Exercise 1 (8 points)
Show that
(a) $(\lambda z \cdot(\lambda y x \cdot x y) z) y={ }_{\beta}(\lambda x y \cdot x y)(\lambda z \cdot z)((\lambda x z \cdot z y) v)$
(b) $\quad((\lambda x y \cdot y) v)(x((\lambda u v \cdot v)(\lambda u v \cdot v u) x))={ }_{\beta}((\lambda x y z \cdot z x) x x(\lambda u \cdot u u))$

Exercise 2 (4 points)
Prove the following: If $M \triangleright_{\beta} N$ and $P \triangleright_{\beta} Q$, then $P[M / x] \triangleright_{\beta} Q[N / x]$.
Exercise 3 (6 points)
Find two pairs of terms M_{1}, N_{1} and M_{2}, N_{2} such that, for $i \in\{1,2\}, M_{i}={ }_{\beta} N_{i}$, but neither $M_{i} \triangleright_{\beta} N_{i}$ nor $N_{i} \triangleright_{\beta} M_{i}$. (Show this.)

Exercise 4 (2 points)
We extend $={ }_{\beta}$ to a relation $={ }_{\beta \varphi}$ by allowing for steps of the form $P[\lambda x y \cdot x]={ }_{1 \varphi} P[\lambda x y \cdot y]$. Prove that this extension leads to inconsistency in the sense that for all λ-terms $M, N: M={ }_{\beta \varphi} N$.
Hint: The proof can be given by simply showing $={ }_{\beta \varphi}$-equality for arbitrary λ-terms M and N. It is not necessary to provide a proof by induction.

