Lambda Calculu	is and (Combinatory 2	Logic
----------------	----------	---------------	-------

Exercise sheet 1	due 27.10.	T. Piecha
LACICISC SHEET I	uuc 27.10.	1. I icciia

WS 2017/18

Exercise 1 (8 points)

Write the following abbreviated λ -terms with all missing parentheses and λ 's. Then write down all subterms, free variables and bound variables.

(a)	$\lambda x.(zy)$	(1 point)
(b)	$(\lambda x.xy)(\lambda y.yx)$	(2 points)
(c)	$(\lambda yx.xy)((\lambda z.z)y)(\lambda xz.x)$	(2 points)
(d)	$(\lambda xyz.xz)((\lambda zy.yy)z)((zz)(zz))$	(3 points)

Exercise 2 (2 points)

We consider the terms in Exercise 1. Rename, if necessary, all bound variables in such a way that no free variable has a bound occurrence.

Exercise 3 (4 points)

Evaluate the following substitutions:

(a)	$(\lambda y.x(\lambda w.vxwx))[(uv)/x]$	(2 points)
(b)	$((xy)(\lambda v.xv))[(\lambda y.vy)/x]$	(2 points)

Exercise 4 (4 points)

Prove that for all λ -terms *M*: #FV(*M*) $\leq length(M)$.

(That is, show that the number of free variables of M is less than or equal to the length of M.)

Remark: The assertion is obviously trivial. The objective of this exercise is to present a clear proof by induction on λ -terms.

Exercise 5 (2 points) Why does $M[P/x][Q/x] \simeq M[(P[Q/x])/x]$ not hold in general? (2 points)