Exercise 1 (7 points)
A term M is called minimal with respect to β-reduction iff for all terms N : If $M \triangleright_{\beta} N$, then $M \equiv{ }_{\alpha} N$. Show that
(a) all β-normal forms are minimal; (6 points)
(b) not all minimal terms are β-normal forms.

Exercise 2 (9 points)
Find λ-terms $\mathbf{B}, \mathbf{W}, \mathbf{X}$ and \mathbf{Z} such that the following equalities hold:
(a) $\mathbf{B} x y z={ }_{\beta} x(y z)$
(b) $\mathbf{W} x y={ }_{\beta} x y y$
(c) $\mathbf{X} x y={ }_{\beta} \mathbf{X} y x$
(d) $\mathbf{Z} x={ }_{\beta} y \mathbf{Z}$

Show that your λ-terms have the desired behaviour by reducing the following terms:

- BMNO
- WMN
- XMN
- ZMNO

Could \mathbf{Z} be a combinator?

Exercise 3 (4 points)
Show that the fixed-point combinators

$$
\Theta: \bumpeq(\lambda z x \cdot x(z z x))(\lambda z x \cdot x(z z x))
$$

and

$$
\Upsilon: \bumpeq \lambda x \cdot(\lambda y \cdot x(y y))(\lambda y \cdot x(y y))
$$

have no β-normal forms. (Show in each case that there exists a non-terminating leftmost or quasileftmost reduction series.)

