Lambda Calculus and Combinatory Logic		WS 2017/18
Exercise sheet 3	due 10.11.	T. Piecha
Exercise 1 (8 points) Show that		
(a) $(\lambda z.(\lambda yx.xy)z)y =_{\beta} (\lambda xy.xy)(\lambda z.z)((\lambda xz.zy)v)$		(4 points)
(b) $((\lambda xy.y)v)(x((\lambda uv.v)(\lambda uv.vu)x)) =_{\beta} ((\lambda xyz.zx)xx(\lambda u.uu))$		(4 points)
Exercise 2 (4 points) Prove the following: If $M \triangleright_{\beta} N$ as	and $P \rhd_{\beta} Q$, then $P[M/x] \rhd_{\beta} Q[N/x]$.	

Exercise 3 (6 points)

Find two pairs of terms M_1, N_1 and M_2, N_2 such that, for $i \in \{1, 2\}$, $M_i =_{\beta} N_i$, but neither $M_i \triangleright_{\beta} N_i$ nor $N_i \triangleright_{\beta} M_i$. (Show this.)

Exercise 4 (2 points)

We extend $=_{\beta}$ to a relation $=_{\beta\varphi}$ by allowing for steps of the form $P[\lambda xy.x] =_{1\varphi} P[\lambda xy.y]$. Prove that this extension leads to inconsistency in the sense that for all λ -terms $M, N: M =_{\beta\varphi} N$.

Hint: The proof can be given by simply showing $=_{\beta \varphi}$ -equality for arbitrary λ -terms M and N. It is not necessary to provide a proof by induction.