Exercise 1 (8 points)
Write the following abbreviated λ-terms with all missing parentheses and λ 's. Then write down all subterms, free variables and bound variables.
(a) $\lambda x \cdot(z y)$
(1 point)
(b) $(\lambda x \cdot x y)(\lambda y \cdot y x)$ (2 points)
(c) $\quad(\lambda y x . x y)((\lambda z . z) y)(\lambda x z . x)$
(d) $(\lambda x y z . x z)((\lambda z y \cdot y y) z)((z z)(z z))$

Exercise 2 (2 points)
We consider the terms in Exercise 1. Rename, if necessary, all bound variables in such a way that no free variable has a bound occurrence.

Exercise 3 (4 points)
Evaluate the following substitutions:
(a) $(\lambda y \cdot x(\lambda w \cdot v x w x))[(u v) / x]$ (2 points)
(b) $\quad((x y)(\lambda v \cdot x v))[(\lambda y \cdot v y) / x]$ (2 points)

Exercise 4 (4 points)
Prove that for all λ-terms M : $\# \mathrm{FV}(M) \leq$ length (M).
(That is, show that the number of free variables of M is less than or equal to the length of M.)
Remark: The assertion is obviously trivial. The objective of this exercise is to present a clear proof by induction on λ-terms.

Exercise 5 (2 points)
Why does $M[P / x][Q / x] \bumpeq M[(P[Q / x]) / x]$ not hold in general?

