

Supramolecular Engineering of Hybrid Perovskite Solar Cells: From Molecular Modulation to Layered Perovskite Architectures

Dr. Jovana V. Milić

Laboratory of Photonics and Interfaces, EPFL, Lausanne, Switzerland jovana.milic@epfl.ch

Hybrid perovskite solar cells exhibit remarkable solar-to-electric power conversion efficiencies, whereas their limited stability and molecular-level engineering remain challenging.^[1-3] In contrast to three-dimensional (3D) perovskites, their layered two-dimensional (2D) analogs show promising stabilities, though at the expense of the corresponding efficiencies.^[1,4-5] We demonstrate a strategy to provide stabilization without compromising the efficiency by employing multifunctional molecular modulators designed through fine-tuning noncovalent interactions complemented by structural adaptability.^[1,3] These systems are devised to interact with the 3D perovskite surface in a manner uniquely assessed by solid-state NMR spectroscopy.^[1-3,5] As a result, we obtain perovskite solar cells with superior properties and efficiencies exceeding 20%, accompanied by enhanced stabilities.^[2-3] Moreover, extending the design into layered 2D architectures leads to further stability enhancements.^[4-5] This approach has been investigated using a combination of techniques complemented by solid-state NMR spectroscopy to unravel the design principles and exemplify the role of supramolecular engineering in advancing hybrid perovskite solar cell research.

Schematic representation of a (a) molecularly modulated perovskite structure with the (b) evolution of the performance of the corresponding solar cells over time and the (c) illustration of the layered perovskite prototype

Reference

J. V. Milić*, D. J. Kubicki, L. Emsley, M. Graetzel, *Chimia* 2019, 73, 317; [2] M. M. Tavakoli,
W. Tress, J. V. Milić, D. J. Kubicki, L. Emsley, M. Graetzel*, *Energy Environ. Sci.* 2018, 11, 3310;
D. Bi, X. Li, J. V. Milić*, N. Pellet, J. Luo, T. LaGrange, P. Mettraux, L. Emsley, S. M. Zakeeruddin,
M. Graetzel, *Nature Commun.* 2018, 9, 4482; [4] Y. Li, J. V. Milić*, A. Ummadisingu, J.-Y. Seo, J.-H. Im,
H.-S. Kim, Y. Liu, M. I. Dar, S. M. Zakeeruddin, P. Wang, A. Hagfeldt, M. Graetzel, *Nano Lett.* 2019, 19, 150; [5] J. V. Milić, J.-H. Im, D. J. Kubicki, A. Ummadisingu, J.-Y. Seo, Y. Li, M. A. Ruiz Preciado,
M. I. Dar, S. M. Zakeeruddin, L. Emsley*, M. Graetzel*, *Adv. Energy Mater.* 2019, 1900284.