On the computational complexity of logic programs with nested implications

by

Jörg Hudelmaier
WSI, Universität Tübingen
Sand 13, D72076 Tübingen
Tel. (49)7174 297361
joerg@logik.informatik.uni-tuebingen.de

On the computational complexity of logic programs with nested implications

by

Jörg Hudelmaier
WSI, Universität Tübingen
Sand 13, D72076 Tübingen
joerg@logik.informatik.uni-tuebingen.de

We consider propositional programs in a logic programming language which allows implications in the bodies of rules. Given a program P in such a language and a goal g the relation " P implies g " may be conceived as derivability in intuitionistic logic of the formula g from the set P of premisses. In general, however, logic programming languages do not admit the full syntax of intuitionistic logic for writing program rules. N-Prolog, for instance, has rules of the form $B \rightarrow h$, where h is an atom or the constant \perp and B is a conjunction of an arbitrary number of atoms and rules. Goals are atoms or the constant \perp (cf. [1]). In order to determine, whether a program P implies a goal g (" P ? g succeeds") a so called goal directed calculus is used, which in essence is a version of Gentzen's calculus NJ of natural deduction. It is built on the observation that in an NJ-deduction of an atom a from a set of N-Prolog rules the final inference has to be an application of modus ponens. Therefore P must contain a rule of the form $B \rightarrow a$ and B must be derivable from P. But B is a conjunction, therefore each of its conjuncts has to be derivable from P and in turn each of the conjuncts is either an atom or an implication $C \rightarrow i$. In the latter case we know that i must be derivable from P, C. But this set is again a program, so we are back in the situation we had started with, having obtained a new program and a new goal to derive from it. Combining these three steps into one we are able to show completeness of the following N-Prolog calculus:
The calculus consists of axioms of the form
$P, g ? g \quad$ succeeds
$P, \perp ? g \quad$ succeeds
and the single rule

$$
\begin{aligned}
& P,\left(B_{1} \rightarrow h_{1} \wedge \ldots \wedge B_{n} \rightarrow h_{n}\right) \rightarrow g \quad ? g \text { succeeds if for all } i \\
& P,\left(B_{1} \rightarrow h_{1} \wedge \ldots \wedge B_{n} \rightarrow h_{n}\right) \rightarrow g, B_{i} ? h_{i} \text { succeeds }
\end{aligned}
$$

(where some of the B_{i} may also be empty; if P ? g does not succeed we say that it fails.)
Now it is well known that for every formula of intuitionistic propositional logic with connectives \wedge and \rightarrow there exists an intuitionistically equivalent conjunction of implications $P \rightarrow g$, where P is an N -Prolog program and g is a goal. This correspondence is established using the intuitionistically valid equivalences $a \rightarrow(b \rightarrow c) \equiv(a \wedge b) \rightarrow c$ and $a \rightarrow(b \wedge c) \equiv(a \rightarrow b) \wedge$ $(a \rightarrow c)$. But according to [2] we may even find such implications to any arbitrary formula in the full language of intuitionistic propositional logic including disjunction and absurdity. But in this case we cannot achieve equivalence of the two formulas, but only equideducibility, i.e.
the fact that one of these formulae is intuitionistically derivable if and only if the other one is. This, however, already suffices to show that propositional N-Prolog is PSPACE-complete. But we may further restrict the form of programs by noting the well known

Lemma 1:

a) A formula $M \rightarrow g$ is derivable in intuitionistic propositional logic iff the formula ($M \wedge g \rightarrow$ p) $\rightarrow p$ is derivable, where p is an atom occurring only at the indicated positions.
b) A formula $\left(M_{\wedge}(B \wedge C) \rightarrow h\right) \rightarrow g$ is derivable in intuitionistic propositional logic iff the formula $(M \wedge B \rightarrow p \wedge(p \wedge C) \rightarrow h) \rightarrow g$ is derivable, where p occurs only at the indicated places.
c) A formula $\left(M_{\wedge}(B \rightarrow i) \rightarrow h\right) \rightarrow g$ is derivable in intuitionistic propositional logic iff the formula $(M \wedge p \rightarrow B \wedge(p \rightarrow i) \rightarrow h) \rightarrow g$ is derivable, where p occurs only at the indicated places.

This lemma allows us to construct to every formula of intuitionistic propositional logic an equiderivable formula of the form $P \rightarrow g$ where g is an atom and P is a conjunction of formulae of the form $a, a \rightarrow b,(a \wedge b) \rightarrow c$, and $(a \rightarrow b) \rightarrow c$, where a, b, and c are atoms. Moreover we may do this transformation in such a way that for any two formulas $B \rightarrow a$ and $C \rightarrow a$ with the same right hand side the formulas B and C are atoms. This means that for the formulae $(a \wedge b) \rightarrow c$ resp. $(a \rightarrow b) \rightarrow c$ the atom c is unique as a right hand side of an implication in P. According to [2] the length of such an implication $P \rightarrow g$ depends at most quadratically on the length of the original formula; therefore derivability of goals from such restricted programs is still PSPACE-complete.

Now we turn to an even stronger restriction on programs viz. so called well founded programs and we shall show that derivability of goals from programs of this seemingly benign class is still of the same complexity as full intuitionistic propositional logic.

Definition:

a) Let P be a program obeying the previous restriction and consider a relation $<_{P}$ on the set of atoms of P defined by $a<_{p} b$ iff P contains a rule $a \rightarrow b$ or a rule $(c \rightarrow a) \rightarrow b$ or a rule $(c \wedge a) \rightarrow b$ or $(a \wedge c) \rightarrow b$. Then the program P is well founded iff the relation $<_{\mathrm{p}}$ is well founded.
(In this case we denote its transitive closure still by $<_{\text {p }}$.)
b) Let P be a program obeying the previous restriction. Then we call an atom a of P a c-atom iff P contains a rule $(c \wedge b) \rightarrow a$ and we call a a d-atom iff P contains two rules $c \rightarrow a$ and $b \rightarrow a$. (Note that the sets of c -atoms and d-atoms are disjoint.)
c) Let P be a well founded program and g a goal. Then P ? g is called a C_{n}-sequent iff g is a catom of P and n is the maximal number of changes between c -atoms and d-atoms along the order $<_{\mathrm{P}}$ restricted to the atoms which are $<_{\mathrm{P}} g$. Similarly P ? g is a D_{n}-sequent iff g is a datom of P and n is the maximal number of changes between c -atoms and d-atoms along the order $<_{p}$ restricted to the atoms which are $<_{p} g$.

Note that the rules of the form $(a \rightarrow b) \rightarrow c$ in P do not contribute to the size of n in part c$)$ of this definition. Thus C_{0} is a strictly larger class than the usual class of Horn programs. In fact we do not know, whether provability of C_{0}-sequents is polynomially decidable. We can only show:

Proposition 1:
a) The set of failing C_{0}-sequents is in $\mathbf{N P}$.
b) The set of successful D_{0}-sequents is in NP.

Proof: We define the sets CACCEPT and DACCEPT by the following mutually exclusive clauses:

CACCEPT $(P, a \rightarrow g ? g)$	IFF CACCEPT $(P, a \rightarrow g ? a)$
CACCEPT $(P,(a \wedge b) \rightarrow g ? g)$	IFF CACCEPT $(P,(a \wedge b) \rightarrow g ? a)$ OR
	\quad CACCEPT $(P,(a \wedge b) \rightarrow g ? b)$
CACCEPT $(P,(a \rightarrow b) \rightarrow g ? g)$	IFF CACCEPT $(P, a,(a \rightarrow b) \rightarrow g ? b)$
CACCEPT $(P ? g)$	OTHERWISE

$\operatorname{DACCEPT}(P, g ? g)$
$\operatorname{DACCEPT}(P, a \rightarrow g ? g) \quad$ IFF $\operatorname{DACCEPT}(P, a \rightarrow g ? a)$
DACCEPT $(P, a \rightarrow g, b \rightarrow g ? g)$ IFF DACCEPT $(P, a \rightarrow g, b \rightarrow g ? a)$ OR
$\operatorname{DACCEPT}(P, a \rightarrow g, b \rightarrow g$? $b)$
$\operatorname{DACCEPT}(P,(a \rightarrow b) \rightarrow g ? g)$ IFF DACCEPT $(P, a,(a \rightarrow b) \rightarrow g ? b)$
The sets CACCEPT resp. DACCEPT obviously coincide with the sets of failing C_{0}-sequents resp. successful D_{0}-sequents. Moreover for any two successive calls to CACCEPT resp. DACCEPT with arguments P ? g resp. Q ? h for the atoms g and h the relation $h<_{\mathrm{P}} g$ holds. Thus there may at most be as many successive such calls as there are different atoms in P. Therefore the sets CACCEPT and DACCEPT are in NP and thus the sets of successful D_{0} sequents and failing C_{0}-sequents are also in $\mathbf{N P}$.

Unfortunately is not known, whether these sets are NP-complete. All we can show is

Proposition 2:

a) The set of failing C_{2}-sequents is $\mathbf{N P}$-hard.
b) The set of successful D_{2}-sequents is NP-hard.

Proof: We use the following remark:
A sequent $P, B \rightarrow h$? g, where $h<_{p} g$ does not hold, succeeds iff the sequent P ? g succeeds. This remark follows directly from the fact that the for any later goal h evaluated during evaluation of the goal g the relation $h<_{p} g$ must hold.
Now to show the first claim we will obviously have to encode provability of formulae in classical propositional logic using suitable well founded sequents. But for classical propositional logic it is well known that we may retsrict ourselves to formulae in disjunctive normal form, i.e. formulae of the form $v=C_{1} \vee \ldots \vee C_{n}$, where the C_{i} are conjunctions $p_{i, 1} \wedge \ldots \wedge p_{i, n(i)}$ and the formulas $p_{i, j}$ are Boolean literals. For such a formula v we let $\Pi(v)$ depend from the propositional variables and from the disjunctive clauses of v as follows:

Suppose that the variables of v are numbered from 1 to t; then for any variable x_{i} the program $\Pi(v)$ has one rule $\left(\left(x_{i} \rightarrow r_{i-1}\right) \wedge\left(y_{i} \rightarrow r_{i-1}\right)\right) \rightarrow r_{i}$, where the r_{i} and the y_{i} are new pairwise different atoms. Moreover for any clause C_{i} of v the program has one rule $B_{i} \rightarrow r_{0}$, where B_{i} results from C_{i} by replacing any negative literal $\neg x_{i}$ by the corresponding new atom y_{i}.
Now induction on t shows that v is provable in classical logic if and only if the goal r_{t} succeeds from the program $\Pi(v)$:
If $t=1$, then $\Pi(v)$ can only contain the rules $x_{1} \rightarrow r_{0}, y_{1} \rightarrow r_{0}$, and $\left(\left(x_{1} \rightarrow r_{0}\right) \wedge\left(y_{1} \rightarrow r_{0}\right)\right) \rightarrow r_{1}$ and r_{1} succeeds from $\Pi(v)$ iff $\Pi(v)$ contains all these three rules, i.e. iff v contains two clauses x_{1} and $\neg x_{1}$. Thus for $t=1$ the formula v is provable if $\Pi(v)$? r_{1} succeeds.
For $t>1$ the formula v is provable iff both the formulas $v\left(x_{t}\right)$ and $v\left(\neg x_{t}\right)$ are provable, where $v(p)$ results from v by deleting all clauses of v which contain p and deleting $\neg p$ from the remaining clauses. By the induction hypothesis these formulas are provable if the goal r_{t-1} succeeds from the programs $\Pi\left(v-x_{t}\right)$ and $\Pi\left(v-x_{t}\right)$. Therefore the following lemma completes the induction:

Lemma 2: A goal r_{t} succeeds from a program
$P=\left(x_{t} \wedge C_{1}\right) \rightarrow r_{0}, \ldots,\left(x_{t} \wedge C_{l}\right) \rightarrow r_{0},\left(y_{t} \wedge D_{1}\right) \rightarrow r_{0}, \ldots,\left(y_{t} \wedge D_{m}\right) \rightarrow r_{0}, E_{1} \rightarrow r_{0}, \ldots, E_{n} \rightarrow r_{0},\left(\left(x_{1} \rightarrow r_{0}\right) \wedge\left(y_{1} \rightarrow r_{0}\right)\right)$ $\rightarrow r_{1}, \ldots,\left(\left(x_{t} \rightarrow r_{t-1}\right) \wedge\left(y_{t} \rightarrow r_{t-1}\right)\right) \rightarrow r_{t}$ iff r_{t-1} succeeds from the programs $P\left(x_{t}\right)=D_{1} \rightarrow r_{0}, \ldots, D_{\mathrm{m}} \rightarrow r_{0}$, $E_{1} \rightarrow r_{0}, \ldots, E_{n} \rightarrow r_{0},\left(\left(x_{1} \rightarrow r_{0}\right) \wedge\left(y_{1} \rightarrow r_{0}\right)\right) \rightarrow r_{1}, \ldots,\left(\left(x_{t-1} \rightarrow r_{t-2}\right) \wedge\left(y_{t-1} \rightarrow r_{t-2}\right)\right) \rightarrow r_{t-1}$ and $P\left(y_{t}\right)=C_{1} \rightarrow r_{0}, \ldots$, $C_{l} \rightarrow r_{0}, E_{1} \rightarrow r_{0}, \ldots, E_{n} \rightarrow r_{0},\left(\left(x_{1} \rightarrow r_{0}\right) \wedge\left(y_{1} \rightarrow r_{0}\right)\right) \rightarrow r_{1}, \ldots,\left(\left(x_{t-1} \rightarrow r_{t-2}\right) \wedge\left(y_{t-1} \rightarrow r_{t-2}\right)\right) \rightarrow r_{t-1}$.

Proof: First we show: if r_{t} succeeds from P, then r_{t-1} succeeds from $P\left(x_{t}\right)$:
Suppose that a program contains a rule $(b \wedge c) \rightarrow h$ and a goal g succeeds from this program. Then a fortiori the program which contains, instead of $(b \wedge c) \rightarrow h$, the rule $b \rightarrow h$ implies the goal g, too. Therefore if r_{t} succeeds from P, then it also succeeds from the program P^{\prime} which results from P by deleting y_{t} from all clauses $\left(y_{t} \wedge D_{i}\right) \rightarrow r_{0}$; and thus r_{t-1} succeeds from P^{\prime}, x_{t}. Moreover by the above Remark the program which results from P^{\prime}, x_{t} by deleting the rule $\left(\left(x_{t} \rightarrow r_{t-1}\right) \wedge\left(y_{t} \rightarrow r_{t-1}\right)\right) \rightarrow r_{t}$ also implies r_{t-1}. This program now does not have any occurrence of x_{t} as head of a rule; therefore all rules which have x_{t} in the body may be deleted, thereby obtaining the program $P\left(x_{t}\right)$.
That r_{t-1} succeeds from $P\left(y_{t}\right)$ is shown analogously.
Suppose now that $P\left(x_{t}\right)$ and $P\left(y_{t}\right)$ imply r_{t-1}. Then it suffices to remark that in intuitionistic logic the formula r_{t} is derivable from the formulae $\left(\left(C_{1} \rightarrow r_{0}\right) \wedge \ldots \wedge\left(C_{l} \rightarrow r_{0}\right)\right) \rightarrow r_{t-1},\left(\left(D_{1} \rightarrow r_{0}\right) \wedge \ldots\right.$ $\left.\wedge\left(D_{m} \rightarrow r_{0}\right)\right) \rightarrow r_{t-1}$, and $\left(x_{t} \wedge C_{1}\right) \rightarrow r_{0}, \ldots,\left(x_{t} \wedge C_{l}\right) \rightarrow r_{0},\left(y_{t} \wedge D_{1}\right) \rightarrow r_{0}, \ldots,\left(y_{t} \wedge D_{m}\right) \rightarrow r_{0}$, and the formula $\left(\left(x_{t} \rightarrow r_{t-1}\right) \wedge\left(y_{t} \rightarrow r_{t-1}\right)\right) \rightarrow r_{t}$ and by applying the cut rule we see that P itself implies r_{t}, completing the proof of the lemma.

Now $\Pi(v)$ is not a well founded program, but it may easily be transformed into such a program by introducing some new atoms according to Lemma 1 and using the fact that a program $P, b \rightarrow h$ implies a goal g iff the program $P, b \rightarrow y, y \rightarrow h$ implies g, where y is an atom not occurring in the original goal. The program and goal transformed in such a way then turns out to be a C_{2}-sequent. This means that the set of classically provable formulae is reduced to the set of successful C_{2}-sequents, and therefore the set of classically unprovable formulae is reduced to the set of failing such sequents. Thus this latter set is NP-hard.

For part b) we proceed in a similar manner, encoding unprovability of our formula v as success of the goal r_{t} from a program $\Sigma(v)$, which for every variable x_{i} of v now has two rules $\left(x_{i} \rightarrow r_{i-1}\right) \rightarrow r_{i}$ and $\left(y_{i} \rightarrow r_{i-1}\right) \rightarrow r_{i}$ and for every clause $C_{i}=p_{i, 1} \wedge \ldots \wedge p_{i, n(i)}$ of v has $n(i)$ rules $b_{i, 1} \rightarrow q_{i}$, $\ldots, b_{i, n(i)} \rightarrow q_{i}$, where $b_{i j}$ is defined from $p_{i j}$ as B_{i} was defined from C_{i} and q_{i} is a new atom. Finally $\Sigma(v)$ has a single clause $\left(q_{1} \wedge \ldots \wedge q_{n}\right) \rightarrow r_{0}$. Then $\Sigma(v)$? r_{t} may be transformed into a $D_{2^{-}}$ sequent, showing that the set of successful D_{2}-sequents is also NP-hard.

To be able to generalize these results, we have to introduce the familiar so called polynomial hierarchy:
Let the complexity classes $\mathbf{N} \mathbf{P}_{n}$ be given by $\mathbf{N} \mathbf{P}_{1}=\mathbf{N P}, \mathbf{N} \mathbf{P}_{n+1}=$ the class of languages accepted by non deterministic Turing machines with oracles from the class $\mathbf{N P}_{n}$ (cf. [3].) Then we can show:

Proposition 3:
a) The set of failing C_{n}-sequents is in $\mathbf{N P}_{n+1}$
b) The set of successful D_{n}-sequents is in $\mathbf{N P}_{n+1}$.

Proof: The case $n=0$ has been treated above.
For $n>0$ we define:

$\operatorname{CACCEPT}(P ? g, n)$	IFF	$\operatorname{NOT} \operatorname{DACCEPT}(P ? g, n-1)$, if P ? g has fewer than n alternations between c- and d-atoms.
$\operatorname{CACCEPT}(P,(a \wedge b) \rightarrow g ? g, n)$	IFF	$\operatorname{CACCEPT}(P,(a \wedge b) \rightarrow g ? a, n)$ OR CACCEPT $(P,(a \wedge b) \rightarrow g ? b, n)$
$\operatorname{CACCEPT}(P,(a \rightarrow b) \rightarrow g ? g)$	IFF	$\operatorname{CACCEPT}(P, a,(a \rightarrow b) \rightarrow g ? b, n)$
$\operatorname{DACCEPT}(P ? g, n)$	IFF	$\operatorname{NOT} \operatorname{CACCEPT}(P ? g, n-1)$, if P ? g has fewer than n alternations between c- and d-atoms.
$\operatorname{DACCEPT}(P, a \rightarrow g$? $g, n)$	IFF	DACCEPT $(P, a \rightarrow g$? $a, n)$
DACCEPT $(P, a \rightarrow g, b \rightarrow g ? g, n)$	IFF	$\operatorname{DACCEPT}(P, a \rightarrow g, b \rightarrow g$? $a, n)$ OR
		DACCEPT $(P, a \rightarrow g, b \rightarrow g$? $b, n)$
$\operatorname{DACCEPT}(P,(a \rightarrow b) \rightarrow g$? $g, n)$	IFF	$\operatorname{DACCEPT}(P, a,(a \rightarrow b) \rightarrow g ? b, n)$

Again CACCEPT $(P \quad ? g, n)$ holds iff P is in C_{n} and g does not succeed from P and $\operatorname{DACCEPT}(P ? g, n)$ holds iff P is in D_{n} and g succeeds from P. But the definitions of the new relations $\operatorname{CACCEPT}\left(_, n\right)$ and $\operatorname{DACCEPT}\left(_, n\right)$ coincide with the former definitions except for their first clauses. Thus the new relations may be implemented on non deterministic Turing machines with oracles for $\operatorname{CACCEPT}\left(_, n-1\right)$ resp. DACCEPT(_, $\left.n-1\right)$. But by the induction hypothesis the latter relations are in Σ_{n-1}; therefore the relations $\operatorname{CACCEPT}\left(_, n\right)$ and $\operatorname{DACCEPT}\left(_, n\right)$ are in Σ_{n}.

The generalization of proposition 2 now reads:

Proposition 4:

a) The set failing C_{n+1}-sequents is hard for Σ_{n}.
b) The set of successful D_{n+1}-sequents is hard for Σ_{n}.

Proof: We consider canonical complete sets for the stages Σ_{n} of the polynomial hierarchy, viz. the formulas v_{n} provable in second order classical propositional logic of the form

$$
v_{n}=\exists \mathrm{X}_{1} \forall \mathrm{X}_{2} \ldots \forall \mathrm{X}_{2 n} D \text { resp. } v_{n}=\exists \mathrm{X}_{1} \forall \mathrm{X}_{2} \ldots \exists \mathrm{X}_{2 n+1} C
$$

where the X_{i} are sequences of propositional variables, every variable of C resp. D occurs exactly once in this prefix and D is in disjunctive normal form and C is in conjunctive normal form (cf. [3]). Provability of such formulae is encoded as validity of implications of type b) as follows:
For a formula $v=C_{1} \vee \ldots \vee C_{n}$ in disjunctive normal form we define $\Pi(v)$ as above to be $B_{1} \rightarrow$ $r_{0}, \ldots, B_{n} \rightarrow r_{0}$ and for $v=C_{1} \wedge \ldots \wedge C_{n}$, where C_{i} is $p_{i 1} \vee \ldots \vee p_{i n(i)}$ we define $\Pi(v)$ to consist of all rules $b_{i 1} \rightarrow q_{i}$ together with the one rule $\left(q_{1} \wedge \ldots \wedge q_{n}\right) \rightarrow r_{0}$. Then for every quantifier $\exists x_{i}$ we add to $\Pi(v)$ two rules $\left(x_{i} \rightarrow r_{i-1}\right) \rightarrow r_{i}$ and $\left(y_{i} \rightarrow r_{i-1}\right) \rightarrow r_{i}$ and for every $\forall x_{i}$ we add to $\Pi(v)$ one rule $\left(\left(x_{i} \rightarrow r_{i-}\right.\right.$ $\left.\left.{ }_{1}\right) \wedge\left(y_{i} \rightarrow r_{i-1}\right)\right) \rightarrow r_{i}$. Then induction on the length t of the quantifier prefix shows that v is provable in second order propositional logic iff $\Pi(v)$ implies r_{t}.
The case $t=1$ has been treated in proposition 2. For $t>1, t$ even, we note that $v=\exists x_{t} \mathrm{Q}_{t-1} \cdots$ $\mathrm{Q}_{1} D$ is provable iff either $v_{0}=\mathrm{Q}_{t-1} \ldots \mathrm{Q}_{1} D\left(x_{t}\right)$ or $v_{1}=\mathrm{Q}_{t-1} \ldots \mathrm{Q}_{1} D\left(\neg x_{t}\right)$ is provable and $v=\forall x_{t}$ $\mathrm{Q}_{t-1} \ldots \mathrm{Q}_{1} D$ is provable iff both v_{0} and v_{1} are provable. To these formulas the induction hypothesis applies, so we just have two show that success of $\Pi(v)$? r_{t} is equivalent to success of either $\Pi\left(v_{0}\right)$? r_{t-1} or $\Pi\left(v_{1}\right)$? r_{t-1} resp. success of both $\Pi\left(v_{0}\right)$? r_{t-1} and $\Pi\left(v_{1}\right)$? r_{t-1} :
The second equivalence has already been proved as lemma 2; the proof of the first equivalence is a dual to that proof using the fact that in intuitionistic logic the formula r_{n} is derivable from the formulae $\left(\left(C_{1} \rightarrow r_{0}\right) \wedge \ldots \wedge\left(C_{n} \rightarrow r_{0}\right)\right) \rightarrow r_{n-1},\left(x \rightarrow r_{n-1}\right) \rightarrow r_{n}$, and $\left(x \wedge C_{1}\right) \rightarrow r_{0}, \ldots,\left(x \wedge C_{n}\right) \rightarrow r_{0}$. The proof for odd t again is a dual to the previous proof.

Our results established so far finally yield the
Theorem:
The relation $P ? g$, where P is a well founded program is PSPACE-complete.
Proof: The collection of all provable prenex formulas of second order propositional logic is PSPACE-hard (cf. [3]) and these formulas are all coded at some stage of the above construction using well founded programs.

Thus we showed that even a class of very perspicuous well founded programs embodies the full strength of the entire language and exhausts all of the polynomial hierarchy. The image of this hierarchy in the hierarchy of fragments of our programming language, however, is not one-to-one but somewhat fuzzy-the two hierarchies, although being cofinal differ by two stages.

References:

[11 Gabbay, D.M \& U. Reyle: N-Prolog. Part 1. In: Journal of Logic Programming 2(1984), 319-355
[2] Statman, R.: Intuitionistic logic is polynomial-space complete. In: Theoretical Computer Science 9(1979), 67-72
[3] Stockmeyer, L.J.: The polynomial time hierarchy. In: Theoretical computer science 3(1976), 1-22

