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WSI, Universität Tübingen, Sand 13, D72076 Tübingen
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§1. Introduction

It is well known that one of the problems encountered in automated theorem

proving for non classical propositional logics and in particular for intuitionistic

logic is the presence of the so called contraction rule which allows inferring

from a sequent M,v, v ⇒ w the sequent M,v ⇒ w. From usual calculi

for non classical logics this rule can not be eliminated without compromising

completeness. But obviously in a calculus with contraction rule deductions may

get arbitrarily long. Therefore techniques have to be developped to prevent

running into infinite loops during backwards proof search. This tends to make

implementations slow and complicated. Here we give a new approach to this

problem by introducing a certain kind of normal form theorem for intuitionistic

propositional logic. We show that to every intuitionistic sequent s there is a

normal form sequent nf(s) such that

i) if s is deducible in intuitionistic propositional logic, then nf(s) is deducible

without use uf the contraction rule

ii) if s is not deducible, then nf(s) is not deducible

iii) nf(s) may be computed form s in polynomial time.

Thus we show that the contraction problem may be completely eliminated by

a deterministic algorithm running in polynomial time. Moreover the normal

form we produce is of a particularly simple kind and it makes the nature and

complexity of deducibility in intuitionistic propositional logic perspicuous. In

particular it shows an intimate connection between intuitionistic deductions

and computations of alternating Turing machines.

Now it is well known (cf. [1],[2]) that to any sequent s we may construct a
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sequent cl(s) such that

i) s is deducible in intuitionistic propositional logic if and only if cl(s) is

deducible

ii) cl(s) may be computed from s in polynomial time and

iii) cl(s) is of the form v1, . . . vn ⇒ v0, where v0 is a propositional variable

and all vi with i > 0 are of the form a or a→ b or (a ∧ b) → c or (a→ b) → c,

where a, b and c are propositional variables.

Here we give an even more restrictive kind of normal form by considering so

called well founded sequents:

To any sequent s we consider a relation <s on the set of propositional variables

of s defined by a <s b if and only if s contains some implication a → b or

(a∧ c) → b or (c∧ a) → b or (c→ a) → b. Then s is called well founded if and

only if the relation <s is well founded, i.e. <s does not contain cycles.

Then our normal form nf(s) is constructed in such a way that

i) s is deducible in intuitionistic propositional logic if and only if nf(s) is

deducible

ii) nf(s) may be computed from s in polynomial time

iii) nf(s) is of the form v1, . . . vn ⇒ v0, where v0 is a propositional variable

and all vi with i > 0 are of the form a or a→ b or (a ∧ b) → c or (a→ b) → c,

where a, b and c are propositional variables and moreover

iv) nf(s) is a well founded sequent.

Since we can show that any deducible well founded sequent is deducible without

use of the contraction rule this implies that this normal form fulfills our previous

requirements.

We consider a form of Gentzen’s sequent calculus LJ for intuitionistic propo-

sitional logic (cf. [3]): It has axioms of the form M,a ⇒ a, where a is a

propositional variable and M,⊥ ⇒ w, where ⊥ is the symbol for absurdity

and it has rules
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E∧
M,u ∧ v, u, v ⇒ w

M,u ∧ v ⇒ w
I∧

M ⇒ u M ⇒ v

M ⇒ u ∧ v

E∨
M,u ∨ v, u ⇒ w M,u ∨ v, v ⇒ w

M,u ∨ v ⇒ w
I∨

M ⇒ u

M ⇒ u ∨ v

M ⇒ v

M ⇒ u ∨ v

E→
M,u→ v ⇒ u M, v ⇒ w

M,u→ v ⇒ w
I→

M,u ⇒ v

M ⇒ u→ v

Gentzen’s so called contraction rule is implicitly included in this calculus by

repeating all left hand side principal formulas in the premisses of the E-rules.

Moreover we consider a form of Gentzen’s second type of calculi for intuition-

istic propositional logic, viz. his calculus NJ of natural deduction. The form

we consider here was originally designed for use as a deductive formalism for

certain extended logic programs. (cf. [4],[5]) It uses a restricted language with

no ∨-symbol and for this language it has the same axioms as LJ and it has a

single multipremiss rule of the form

N
M,v′1 ⇒ b1 . . . M, v′m ⇒ bm M ⇒ bm+1 . . . M ⇒ bn

M,v ⇒ a

where v is the formula (v1 → b1 ∧ . . . ∧ vm → bm ∧ bm+1 ∧ . . . ∧ bn) → a

and v′i results from vi by replacing any ∧ with a ‘,’ and it has the explicit

contraction rule

C
M,v, v ⇒ w

M, v ⇒ w

It is well known that for sequents of the restricted language both calculi LJ

and NJ are equivalent.
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§2. Construction of the Normal Form

Now to construct our normal form nf(s) we use a common approach requiring

introduction of new propositional variables to abbreviate complex subformulas

of our given sequent s: We use new propositional variables bn indexed by

natural numbers n, new propositional variables lv, indexed by the subformulas

v occurring in our sequent s and new propositional variables rv,n, indexed by

natural numbers and by the subformulas of s.

Here lv is meant as indicating presence of the subformula v in the antecedent

of some sequent and all its predecessors on a branch of our derivation and rv,n

is meant as indicating presence of the formulas v on the right hand side of

the n-th sequent of some branch of our derivation. Moreover the variable bn

is understood as saying that the sequent represented by the lv and by rv,n is

deducible by a deduction of length at most n.

Now let s = v1, . . . , vn ⇒ v0 be a sequent, k be the number of subformulas of

s, t a natural number and let ϕ(s, t) be the union of the two sets ϕvar(s, t) and

ϕ⊥(s, t), where ϕvar(s, t) is the set of all formulas la ∧ ra,i → bi where a is a

propositional variable of s and i is a natural number smaller than t and ϕ⊥(s, t)

is the set of all formulas l⊥ → bi. Then ϕvar(s, t) and ϕ⊥(s, t) express the fact

that any sequent which has as its right hand side a propositional variable which

also occurs on the left hand side, or which has ⊥ on its left hand side, i.e. which

is an axiom of our calculus LJ, is provable by a deduction of length at most i

for any i.

Moreover let χ(s, t) be the union of the sets χR(s, t) defined as follows:

χI∧(s, t) is the set of all formulas (ru,i → bi ∧ rv,i → bi ∧ ru∧v,i+1) → bi+1,

where u, v and u ∧ v are subformulas of s and i is a natural number smaller

than t. This set of formulas indicates that any pair of sequents with equal left

hand sides M and right hand sides u resp. v provable by deductions of length

at most i constitute a deduction of the sequent M ⇒ u ∧ v of length at most

i+ 1.

Similarly
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χE∧(s, t) is the set of formulas ((lu ∧ lv ∧ rw,i) → bi ∧ lu∧v ∧ rw,i+1) → bi+1,

χI∨(s, t) is the set of formulas (ru,i → bi ∧ ru∨v,i+1) → bi+1 resp. (rv,i →

bi ∧ ru∨v,i+t) → bi+1,

χE∨(s, t) is the set ((lu ∧ rw,i) → bi ∧ (lv ∧ rw,i) → bi ∧ lu∧v ∧ rw,i+1) → bi+1,

χI→(s, t) is the set of all formulas ((lu ∧ rv,i) → bi ∧ ru→v,i+1) → bi+1

and χE→(s, t) is the set of all formulas ((lv ∧ rw,i) → bi ∧ ru,i → bi ∧ lu→v ∧

rw,i+1) → bi+1). Then

Let ψ(s, t) be the formula (lv1
∧ . . . ∧ lvn

∧ rv0,t) → bt and

let ρ(s, t) be the sequent (lv1
, ldots, lvn

, rv0,t, ϕ(s, t), χ(s, t) ⇒ bt and let

finally

nf(s) be ρ(s, k2).

§3. Properties of the normal form

We use a trivial

Lemma:

a) Any LJ-deduction of a sequent M,u ∧ v ⇒ w may be transformed into

an LJ-deduction of the sequent M,u, v ⇒ w of smaller or equal length.

b) Any LJ-deduction of a sequent M ⇒ u→ v may be transformed into an

LJ-deduction of the sequent M,u ⇒ v of smaller or equal length.

c) Any LJ-deduction of a sequent M ⇒ w may be transformed into an

LJ-deduction of the sequent M,N ⇒ w of smaller or equal length.

(For a proof of this lemma cf. [6])

Then we show

Theorem 1:

If a sequent s has an LJ-deduction of length t, then any sequent ω(s, t′) =

ϕ(s, t′), χ(s, t′) ⇒ ψ(s, t′), where t′ ≥ t has an LJ-deduction.

Proof: For t = 1 the sequent s has a deduction of length t iff it is an axiom,

i.e. iff either its right hand side is a variable which also occurs on the left

hand side or its left hand side contains the formula ⊥. In the first case the
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formula ψ(s, t′) is of the form (la∧ . . .∧ lvi
∧ . . .∧ra,t′) → bt′ and the set ϕ(s, t′)

contains the formula la ∧ ra,t′ → bt′ . Therefore the sequent ϕ(s, t′) ⇒ ψ(s, t′)

has a deduction of length 4. In the second case the formula ψ(s, t′)) is of the

form (l⊥ ∧ . . .∧ lvi
∧ . . .∧ rv0,t′) → bt′ and the set ϕ(s, t′) contains the formula

l⊥ → bt′ . Thus the sequent ϕ(s, t′) ⇒ ψ(s, t′) has a deduction of length 3.

If the sequent s has a deduction of length t > 0, then it is the conclusion of

some inference and its premisses have deductions of length smaller than t. We

consider cases according to the form of the last inference leading to s:

If this inference is an application of I∧, then ψ(s, t′) is of the form (lv1
∧. . .∧lvn

∧

ru∧v,t′) → bt′ and χ(s, t′) contains the formula ((ru,t′−1 → bt′−1) ∧ (rv,t′−1 →

bt′−1) ∧ ru∧v,t′) → bt′ . Now for the two premisses s0 and s1 of s we have

ψ(s0, t
′ − 1) = (lv1

∧ . . . ∧ lvn
∧ ru,t′−1) → bt′−1 and ψ(s1, t

′ − 1) = (lv1
∧ . . . ∧

lvn
∧ rv,t′−1) → bt′−1 and by the induction hypothesis both sequents ϕ(si, t

′ −

1), χ(si, t
′ − 1) ⇒ ψ(si, t

′ − 1) have LJ-deductions and thus by our lemma the

sequents ϕ(s0, t
′ − 1), χ(s0, t

′ − 1), lv1
, . . . , lvn

, ru,t′−1 ⇒ bt′−1 and ϕ(s1, t
′ −

1), χ(s1, t
′ − 1), lv1

, . . . , lvn
, rv,t′−1 ⇒ bt′−1 are LJ-deducible and therefore

by applications of I→ the sequents ϕ(s0, t
′ − 1), χ(s0, t

′ − 1), lv1
, . . . , lvn

⇒

ru,t′−1 → bt′−1 and ϕ(s1, t
′−1), χ(s1, t

′−1), lv1
, . . . , lvn

⇒ rv,t′−1 → bt′−1 are

deducible and by two applications of I∧ and an application of the lemma the

sequent ϕ(s, t′), χ(s, t′), lv1
, . . . , lvn

, ru∧v,t′ ⇒ (ru,t′−1 → bt′−1) ∧ (rv,t′−1 →

bt′−1) ∧ ru∧v,t′ has an LJ-deduction and by an application of E→ the sequent

ϕ(s, t′), χ(s, t′), lv1
, . . . , lvn

, ru∧v,t′ ⇒ bt′ is deducible and thus by applications

of E∧ and I→ the sequent ω(s, t′) = ϕ(s, t′), χ(s, t′) ⇒ ψ(s, t′) has an LJ-

deduction.

If the sequent s results from s0 and s1 by an application of E→, then ψ(s, t′)

is of the form (lu→v ∧ lv1
∧ . . . ∧ lvn

∧ rv0,t′) → bt′ and χ(s, t′) contains

the formula ((lv ∧ rv0,t′−1 → bt′−1) ∧ (ru,t′−1 → bt′−1) ∧ lu→v,t′ ∧ rv0,t′) →

bt′ . Furthermore ψ(s0, t
′ − 1) and ψ(s1, t

′ − 1) are of the form (lu→v ∧ lv1
∧

. . . ∧ lvn
∧ ru,t′−1) → bt′−1 resp. (lu→v ∧ lv ∧ lv1

∧ . . . ∧ lvn
∧ rv0,t′−1) →

bt′−1. Thus by the induction hypothesis and by the lemma the sequents
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ϕ(s0, t
′ − 1), χ(s0, t

′ − 1), lu→v, lv, lv1
, . . . , lvn

, rv0,t′−1 ⇒ bt′−1 and ϕ(s1, t
′ −

1), χ(s1, t
′ − 1), lu→v, lv1

, . . . , lvn
, ru,t′−1 ⇒ bt′−1 are LJ-deducible. Thus the

sequents ϕ(s0, t
′ − 1), χ(s0, t

′ − 1), lu→v, lv1
, . . . , lvn

⇒ (lv ∧ rv0,t′−1) → bt′−1

resp. ϕ(s1, t
′ − 1), χ(s1, t

′ − 1), lu→v, lv1
, . . . , lvn

⇒ ru,t′−1 → bt′−1 are de-

ducible, too. Therefore by applications of I∧ and our lemma the sequent

ϕ(s, t′), χ(s, t′), lu→v, lv1
, . . . , lvn

, rv0,t′ ⇒ (ru,t′−1 → bt′−1) ∧ (lv ∧ rv0,t′−1) →

bt′−1∧lu→v∧rv0,t′ has an LJ-deduction and by an application of E→ the sequent

ϕ(s, t′), χ(s, t′), lu→v, lv1
, . . . , lvn

, rv0,t′ ⇒ bt′ is deducible and by applicatons

of E∧ and I→ the sequent ω(s, t) is deducible.

All other cases are treated in similar ways.

On the other hand we also have

Theorem 2:

If a sequent ω(s, t) has an NJ-deduction of length t′ ≤ t, then the sequent s

has an LJ-deduction.

Proof: Let s be the sequent v0, . . . , vn ⇒ v0; then we show: if the sequent

ω′(s, t) = lv0
, . . . , lvn

, rv0,t, υ(t), ϕ(s, t), χ(s, t) ⇒ bt, where υ(t) is a set of

formulas of the form rw,t′′ or q → bt′′ with t′′ > t has an NJ-deduction of

length t′ ≤ t, then s has an LJ-deduction.

No sequent ω′(s, t) is an axiom. But if such a sequent has a deduction of length

2, then either ϕ(s, t) contains a formula (la ∧ ra,t) → bt and a equals both v0

and one of the vi with 0 < i or ϕ(s, t) contains the formula l⊥ → bt and one of

the vi with 0 < i is ⊥. In both cases the sequent s is an LJ-axiom.

If ω′(s, t) has a deduction of length t′ > 2, then χ(s, t) contains some formula

p = ((A → bt−1) ∧ C) → bt or p = ((A → bt−1) ∧ (B → bt−1) ∧ C) → bt,

where A, B and C are conjunctions of propositional variables different from

the bi and the sequents r0 = A′, lv0
, . . . , lvn

, rv0,t, ϕ(s, t), χ(s, t) ⇒ bt−1 and

r2 = lv0
, . . . , lvn

, rv0,t, ϕ(s, t), χ(s, t) ⇒ C resp. the sequents r0, r2 and

r1 = B′, lv0
, . . . , lvn

, rv0,t, ϕ(s, t), χ(s, t) ⇒ bt−1 are NJ-deducible, where A′

resp. B′ result from A resp. B by replacing any ∧ with a ‘,’. Now to the
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sequents r0 and r1 the induction hypothesis applies and we distinguish cases

according to the form of p: If p is in χI∧, then A′ is ru,t−1, B
′ is rv,t−1 and C is

ru∧v,t. But the formula C does not occur as right hand side of any implication

of r2, therefore, as r2 is deducible, it must occur atomic on the left hand side of

r2, i.e. it must be rv0,t. Therefore the right hand side of the sequent s is u∧ v.

Moreover r0 and r1 are of the form ω′(s0, t− 1) resp. ω′(s1, t− 1), where s, s0

and s1 have the same left hand sides and s0 and s1 have right hand sides u resp.

v. Thus s0 and s1 are the premisses of an application of I∧ leading to s; and

since by the induction hypothesis both si are LJ-deducible, s is LJ-deducible,

too.

If p is in χE→, then A′ is lv, rw,t−1, B
′ is ru,t−1 and C is lu→v ∧ rw,t. The

formulas lu→v and rw,t must again occur on the left hand side of r2. Thus

the sequent s right hand side w and a formula u → v on its left hand side.

Moreover r0 and r1 are of the form ω′(s0, t − 1) resp. ω′(s1, t − 1), where s0

is s with an additional formula v on its left hand side and s1 is s with its

right hand side replaced by u. But s0 and s1 are LJ-deducible by the induction

hypothesis and s is deducible from them by an application of E→. Thus s itself

is LJ-deducible.

All remaining cases are treated in a similar manner.

These two theorems show that the sequent ω(s, t) is deducible in intuitionistic

propositional logic if and only if s is deducible and by our lemma the same

holds for ρ(s, t).

Now let s′ be ρ(s, t), then it is obvious that a <s′ b iff either a is some propo-

sitional variable lv or rv,n and b is some propositional variable bi or a is bi and

b is bi+1. Therefore our relation s′ is well founded and so is ρ(s, t).

On the other hand we have the well known

Observation:

If a sequent s is deducible in intuitionistic propositional logic and s has k

subformulas, then s has a deduction of length at most k2
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Proof: When going backwards from the conclusion of an LJ-inference to one

of its premisses we can only add some subformula of the conclusion to the

left hand side or we can replace the right hand with some subformula of the

conclusion. Thus before adding a new formula to the left hand side on some

branch of a deduction we can only change the right hand side k many times

without producing some redundant sequent. Also we can only add k formulas

to the left hand side without producing redundant sequents. Therefore any

non redundant branch of an LJ-deduction of s must be of length at most k2.

Therefore for any sequent s which has k subformulas s is deducible if and only

if ρ(s, k2) = nf(s) is deducible. But clearly k depends polynomially from the

size of s. Thus this definition fulfills our initial requirement that nf(s) shall be

computable from s in polynomial time.

It remains to be seen that if nf(s) is deducible by NJ, than it is deducible

without use of the contraction rule: This follows from the

Lemma:

If a well founded sequent s = M,u → v ⇒ w is deducible by NJ, where

v <s w does not hold, then the sequent M ⇒ w is deducible.

Proof: The formula u→ v is only needed in a deduction of s if at some stage

of the backwards construction of a deduction of s the formula v occurs as right

hand side of some sequent. This, however, is not possible since consecutive

right hand side variables is such a deduction have to obey the <s-relation.

So when considering a maximal application of the contraction rule together

with a preceding application of the N-rule. i.e. a pair of inferences leading e.g.

from a sequent M, (a → b) → c, a ⇒ b to the sequent M, (a → b) → c, (a →

b) → c ⇒ c to the sequent M, (a → b) → c ⇒ c we see that b is smaller

in the ordering associated with our sequent than c. Therefore c can not be

smaller than b and according to the lemma the formula (a → b) → c may be

dropped from our first sequent. Thus this application of the contraction rule

may be eliminated.
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Thus we see that our normal form nf(s) for an arbitrary sequent s fulfills all

our initial requirements. This shows that the complexity of theorem proving in

intuitionistic propositional logic may be drastically reduced by only considering

sequents of the elementary form we have called well founded sequents
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