
On the computational

complexity of logic programs

with nested implications

by

Jörg Hudelmaier

WSI, Universität Tübingen

Sand 13, D72076 Tübingen

Tel. (49)7174 297361

joerg@logik.informatik.uni-tuebingen.de

2

 On the computational complexity of
logic programs with nested implications

by

Jörg Hudelmaier

WSI, Universität Tübingen

Sand 13, D72076 Tübingen

joerg@logik.informatik.uni-tuebingen.de

We consider propositional programs in a logic programming language which allows implica-

tions in the bodies of rules. Given a program P in such a language and a goal g the relation “P

implies g” may be conceived as derivability in intuitionistic logic of the formula g from the

set P of premisses. In general, however, logic programming languages do not admit the full

syntax of intuitionistic logic for writing program rules. N-Prolog, for instance, has rules of the

form B → h, where h is an atom or the constant ⊥ and B is a conjunction of an arbitrary num-

ber of atoms and rules. Goals are atoms or the constant ⊥ (cf. [1]). In order to determine,

whether a program P implies a goal g (“P ? g succeeds”) a so called goal directed calculus is

used, which in essence is a version of Gentzen’s calculus NJ of natural deduction. It is built

on the observation that in an NJ-deduction of an atom a from a set of N-Prolog rules the final

inference has to be an application of modus ponens. Therefore P must contain a rule of the

form B → a and B must be derivable from P. But B is a conjunction, therefore each of its

conjuncts has to be derivable from P and in turn each of the conjuncts is either an atom or an

implication C → i. In the latter case we know that i must be derivable from P,C. But this set

is again a program, so we are back in the situation we had started with, having obtained a new

program and a new goal to derive from it. Combining these three steps into one we are able to

show completeness of the following N-Prolog calculus:

The calculus consists of axioms of the form

P,g ?g succeeds

P,⊥ ? g succeeds

and the single rule

P,(B1→h1 ∧ … ∧ Bn→hn)→g ? g succeeds if for all i

P,(B1→h1 ∧ … ∧ Bn→hn)→g ,Βi ? hi succeeds

(where some of the Bi may also be empty; if P ? g does not succeed we say that it fails.)

Now it is well known that for every formula of intuitionistic propositional logic with

connectives ∧ and → there exists an intuitionistically equivalent conjunction of implications

P → g, where P is an N-Prolog program and g is a goal. This correspondence is established

using the intuitionistically valid equivalences a→(b→c) ≡ (a∧b)→c and a→(b∧c) ≡ (a→b)∧

(a→c). But according to [2] we may even find such implications to any arbitrary formula in

the full language of intuitionistic propositional logic including disjunction and absurdity. But

in this case we cannot achieve equivalence of the two formulas, but only equideducibility, i.e.

3

the fact that one of these formulae is intuitionistically derivable if and only if the other one is.

This, however, already suffices to show that propositional N-Prolog is PSPACE-complete.

But we may further restrict the form of programs by noting the well known

Lemma 1:

a) A formula M → g is derivable in intuitionistic propositional logic iff the formula (M∧g→

p) → p is derivable, where p is an atom occurring only at the indicated positions.

b) A formula (M∧(B∧C)→h) → g is derivable in intuitionistic propositional logic iff the

formula (M∧B→p∧(p∧C)→h) → g is derivable, where p occurs only at the indicated places.

c) A formula (M∧(B→i)→h) → g is derivable in intuitionistic propositional logic iff the

formula (M∧p→B∧(p→i)→h) → g is derivable, where p occurs only at the indicated places.

This lemma allows us to construct to every formula of intuitionistic propositional logic an

equiderivable formula of the form P → g where g is an atom and P is a conjunction of

formulae of the form a, a→b, (a∧b)→c, and (a→b)→c, where a, b, and c are atoms. Moreover

we may do this transformation in such a way that for any two formulas B→a and C→a with

the same right hand side the formulas B and C are atoms. This means that for the formulae

(a∧b)→c resp. (a→b)→c the atom c is unique as a right hand side of an implication in P.

According to [2] the length of such an implication P → g depends at most quadratically on the

length of the original formula; therefore derivability of goals from such restricted programs is

still PSPACE-complete.

Now we turn to an even stronger restriction on programs viz. so called well founded pro-

grams and we shall show that derivability of goals from programs of this seemingly benign

class is still of the same complexity as full intuitionistic propositional logic.

Definition:

a) Let P be a program obeying the previous restriction and consider a relation <P on the set of

atoms of P defined by a<P b iff P contains a rule a→b or a rule (c→a)→b or a rule (c∧a) →b

or (a ∧c)→b. Then the program P is well founded iff the relation <P is well founded.

(In this case we denote its transitive closure still by <P.)

b) Let P be a program obeying the previous restriction. Then we call an atom a of P a c-atom

iff P contains a rule (c∧b)→a and we call a a d-atom iff P contains two rules c→a and b→a.

(Note that the sets of c-atoms and d-atoms are disjoint.)

c) Let P be a well founded program and g a goal. Then P ? g is called a Cn-sequent iff g is a c-

atom of P and n is the maximal number of changes between c-atoms and d-atoms along the

order <P restricted to the atoms which are <P g. Similarly P ? g is a Dn-sequent iff g is a d-

atom of P and n is the maximal number of changes between c-atoms and d-atoms along the

order <P restricted to the atoms which are <P g.

Note that the rules of the form (a→b)→c in P do not contribute to the size of n in part c) of

this definition. Thus C0 is a strictly larger class than the usual class of Horn programs. In fact

we do not know, whether provability of C0-sequents is polynomially decidable. We can only

show:

4

Proposition 1:

a) The set of failing C0-sequents is in NP.

b) The set of successful D0-sequents is in NP.

Proof: We define the sets CACCEPT and DACCEPT by the following mutually exclusive

clauses:

CACCEPT(P,a→g ? g) IFF CACCEPT(P,a→g ? a)

CACCEPT(P,(a∧b)→g ? g) IFF CACCEPT(P,(a∧b)→g ? a) OR

CACCEPT(P,(a∧b)→g ? b)

CACCEPT(P,(a→b)→g ?g) IFF CACCEPT(P,a,(a→b)→g ? b)

CACCEPT(P ? g) OTHERWISE

DACCEPT(P,g ? g)

DACCEPT(P,a→g ? g) IFF DACCEPT(P,a→g ? a)

DACCEPT(P,a→g,b→g?g) IFF DACCEPT(P,a→g,b→g ? a) OR

DACCEPT(P,a→g,b→g ? b)

DACCEPT(P,(a→b)→g ?g) IFF DACCEPT(P,a,(a→b)→g ? b)

The sets CACCEPT resp. DACCEPT obviously coincide with the sets of failing C0-sequents

resp. successful D0-sequents. Moreover for any two successive calls to CACCEPT resp.

DACCEPT with arguments P ? g resp. Q ? h for the atoms g and h the relation h <P g holds.

Thus there may at most be as many successive such calls as there are different atoms in P.

Therefore the sets CACCEPT and DACCEPT are in NP and thus the sets of successful D0-

sequents and failing C0-sequents are also in NP.

Unfortunately is not known, whether these sets are NP-complete. All we can show is

Proposition 2:

a) The set of failing C2-sequents is NP-hard.

b) The set of successful D2-sequents is NP-hard.

Proof: We use the following remark:

A sequent P,B→h ? g, where h <P g does not hold, succeeds iff the sequent P ? g succeeds.

This remark follows directly from the fact that the for any later goal h evaluated during

evaluation of the goal g the relation h <P g must hold.

Now to show the first claim we will obviously have to encode provability of formulae in

classical propositional logic using suitable well founded sequents. But for classical proposi-

tional logic it is well known that we may retsrict ourselves to formulae in disjunctive normal

form, i.e. formulae of the form v = C1∨ ... ∨ Cn, where the Ci are conjunctions pi,1∧... ∧pi,n(i) and

the formulas pi,j are Boolean literals. For such a formula v we let Π(v) depend from the propo-

sitional variables and from the disjunctive clauses of v as follows:

5

Suppose that the variables of v are numbered from 1 to t; then for any variable xi the program

Π(v) has one rule ((xi→ri–1)∧(yi→ri–1))→ri, where the ri and the yi are new pairwise different

atoms. Moreover for any clause Ci of v the program has one rule Bi→r0, where Bi results from

Ci by replacing any negative literal ¬xi by the corresponding new atom yi.

Now induction on t shows that v is provable in classical logic if and only if the goal rt

succeeds from the program Π(v):

If t = 1, then Π(v) can only contain the rules x1→r0, y1→r0, and ((x1→r0)∧(y1→r0))→r1 and r1

succeeds from Π(v) iff Π(v) contains all these three rules, i.e. iff v contains two clauses x1 and

¬x1. Thus for t = 1 the formula v is provable if Π(v) ? r1 succeeds.

For t > 1 the formula v is provable iff both the formulas v(xt) and v(¬xt) are provable, where

v(p) results from v by deleting all clauses of v which contain p and deleting ¬p from the re-

maining clauses. By the induction hypothesis these formulas are provable if the goal rt–1 suc-

ceeds from the programs Π(v–xt) and Π(v–¬xt). Therefore the following lemma completes the

induction:

Lemma 2: A goal rt succeeds from a program

P = (xt∧C1)→r0, ...,(xt∧Cl)→r0,(yt∧D1)→r0, ..., (yt∧Dm)→r0, E1→r0, ..., En →r0,((x1→r0)∧(y1→r0))

→r1, ..., ((xt→rt–1)∧(yt→rt–1))→rt iff rt–1 succeeds from the programs P(x t) = D1→r0, ..., Dm→r0,

E1→r0, ..., En →r0,((x1→r0)∧(y1→r0))→r1, ..., ((xt–1→rt–2)∧(yt–1→rt–2))→rt–1 and P(yt) = C1→r0, ...,

Cl→r0,E1→r0, ..., En →r0,((x1→r0)∧(y1→r0)) →r1, ..., ((xt–1→rt–2)∧(yt–1→rt–2))→rt–1 .

Proof: First we show: if rt succeeds from P, then rt–1 succeeds from P(x t):

Suppose that a program contains a rule (b∧c)→h and a goal g succeeds from this program.

Then a fortiori the program which contains, instead of (b∧c)→h, the rule b→h implies the goal

g, too. Therefore if rt succeeds from P, then it also succeeds from the program P′ which

results from P by deleting yt from all clauses (yt∧Di)→r0; and thus rt–1 succeeds from P′,xt.

Moreover by the above Remark the program which results from P′,xt by deleting the rule

((xt→rt–1)∧(yt→rt–1))→rt also implies rt–1. This program now does not have any occurrence of xt

as head of a rule; therefore all rules which have xt in the body may be deleted, thereby obtai-

ning the program P(xt).

That rt–1 succeeds from P(y t) is shown analogously.

Suppose now that P(xt) and P(y t) imply rt–1. Then it suffices to remark that in intuitionistic

logic the formula rt is derivable from the formulae ((C1→r0)∧ ... ∧(Cl→r0))→rt–1,((D1→r0)∧ ...

∧(Dm→r0))→rt–1, and (x t∧C1)→r0, ... ,(xt∧Cl)→r0,(yt∧D1)→r0,... ,(yt∧Dm)→r0, and the formula

((xt→rt–1)∧(yt→rt–1))→rt and by applying the cut rule we see that P itself implies rt, completing

the proof of the lemma.

Now Π(v) is not a well founded program, but it may easily be transformed into such a

program by introducing some new atoms according to Lemma 1 and using the fact that a

program P,b→h implies a goal g iff the program P,b→y,y→h implies g, where y is an atom not

occurring in the original goal. The program and goal transformed in such a way then turns out

to be a C2-sequent. This means that the set of classically provable formulae is reduced to the

set of successful C2-sequents, and therefore the set of classically unprovable formulae is

reduced to the set of failing such sequents. Thus this latter set is NP-hard.

6

For part b) we proceed in a similar manner, encoding unprovability of our formula v as

success of the goal rt from a program Σ(v), which for every variable xi of v now has two rules

(xi →ri–1) →ri and (yi→ri–1)→ri and for every clause Ci = pi,1∧ ... ∧ pi,n(i) of v has n(i)rules bi,1→qi,

..., bi,n(i)→qi, where bij is defined from pij as Bi was defined from Ci and qi is a new atom. Final-

ly Σ(v) has a single clause (q1∧ ... ∧qn)→r0. Then Σ(v) ? rt may be transformed into a D2-

sequent, showing that the set of successful D2-sequents is also NP-hard.

To be able to generalize these results, we have to introduce the familiar so called polynomial

hierarchy:

Let the complexity classes NPn be given by N P1 = NP, N Pn+1 = the class of languages

accepted by non deterministic Turing machines with oracles from the class NPn (cf. [3].) Then

we can show:

Proposition 3:

a) The set of failing Cn -sequents is in NPn+1

b) The set of successful Dn-sequents is in NPn+1.

Proof: The case n = 0 has been treated above.

For n> 0 we define:

CACCEPT(P ? g,n) IFF NOT DACCEPT(P ? g,n-1),

if P ? g has fewer than n alternations

between c- and d-atoms.

CACCEPT(P,(a∧b)→g ? g,n) IFF CACCEPT(P,(a∧b)→g ? a,n) OR

CACCEPT(P,(a∧b)→g ? b,n)

CACCEPT(P,(a→b)→g ?g) IFF CACCEPT(P,a,(a→b)→g ? b,n)

DACCEPT(P ? g,n) IFF NOT CACCEPT(P ? g,n-1),

if P ? g has fewer than n alternations

between c- and d-atoms.

DACCEPT(P,a→g ? g,n) IFF DACCEPT(P,a→g ? a,n)

DACCEPT(P,a→g,b→g?g,n) IFF DACCEPT(P,a→g,b→g ? a,n) OR

DACCEPT(P,a→g,b→g ? b,n)

DACCEPT(P,(a→b)→g ?g,n) IFF DACCEPT(P,a,(a→b)→g ? b,n)

Again CACCEPT(P ? g ,n) holds iff P is in Cn and g does not succeed from P and

DACCEPT(P ? g,n) holds iff P is in Dn and g succeeds from P. But the definitions of the new

relations CACCEPT(_,n) and DACCEPT(_,n) coincide with the former definitions except for

their first clauses. Thus the new relations may be implemented on non deterministic Turing

machines with oracles for CACCEPT(_,n-1) resp. DACCEPT(_,n-1). But by the induction

hypothesis the latter relations are in Σ n -1; therefore the relations CACCEPT(_,n) and

DACCEPT(_,n) are in Σn.

The generalization of proposition 2 now reads:

7

Proposition 4:

a) The set failing Cn+1-sequents is hard for Σn.

b) The set of successful Dn+1-sequents is hard for Σn.

Proof: We consider canonical complete sets for the stages Σn of the polynomial hierarchy, viz.

the formulas vn provable in second order classical propositional logic of the form

vn = ∃X1∀X2…∀X2n D resp. vn = ∃X1∀X2…∃X2n+1C

where the Xi are sequences of propositional variables, every variable of C resp. D occurs

exactly once in this prefix and D is in disjunctive normal form and C is in conjunctive normal

form (cf. [3]). Provability of such formulae is encoded as validity of implications of type b) as

follows:

For a formula v = C1∨ ... ∨Cn in disjunctive normal form we define Π(v) as above to be B1→

r0, ..., Bn→ r0 and for v = C1∧ ... ∧Cn, where Ci is pi1∨ ... ∨pin(i) we define Π(v) to consist of all

rules bi1→qi together with the one rule (q1∧ ... ∧qn)→r0. Then for every quantifier ∃xi we add to

Π(v) two rules (xi→ri-1)→ri and (yi→ri-1)→ri and for every ∀xi we add to Π(v) one rule ((xi →ri-

1)∧(y i →ri-1))→ri. Then induction on the length t of the quantifier prefix shows that v is

provable in second order propositional logic iff Π(v) implies rt.

The case t = 1 has been treated in proposition 2. For t > 1, t even, we note that v = ∃xt Qt–1 ...

Q1 D is provable iff either v0 = Qt–1 ... Q1 D(xt) or v1 = Qt–1 ... Q1 D(¬xt) is provable and v = ∀xt

Qt–1 ... Q1 D is provable iff both v0 and v1 are provable. To these formulas the induction

hypothesis applies, so we just have two show that success of Π(v) ? rt is equivalent to success

of either Π(v0) ? rt–1 or Π(v1) ? rt–1 resp. success of both Π(v0) ? rt–1 and Π(v1) ? rt–1:

The second equivalence has already been proved as lemma 2; the proof of the first equiva-

lence is a dual to that proof using the fact that in intuitionistic logic the formula rn is derivable

from the formulae ((C1→r0)∧ ... ∧(Cn→r0)) → rn–1, (x→rn–1)→rn , and (x∧C1)→r0, ..., (x∧Cn)→ r0.

The proof for odd t again is a dual to the previous proof.

Our results established so far finally yield the

Theorem:

The relation P ? g, where P is a well founded program is PSPACE-complete.

Proof: The collection of all provable prenex formulas of second order propositional logic is

PSPACE-hard (cf. [3]) and these formulas are all coded at some stage of the above construc-

tion using well founded programs.

Thus we showed that even a class of very perspicuous well founded programs embodies the

full strength of the entire language and exhausts all of the polynomial hierarchy. The image of

this hierarchy in the hierarchy of fragments of our programming language, however, is not

one-to-one but somewhat fuzzy—the two hierarchies, although being cofinal differ by two

stages.

8

References:

[1| Gabbay, D.M & U. Reyle: N-Prolog. Part 1. In: Journal of Logic Programming

2(1984), 319–355

[2] Statman, R.: Intuitionistic logic is polynomial-space complete. In: Theoretical

Computer Science 9(1979), 67–72

[3] Stockmeyer, L.J.: The polynomial time hierarchy. In: Theoretical computer science

3(1976), 1–22

