro , �D1�

where

PT
hydro�f ,R/��

=
D0Re��/�0�

�2��fc,0 + f Im��/�0� − f2/fm,0�2 + �f Re��/�0��2�

�D2�

and

Presponse
hydro �f ,R/��

=
�Afdrive
�/�0
�2��f − fdrive�

2��fc,0 + f Im��/�0� − f2/fm,0�2 + �f Re��/�0��2�
. �D3�

Equation �D2� is the same expression as given in Eq. �34�
of Ref. 2 �note, however, Ref. 30�. Here ��f ,R /�� is the
frequency-specific drag coefficient that results from solving
Stokes equations for the microsphere undergoing linear har-
monic motion with frequency f . We assume that this motion
takes place parallel to an infinite planar surface that is lo-
cated a distance � from the center of the microsphere with
radius R and give an approximate expression for ��f ,R /��
below. Using the notation �0=��0,0�=6���R, where � is
the density of the surrounding liquid and � its kinematic
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viscosity, the parameters in Eqs. �D2� and �D3� are D0

=kBT /�0, fc,0=� / �2��0�, and fm,0=�0 / �2�m�, with m the
mass of the microsphere. All three parameters are indepen-
dent of �. They describe bulk values, while all � dependence
of the PSD is found in ��f ,R /�� /�0. In this manner, consis-
tency of experimental power spectra that are recorded with
the same bead and trap at different distances to a surface is
very easy to check: The values returned for D0 and fm,0

should all be the same, while variation in fc,0 arises from
variation due to optical aberrations �that depend on � �Ref.
12��.

2. The drag coefficient

The drag coefficient ��f ,R /�� is not known exactly for
R /��0. Deep in bulk, R /�=0, and one has Stokes’ exact
result,31

��f ,0� = �Stokes�f� � �0�1 + �1 − i�� f

f�

− i
2

9

f

f�

 , �D4�

where f�=� / ��R2�. At zero frequency one has Faxén’s ap-
proximate result,15,32

��0,R/�� = �Faxén�R/�� �
�0

1 − 9R/16� + R3/8�3 − 45R4/256�4 − R5/16�5 + ¯

. �D5�

An exact result exists33 and has been shown numerically34 to agree with Eq. �D5� to within 1% for � /R�1.4.
An approximate expression for ��f ,R /�� is given in Eq. �33� of Ref. 2. At zero frequency, it reproduces Faxén’s result

up to and including its first order term in R /�. In the spirit of Padé approximants, we rearranged the terms of Eq. �33� of
Ref. 2 to

��f ,R/�� =
�Stokes�f�

1 − �9/16��R/���1 − ��1 − i�/3��f/f� + 2if/9f� − �4/3��1 − e−�1−i��2�−R�/��� + ¯

�D6�

where �=R�f� / f and the series in R /� in the denominator is
not known beyond the explicitly shown terms. For f =0
this expression reproduces Faxén’s result up to and including
its second order term in R /�: For � /R�1.5 it deviates by
less than 0.5% from Faxén’s result, and for � /R�5 the de-
viation is smaller than 0.1%. This is a significantly better
approximation to Faxén’s result, so it must also be a signifi-
cant improvement at low frequencies, and possibly at all
frequencies.

We found that Eq. �D2� agrees with our experimental
PSDs down to significantly shorter distances from the sur-
face when ��f ,R /�� in Eq. �D6� is used instead of Eq. �33� in
Ref. 2 �see Refs. 35 and 36�.

3. How to fit the �-dependent power spectrum

In order to fit the theoretical power spectrum in Eqs.
�D1�–�D3� to the experimental one, the distance � to the
surface must be known. We do know the differences between
the various distances at which we recorded power spectra. It
is only the location of the coverslip surface that is unknown.

This location can be determined in several ways: from
the fluorescence induced by an evanescent wave, from the
effect of the hydrodynamic interaction of the trapped bead
with the surface, or by analyzing interference or diffractive
patterns �see Ref. 1 and references therein and Refs. 21 and
37�. Yet another method relies on pulling on DNA constructs
along the axial direction.38 Most of these methods require a
modification of the experimental setup. We used the hydro-
dynamic interaction of the bead with the surface, similar to
that described in Ref. 39 but taking advantage of an im-

proved understanding of the focal shift, as detailed in Ref.
12. This method requires no extra instrumentation.

In principle, one might fit Eqs. �D1�–�D3� simulta-
neously to all power spectra recorded with a given bead in
the trap and let the location of the surface be a fitting param-
eter. We used a simpler procedure, based on the observation
that the distance to the surface is needed only with moderate
precision in order to determine the fitting parameters D0 and
fc,0 with high precision. This is because the distance occurs
only in Eq. �D6� in terms that play a subdominant role in
Eqs. �D1�–�D3�.

We fitted Eq. �D2� to the thermal background and com-
pared the results from inserting either �=�Faxén �turning Eq.
�D2� into a Lorentzian� or �=�Faxén�Stokes /�0. The distance-
dependent results for fc and D were found to agree within
1% for the two approaches. This agreement is partly artifi-
cial: We described the parasitic filtering in our diode with Eq.
�35� of Ref. 2, fitting its two parameters. This characteristic
function absorbed most of the difference between �0 and
�Stokes�f�.

Einstein’s relation then gives a distance-dependent �ex

=kBT /D, while Faxén’s law should give the distance depen-
dence �ex��Faxén�R /��. We therefore fitted Faxén’s law to
our �-dependent values for �ex, using the location of the
surface as a fitting parameter. The good fits confirmed the
procedure.12

With � thus known, we know ��f ,R /�� in Eq. �D6� and
can fit the experimental PSDs with the more correct theoret-
ical PSD that results from using Eq. �D6� in Eq. �D2� and D0

and fc,0 as fitting parameters with their original interpreta-
tion: D0=kBT /�0 and fc,0=� / �2��0�.
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Note that although f� depends on the radius of the bead
and on the kinematic viscosity of the surrounding fluid, it is
systematically correct to insert the manufacturer’s value for
the radius and the room temperature value for the viscosity
in f�. This is because in Eq. �D6� these small errors occur in
a term that is already a small correction.

4. Hydrodynamically correct calibration factor

The hydrodynamically correct theory described above
gives

Wth,hydro =	 Presponse
hydro df

=
A2
�/�0
2

2��fc,0/fdrive + Im��/�0� − fdrive/fm,0�2 + �Re��/�0��2�
.

�D7�

This expression does not change the calibration factor 
 by
much, compared to what Eq. �13� would give. This is be-
cause Einstein’s approximate theory for Brownian motion
that leads to Eq. �13� is a low-frequency approximation, and
fdrive is a low frequency compared to the characteristic fre-
quency f� of the frequency dependent drag. At room tem-
perature �fdrive / f��1/2=7.2�10−3 for the 1.54 �m diameter
beads we drove at fdrive=28 Hz, and �fdrive / f��1/2=2.6
�10−3 for the 528 nm diameter beads we drove at fdrive

=32 Hz. Inertial effects are two orders of magnitude
smaller.2 Comparing with Eq. �13�, we see that, in bulk, the
hydrodynamically correct theory in our case introduces cor-
rections of 1.5% and 0.5%, respectively, in the interpretation
of the power in the spike. In contrast, near a surface the
corrections to Eq. �13� are of the opposite sign and a smaller
magnitude than the corrections in bulk: for � /R=10, fdrive
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