Exercise 1 (1 point)
Show $\mathbf{I} X \triangleright_{w} X$ for arbitrary CL-terms X, where $\mathbf{I}: \bumpeq \mathbf{S K K}$.

Exercise 2 (10 points)
Give complete reduction series for the following CL-terms:

(a) $\mathbf{K}(\mathbf{K} x y) z$	(2 points)
(b) $\mathbf{S}(\mathbf{K}(\mathbf{S K K})) \mathbf{S}(\mathbf{K K})$	(2 points)
(c) $\mathbf{S}(\mathbf{K} x)(\mathbf{K} y)(\mathbf{S K K})$	(2 points)
(d) $\mathbf{S}(\mathbf{S}(\mathbf{K S S})) \mathbf{K} x$	(2 points)
(e) $\mathbf{S S S S S}$	(2 points)

Exercise 3 (5 points)
(a) Find a combinator \mathbf{M} such that $\mathbf{M} x={ }_{w} x x$. (1 point)
(b) Assume that for all CL-terms X and Y there exists some CL-term Z combining X and Y in the sense that $Z x={ }_{w} X(Y x)$.

Using (a), show that every CL-term has a fixed point.
(4 points)
Remark: Do not make use of Exercise 4.

Exercise 4 (4 points)
Let $\mathbf{Y}: \bumpeq \mathbf{W S}(\mathbf{B W B})$, where $\mathbf{B}: \bumpeq \mathbf{S}(\mathbf{K S}) \mathbf{K}$ and $\mathbf{W}: \bumpeq \mathbf{S S}(\mathbf{K}(\mathbf{S K K}))$.
Show that for all CL-terms $X: \mathbf{Y} X={ }_{w} X(\mathbf{Y} X)$.

