Lambda Calculus and Combinatory Logic		WS 2017/18
Exercise sheet 4	due 17.11.	T. Piecha
Exercise 1 (7 points) A term <i>M</i> is called <i>minimal</i> with r Show that	espect to β -reduction iff for all terms <i>N</i> :	If $M \triangleright_{\beta} N$, then $M \equiv_{\alpha} N$.
(a) all β -normal forms are minim	mal;	(6 points)
(b) not all minimal terms are β -normal forms.		(1 point)
(a) $\mathbf{B} xyz =_{\beta} x(yz)$ (b) $\mathbf{W} xy =_{\beta} xyy$ (c) $\mathbf{X} xy =_{\beta} \mathbf{X} yx$ (d) $\mathbf{Z} x =_{\beta} y \mathbf{Z}$	n that the following equalities hold:	
Show that your λ -terms have the – B <i>MNO</i>	desired behaviour by reducing the follo	wing terms: (2 points)
- WMN		(2 points) (2 points)
$- \mathbf{X}MN$		(2 points)
$- \mathbf{Z}MNO$		(2 points)
Could Z be a combinator?		(1 point)
Exercise 3 (4 points) Show that the fixed-point combin	ators	

 $\boldsymbol{\Theta} := (\lambda z x. x(z z x))(\lambda z x. x(z z x))$

and

 $\Upsilon := \lambda x. (\lambda y. x(yy)) (\lambda y. x(yy))$

have no β -normal forms. (Show in each case that there exists a non-terminating leftmost or quasileftmost reduction series.)