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Abstract. We define a general notion of refutability for logical calculi,
similar to finite failure for logic programs, and we call a sequent calculus
K for a logic L bicomplete, iff every nonderivable sequent of L is refutable
by K. Thus for a bicomplete sequent calculus every sequent is either
derivable or refutable. Now we show that from any bicomplete calculus
for a logic L we may define a canonical semantics for L. For the semantics
obtained in this way the corresponding bicomplete calculus provides a
solution to the problem of constructing semantical counterexamples for
nonprovable formulae of L. In particular for intuitionistic logic we are
going to give three such calculi and we are thus obtaining three different
types of semantics for it. One of them is the familiar Kripkean semantics.
Thus the bicomplete calculus generating this semantics gives at the same
time a very perspicuous solution to the notorious problem of finding
Kripkean counterexamples for intuitionistically unprovable formulae.

1. Introduction

Semantical methods have been successfully applied for automated theorem prov-
ing in classical logic (cf. [7,8]) This is due to the fact that for classical logic there
is a very perspicuous relation between semantical definitions of tautologies and
some proof theoretical approaches. In fact for certain calculi such as the well
known tableau calculi we immediately obtain for any nonprovable formula a
semantical counterexample. In contrast to this the situation for intuitionistic
logic is much different. Already A. Heyting himself complained in conversation
with W. E. Beth, that there is no straightforward way to extract such seman-
tical counterexamples from failing deduction attempts (cf. [4].) In general non-
provable formulae of intuitionistic propositional logic do not even have failing
deduction attempts. Usually information regarding nonprovability of a sequent
has therefore to be extracted by a kind of metaargumentation from an unending
sequence of inference steps. (For instance by considering loops in this sequence.)
This situation also shows in the usual semantical completeness proofs for intu-
itionistic logic as may be found in monographs such as [6] – such completeness
proofs are much more complicated than similar proofs for classical logic. In the
sequel we are going to show that these problems may be solved by considering
so called bicomplete sequent calculi for intuitionistic propositional logic. By this
we mean calculi by which any sequent provable in intuitionistic logic is derivable
and moreover any sequent not provable in intuitionistic logic is refutable in a



sense to be made precise. We are going to show that failing deduction attempts
in such calculi provide a very perspicuous means for obtaining semantical coun-
terexamples for arbitrary nonprovable formulae of intuitionistic logic. Moreover
these calculi also yield a thorough analysis of the concept of a semantics itself:
To any such calculus there is a canonical semantics based on it, and the relation
between any bicomplete calculus and its semantics exactly mirrors the relation
between classical semantics and the usual tableaux calculi for classical provabil-
ity. Therefore in a sense these calculi serve to embed semantical approaches into
proof theory and thus provide a means to make semantical approaches fruitful
for automated deduction in intuitionistic logic.

2. Logical Calculi

We consider a recursive set of as yet unspecified objects. Moreover we consider
so called sequents, i.e. finite multisets of such objects. Then a premiss consists
of a sequent, the so called side sequent and a recursive (in general infinite) set
of objects, the so called parameter set . An inference consists of a designated
object, the so called principal object and a finite set of premisses. An inference

system is a recursive set of inferences where any object occurs only finitely often
as principal object of one of the inferences. An axiom system for an inference
system I is a recursive set of sequents consisting entirely of pairwise distinct so
called atomic objects, i.e. objects which do not occur as principal objects of one
of the inferences of I. Finally a sequent calculus consists of an inference system
I and an axiom system for I. Derivability of a sequent s by a sequent calculus
K is defined in the obvious way: s is derivable in 0 steps, iff s contains one of
the axioms of K as a submultiset and s is derivable in n + 1 steps, iff either s is
derivable in 0 steps or s contains an object a which is the principal object of an
inference of K with premisses p1, . . . , pk and all sequents d(I, s, p1), . . . , d(I, s, pk)
are derivable in n steps, where d(I, s, pi) results from s by replacing a with the
side sequent of pi and removing all objects of s which do not occur in the
parameter set of pi.

(Remark. Note that this definition enforces a “context free” manner of eval-
uation of a given sequent, because the possibility of applying any given inference
to a sequent s depends only on the presence of a single object in s which is then
replaced by a finite multiset of such objects; thus e.g. the well known sequent
calculus rules of the form

M,Ta, Tb

M, Ta, Ta → b

(cf. [1,2]) would not be covered by this definition. In contrast to other context
free formalisms such as evaluation of logic programs we have here, however, the
further option to remove nonprincipal objects during the evaluation process.)

The simplest example of a sequent calculus according to this definition is
the well known tableaux style calculus LK for classical propositional logic. If for
simplicity we restrict the language to the single connective →, the objects of
this calculus are signed formulas Fv or Tv, where v is a formula in the usual
sense, built up from atoms from a prespecified set by means of the connective



→. The axioms of this calculus are all sequents of the form Fv, Tv. Moreover we
have a set of one premiss-inferences by which any formula Fa → b is replaced by
the two formulas Ta and Fb and a set of two premiss-inferences by which any
formula Ta → b is replaced by Tb in the first premiss and by Fa in the second
premiss. Furthermore for all premisses we have that the parameter set is the full
set of all signed formulas. (Thus no nonprincipal formulas of a sequent are ever
removed during the evaluation process.) Usually a more convenient notation for
these inferences is chosen, vic. as logical rules of the form

(E→)
M,Tb M,Fa

M, Ta → b
resp. (I→)

M,Ta, Fb
M,Fa → b

All logical calculi defined in this way are monotonic in the following sense:

Proposition 1. If a sequent s is derivable in n steps by a calculus K and a

sequent t is obtained from s by adding to it a sequent s′, then t is derivable in n

steps, too.

Proof. If s is derivable in 0 steps, then s contains some axiom of K as a submulti-
set, hence t contains the same axiom as a submultiset and thus is also derivable
in 0 steps. If s is derivable in n + 1 steps and it is not derivable in 0 steps,
then there is an inference I of K with premisses p1, . . . , pk, having parameter
sets M1, . . . ,Mk, and the sequents d(I, s, p1), . . . , d(I, s, pk) are derivable in n

steps. Then by the induction hypothesis all sequents ti obtained from the se-
quents d(I, s, pi) by adding all objects in s′ ∩ Mi are derivable in n steps, and
thus according to the definition of derivability the sequent t is derivable in n+1
steps. ⊓⊔

While the notion of derivability of a sequent by a calculus is defined in a
canonical way, the notion of refutability admits several different definitions for
different types of calculi:

3. Strong bicompleteness

Any definition of refutability sequents with respect to a logical calculus starts
with a set of sequents which are certainly underivable by the calculus in question
and for the recursion step it makes use of a construction for obtaining new
underivable sequents from previously known such sequents. The most obvious
definition of refutability thus consists in a straightforward adaptation of the
concept of finite failure from logic programming:

Strong refutability. A sequent s is refutable in 0 steps, iff all objects of s are
atomic and moreover s does not contain an axiom of K as a submultiset and s

is refutable in n+1 steps, iff it does not contain an axiom of K as a submultiset
and either it is refutable in 0 steps or for any object a of s and any inference I

with principal object a, there is a premiss p of I such that the sequent d(I, s, p)
is refutable in n steps. (Note that the definition of a calculus requires that the



number of such inferences is finite.) We call this notion of refutability strong

refutability.

For any calculus the sets of derivable and strongly refutable sequents are
obviously disjoint. For the above calculus for classical propositional logic it holds
moreover that the union of these two sets is the full set of all sequents: This is
proved by a straightforward induction on the number of connectives of a sequent
s. We call calculi having this property strongly bicomplete. Obviously the usual
calculi for intuitionistic logic such as the familiar calculus LJ, consisting of the
same axioms as LK and the two rules

(E→)
M,Ta → b, Fa M, Ta → b, T b

M, Ta → b
and (I→)

MT , Ta, Fb
M,Fa → b

(where MT denotes M with all F -signed formulae removed) are by no means
bicomplete. In fact going backwards from a nonderivable sequent with a signed
formula Ta → b we will never arrive at a sequent without this formula.

Abstract semantics. We will show that for bicomplete calculi there is a canon-
ical way for defining a semantics for which such calculi are sound and complete:
We first define the notion of a K-frame for an arbitrary calculus K: A K-frame
is a tree whose nodes are sequents of atomic objects not containing axioms as
subsequents and whose edges are labelled with parameter sets from premisses of
K in such a way that for any node n and its (single) predecessor n′ connected by
an edge e which is labelled with M it holds that n contains at least all objects
of n′ which are contained in M .

Now we say that an atomic object a is K-valid in a frame F iff a occurs in the
root sequent of F . A nonatomic object a is K-valid in F , iff there are (necessar-
ily finitely many) inferences I1, . . . , Ik with principal object a and premisses
p1

1
, . . . , pl1

1
, . . . , p1

k, . . . , plk
k having side sequents s1

1
, . . . , sl1

1
, . . . , s1

k, . . . , slk
k

and parameter sets M1

1
, . . . ,M l1

1
, . . . , M1

k , . . . ,M lk
k and there are k successors

n1, . . . , nk of the root n of F such that for every 1 ≤ i ≤ k there is a j with
1 ≤ j ≤ li such that the edge between the root and ni is labelled with M

j
i and

in the subframe of F with root ni all objects of s
j
i are K-valid.

(Note that both the side sequents s
j
i and the parameter sets M

j
i are uniquely

determined by the object a alone; therefore this definition is of the required type,
i.e. is a relation between objects and frames.)

Now we have the following abstract completeness theorem for bicomplete
calculi:

Theorem 1. If K is a strongly bicomplete calculus and s is a nonderivable

sequent of K, then there is a K-frame in which all objects of s are valid.

Proof. We recall that the definition of refutability consists of a procedure for
constructing for any sequent a tree of sequents witnessing its refutability. Since
the calculus K we consider is bicomplete and our sequent s is nonderivable by K,
this procedure terminates and gives us a tree T of sequents with root s and leaves



consisting of sequents which contain only atomic objects and do not contain an
axiom of K as a submultiset. Now we label all edges between any node n of T and
its predecessor n′, where n was obtained from n′ by making use of some premiss
p of a K-inference, with the parameter set M of p. Then from the resulting tree
we remove all nonatomic objects and we call the new tree T ′. It is obvious that
T ′ is a K-frame. Moreover we will show that all objects of all sequents of T are
valid in the corresponding subframes of T ′: The leaves of T are the same as those
of T ′. So all of their objects are valid in the subframes of T ′ consisting only of
the corresponding leaves. For a node n of T corresponding to a node t of T ′

with successors n1, . . . , nk corresponding to nodes t1, . . . , tk of T ′ we consider an
arbitrary object a of n: If a is atomic, then it is contained in t and therefore is
valid in the subframe of T ′ with root t. If a is a nonatomic object, then according
to the definition of strong refutability for any inference I with principal object
a there is a premiss p of I such that the sequent d(I, n, p) is among the ni.
Thus by the induction hypothesis all objects of any sequent d(I, n, p) are valid
in the subframe of T ′ whose root is ti. In particular all objects belonging to the
side sequents of p are valid in this subframe. Moreover, as required, the edge
connecting t and ti by definition is labelled by the parameter set of p. ⊓⊔

For the above example of classical propositional logic (obviously not a par-
ticularly interesting example, but suitable for explaining the procedure we are
going to use in more interesting cases) a frame would thus consist of a tree of
sequents such that each of these sequents consists entirely of signed proposi-
tional variables and none of them contains a propositional variable both F - and
T -signed. Moreover this tree would be monotonic in the sense that all variables
occurring F - resp. T -signed in a given sequent would occur with the same sign
in any successor of this sequent. Validity of a nonatomic signed formula Fa → b

in a frame F would then be declared as validity of both Ta and Fb in some sub-
frame of F having as its root some successor of the root of F . A signed formula
Ta → b on the other hand would be declared valid in F if Fa or Tb were valid
in some such subframe of F . (This definition of classical validity is obviously too
complicated, but it will be shown below, how the well known Boolean notion of
validity may be derived from it.)

The calculus LS. To obtain a similar strongly bicomplete calculus for intu-
itionistic logic we start from the well known so called contraction free calculi
(c. [1,2]). These calculi themselves, however, are not subsumed under the above
definition of a logical calculus, because they usually have a rule which isn’t con-
text free in the sense of the above remark. Therefore we have to use a slightly
modified variant LS of these calculi: The sequents we consider are again built
up from signed propositional variables and signed implications. The axioms are
the same as those of classical propositional logic, and the inferences are given
by the three rules:

(E→)
MT , Fa M, Tb

M, Ta → b
(I→)

M,Ta, Fb
M,Fa → b



(E→→)
MT , Ta, Ta → b, Fc M, Tb

M, T (a → b) → c

We have to show

Theorem 2. The calculus LS is complete for intuitionistic propositional logic.

Proof. Consider one of the previously mentioned contraction free calculi LS′: It
consists of the usual axioms and the three rules

(E→)
M,Ta, Tb

M, Ta, Ta → b
(E→→)

MT , Ta, Ta → b, Fc M, Tb
M, T (a → b) → c

(I→)
M,Ta, Fb
M,Fa → b

Completeness of LS′ has been proved in [1]. To show completeness of LS we have
just to prove admissibility of the rule E→ of LS′ for LS: Any sequent MT , Ta, Fa

is derivable by LS in 0 steps. Thus if a sequent M,Ta, Tb is derivable by LS,
then from these two sequents by an application of the rule E→ of LS we arrive
at the required sequent M,Ta, Ta → b. ⊓⊔

Now we are able to prove

Theorem 3. The calculus LS is bicomplete.

Proof. By the previous theorem we just need to show that any nonderivable
sequent s is refutable by LS: this is done by induction on the measure κ(s)
defined as follows:

κ(a) = 2 , iff a is a propositional variable,
κ(a) = 1 + κ(b) · κ(c) , iff a is b → c,
κ(v) = κ(a) , iff v is Fa or Ta and
κ(s) = κ(a1) + · · · + κ(an) , iff s is the sequent a1, . . . , an.

For any premiss p of any LS-inference I it holds that κ(s) > κ(d(I, s, p)). So
consider the finitely many inferences I1, . . . , Ik which have principal objects oc-
curring in s. Since s is not derivable, there is for every such inference Ij a premiss
pj such that d(I, s, p) is not derivable by LS. Since these sequents have smaller
κ-measure, they are refutable by the induction hypothesis, thus by the definition
of refutability s is refutable, too. ⊓⊔

The semantics for LS. The semantics that results from the calculus LS is
based on frames whose edges are labelled either with the full set of all signed
formulas or with the set of all T -signed formulas. (We call a successor n of a
node n′ of such a frame a 1-successor iff the edge between n and n′ is labelled
with the set of T -signed formulas and we call it a 0-successor iff this edge is
labelled with the set of all formulas. Moreover we call a subframe F ′ of a frame
F with root r a 0-subframe, iff the root r′ of F ′ is a 0-successor of r, and we call
it a 1-subframe, iff r′ is a 1-successor of r.) Thus these frames are T -monotone
in the sense that any T -signed propositional variable which occurs on a given
node also occurs with sign T on all successors of this node.



Validity of a signed formula Fa → b in a frame with root n is then declared as
validity of both Ta and Fb in some 0-subframe of F . Validity of a signed formula
Ta → b, where a is a propositional variable, is declared as either validity of Fa in
some 1-subframe of F or validity of Tb in some 0-subframe of F . Finally validity
of T (a → b) → c is declared as either validity of Ta and Tb → c and Fb in some
1-subframe of F or validity of Tc in some 0-subframe of F .

Although for this semantics validity of any signed formula with respect to any
frame may be determined, this definition is not an homomorphic definition over
the construction of formulae of our language. This obviously means that it does
not provide a semantical definition of the meaning of propositional connectives
in the usual sense.

Therefore we will now establish two other semantics based on a new notion
of refutability.

4. Weak bicompleteness

The defintion of refutability need not start from sequents s to which no inference
is applicable. It suffices that for any possible inference I one of the sequents
d(I, s, p) is contained in s. Then derivability of s in n+1 would imply derivability
of d(I, s, p) in n steps and therefore by proposition 1 the sequent s itself would
be derivable in n steps, leading to a contradiction. Moreover in the recursion
step of the definition of refutability of a sequent s we may also restrict ourselves
to inferences I for which no sequent d(I, s, p) is contained in s. Thus we obtain
the following notion of weak refutability for a logical calculus K:

Weak refutability. Let us call an inference I redundant for a sequent s, iff
there is a premiss p of I such that the sequent d(I, s, p) is a submultiset of s.
Then a sequent s is weakly refutable in 0 steps, iff all inferences with principal
formulas from s are redundant for s and moreover s does not contain an axiom
of K as a submultiset. The sequent s is refutable in n + 1 steps, iff s does not
contain an axiom of K as a submultiset and either it is refutable in 0 steps or for
any nonredundant inference I with principal formula from s one of the sequents
d(I, s, p) is refutable in n steps.

All calculi K we encounter here admit the so called contraction rule: If a

sequent M,a, a is derivable by K in n steps, then the sequent M,a is derivable

in n steps, too. For such calculi the definition of redundance may be weakened
somewhat: An inference I is then called redundant for a sequent s, iff after re-
moving multiple occurrences of objects from some sequent d(I, s, p) this sequent
becomes a submultiset of s. The definition of refutability for such calculi may
then be based on this weakened notion of redundance and otherwise be kept the
same.

The calculus LT. Again we call a calculus for which any sequent is either deriv-
able or weakly refutable a weakly bicomplete calculus. Then theorem 1 readily
extends to the case of weakly bicomplete calculi. But again the usual calculi for
intuitionistic propositional are not even weakly bicomplete. For instance in the



calculus LJ the sequent T (c → a) → a, T (a → b) → a, Fa is neither derivable
nor refutable. In fact the construction of an LJ-refutation for this sequent does
not terminate, but yields an infinite tree which starts as follows:

...
M,Tc, Fa M, Tc, Ta, Fb

M, Tc, Fa, Fc → a, Fa → b
M, Tc, Fa, Fc → a

M, Tc, Fa M, Ta, Fb
M,Fa, Fc → a, Fa → b

M,Fa, Fc → a
M,Fa

(where M consists of the two formulas T (c → a) → a and T (a → b) → a.)
Here the branches ending in M,Ta, Fb and M,Tc, Ta, Fb are finite because the
right premisses of both possible E→-inferences equal the conclusion; the leftmost
branch, however, contains infinitely many copies of the sequent M,Tc, Fa. This
shows that it is in general impossible to read off a semantical counterexample
from a failing LJ-deduction. Thus the calculus LJ is not a solution to the problem
of Heyting’s mentioned above. There is, however, a surprisingly simple variant
LT of LJ which turns out to be bicomplete: LT differs from LJ by adding to the
rule I→ a second premiss obtained from the first one by omitting the superscript
T , i.e. LT is the calculus consisting of the usual axioms and the two rules

(E→)
M,Ta → b, Fa M, Ta → b, T b

M, Ta → b
(I→)

M,Ta, Fb MT , Ta, Fb
M,Fa → b

We easily show:

Proposition 2 The calculi LJ and LT are equivalent.

Proof. The new two-premiss I→-rule is a fortiori admissible for the calculus LJ;
on the other hand if a sequent MT , Ta, Fb is derivable by the new calculus LT,
then by proposition 1 the sequent M,Ta, Fb is also derivable. Thus the one-
premiss I→-rule is admissible for LT and the two calculi are equivalent. ⊓⊔

Now we have to show:

Theorem 4. LT is weakly bicomplete.

Proof. We need three lemmas:

Lemma 1 If a sequent M,Tb is refutable, then so is the sequent M,Ta → b.

Proof. If the E→-inference with principal formula Ta → b is an irredundant
inference for the sequent M,Ta → b, then this inference is the only such inference
which is not necessarily irredundant for the sequent M,Tb. Therefore refutability
of this latter sequent implies refutability of M,Ta → b. ⊓⊔



Lemma 2 If a sequent M,Ta, Fb is refutable, then so is the sequent M,Ta, Fb,

Fa → b.

Proof. The I→-inference with principal formula Fa → b is a redundant infer-
ence for M,Ta, Fb, Fa → b because of the left premiss; therefore refutability of
M,Ta, Fb implies refutability of M,Ta, Fb, Fa → b. ⊓⊔

Lemma 3 If a sequent M,Ta, Tb → c is refutable, then so is the sequent

M,Ta, T (a → b) → c.

Proof. If the E→-inference with principal formula Tb → c is a redundant infer-
ence for our sequent M,Ta, Tb → c, then we have to consider two cases: Either M

contains Tc and thus the E→-inference with principal formula T (a → b) → c is a
redundant inference for the sequent M,Ta, T (a → b) → c and refutability of the
former sequent implies refutability of the latter sequent. Or M contains Fb and
thus according to lemma 2 the sequent M,Ta, Tb → c, Fa → b is refutable if the
given sequent is refutable and moreover the sequent M,Ta, T (a → b) → c, Fa →

b is also refutable, if the given sequent is refutable, because the only inference for
M,Ta, Tb → c, Fa → b, which is not an inference for M,Ta, Tb → c, Fa → b, is
the redundant inference with principal formula T (a → b) → c. Now the sequent
M,Ta, T (a → b) → c, Fa → b belongs to the left premiss of the only inference
which may be irredundant for our sequent M,Ta, (a → b) → c without being
irredundant for the given sequent M,Ta, Tb → c. Consequently refutability of
M,Ta, Tb → c implies refutability of M,Ta, T (a → b) → c, Fa → b and these
two together imply refutability of M,Ta, (a → b) → c.

If the E→-inference with principal formula Tb → c is an irredundant inference
for our sequent M,Ta, Tb → c and this sequent is refutable in n + 1 steps, then
there are again two cases: Either the sequent M,Ta, Tb → c, Fb is refutable in
n steps, then by the induction hypothesis the sequent M,Ta, T (a → b) → c, Fb

is refutable and by lemma 2 the sequent M,Ta, T (a → b) → c, Fb, Fa → b is
also refutable. Now the only irredundant inference for the sequent M,Ta, T (a →

b) → c, Fa → b which is not an irredundant inference for M,Ta, Tb → c, Fb is
the I →-inference with principal formula Fa → b. Therefore refutability of the
sequent M,Ta, T (a → b) → c, Fb, Fa → b implies refutability of M,Ta, T (a →

b) → c, Fa → b and since the E→-inference with principal formula T (a →

b) → c is the only irredundant inference for the sequent M,Ta, T (a → b) → c

which is not an irredundant inference of M,Ta, T (a → b) → c, Fa → b, the
sequent M,Ta, T (a → b) → c is also refutable. In the second case the sequent
M,Ta, Tb → c, T c is refutable in n steps and thus by the induction hypothesis
the sequent M,Ta, T (a → b) → c, T c is refutable. Then the E→-inference with
principal formula T (a → b) → c is the only irredundant inference for the sequent
M,Ta, T (a → b) → c which is not an irredundant inference for M,Ta, T (a →

b) → c, T c and therefore refutability of this latter sequent implies refutability of
M,Ta, T (a → b) → c. ⊓⊔

To complete the proof of theorem 4 we consider the following calculus CRIP
due to Dyckhoff and Pinto (cf. [1]) and we show that any sequent s deducible



by CRIP is refutable by LT — since all nonderivable sequents of intuitionistic
propositional logic are deducible by CRIP, this proves the theorem: The calculus
CRIP has axioms of the form Tp1 → b1, . . . , Tpn → bn,M , where all pi are
propositional variables, M does not contain a complementary pair of signed
propositional variables and none of the Tpi occurs in M and rules

(1)
M,Tp, Tb

M, Tp, Tp → b
(2)

M,Tb
M, T (c → d) → b

(3)
M1,P (b1,c1,d1) . . . Mm,P (bm,cm,dm) M,Te1,Ff1 . . . M,Ten,Ffn

M,Fe1 → f1, . . . , F en → fn

where p in rule (1) is a propositional variable and where in rule (3) M is of
the form T (c1 → d1) → b1, . . . , T (cm → dm) → bm,M ′, Mi is M with T (ci →

di) → bi deleted, P (b, c, d) is Tc, Td → b, Fd and all formulas of M ′ are either
propositional variables or formulas of the form Tp → b, where p is a propositional
variable not occurring in M ′ and moreover M ′ does not contain a complementary
pair of signed propositional variables.

If our sequent s is an axiom of CRIP of the form Tp1 → b1, . . . , Tpn →

bn,M , where M consists entirely of atomic formulas, then Tp1 → b1, . . . , Tpn →

bn,M, Fp1, . . . , Fpn is refutable in 0 steps and thus the sequent s is refutable
in n steps. If s is the conclusion of an application of rule (1) or (2), then by
the induction hypothesis the premiss of this application is refutable, and thus
by lemma 1 the sequent s itself is refutable. Finally if s is the conclusion of an
application of rule (3), then by the induction hypothesis all sequents Tci, Tdi →

bi,Mi, Fdi and all sequents M ′, T ej , Ffj are refutable, where p1, . . . , pt are all
propositional variables for which M contains a formula Tpk → g. Then by lemma
3 the sequents Tci, T (ci → di) → bi,Mi, Fdi are refutable. Now the sequent
M ′, F c1 → d1, . . . , F cm → dm, F e1 → f1, . . . , F en → fn, Fp1, . . . , Fpt does
not contain an axiom of LT as a submultiset and moreover the inferences with
principal formulas ci → di or ej → fj are the only irredundant inferences for
this sequent. Therefore refutability of all sequents Tci, Tdi → bi,Mi, Fdi and all
sequents M ′, T ej , Ffj implies refutability of this latter sequent. ⊓⊔

The semantics of LT. The semantics resulting from the calculus LT is based
on the same type of frames as the semantics for LS. The present semantics,
however, admits an homomorphic interpretation for the connective →:

A signed formula Ta → b is declared valid by this semantics in a frame F ,
iff either the formulae Ta → b and Fa are valid in a 0-subframe of F or the
formulae Ta → b and Tb are valid in a 0-subframe of F .

A signed formula Fa → b is declared valid in F , iff the formulae Ta and Fb

are valid in a 0-subframe or a 1-subframe of F .

The calculus LU. The calculi LS and LT do certainly not exhaust the possi-
bilities for bicomplete calculi for intuitionistic propositional logic. In fact there
are other such calculi giving rise to new types of semantics. We mention just one



other bicomplete calculus LU giving a new homomorphic semantics: Besides the
usual axioms it has two rules

(E→)
MT , Ta → b, Fa M, Ta → b, Fa M, Ta → b, T b

M, Ta → b
(I→)

M,Ta, Fb
M,Fa → b

We omit the proof of bicompleteness for this calculus. We do, however, give the
semantics entailed by this calculus: It is based on the usual frames for intuition-
istic propositional logic defined before. Then a signed formula Ta → b is valid in
a frame F iff either Ta → b and Fa are valid in a 1-subframe of F or Ta → b and
Fa are valid in a 0-subframe of F or Ta → b and Tb are valid in a 0-subframe
of F .

A signed formula Fa → b is valid in F iff both Ta and Fb are valid in a
0-subframe of F .

5. Collapsing 0-successors

The various semantics obtained so far do not yet closely resemble the well known
Boolean or Kripkean semantics. This is due to the presence of 0-successor nodes
in our frames. In usual semantics such 0-successors are identified with their
predecessors. In our present setting we can obtain such a collapsing as follows:
We first define the notion of addition of an object a to a frame F : an object a

is added to a frame F with root r, iff it is added to r and it is added to any
subframe of F whose root r′ is a successor of r and for which a is contained in
the parameter set labelling the edge between r and r′. Obviously, if during this
process there aren’t created any axioms from the sequents of F , then the resulting
structure is again a frame as defined above. Moreover any object b which is valid
in F is still valid in the frame obtained from F by adding a. Collapsing of a
0-successor node n now works as follows: Let n′ be the predecessor of n in F .
Then first the objects occurring in n which do not occur in n′ are added to the
frame with root n′. Since the edge between n and n′ is labelled with the set of all
objects, this implies that n and n′ now contain the same objects. Now the node
n is removed from the frame and the edges emanating from n are redirected to
n′. Then in the definitions of our semantics we just have to replace all references
to 0-subframes of our frame F by references to F itself.

Simplified semantics. By this procedure for our first example of classical
propositional logic all nodes are collapsed and we obtain the following clauses
for the semantics of complex signed formulae: Fa → b is valid in F iff both Ta

and Fb are valid in F and Ta → b is valid in F iff Fa or Tb is valid in F . Thus
obviously the reference to the frame F may be dropped and we obtain the usual
Boolean semantics for classical logic.

For the calculus LS we obtain the definition: A formula Fa → b is valid in a
frame with root n iff both Ta and Fb are valid in F . A formula Ta → b, where
a is a propositional variable is valid in F iff Fa is valid in some 1-subframe of
F or Tb is valid in F . Finally a formula T (a → b) → c is valid in F iff either Ta

and Tb → c and Fb are valid in some 1-subframe of F or Tc is valid in F .



For the calculus LT we obtain the following semantics: A formula Ta → b is
valid in a frame F , iff either the formulae Ta → b and Fa are valid in F or the
formulae Ta → b and Tb are valid in F . A signed formula Fa → b is declared
valid in F , iff the formulae Ta and Fb are valid in F or a 1-subframe of F . Thus
from the calculus LT we obtain the usual Kripkean semantics for intuitionistic
propositional logic. E. g. for the previously considered sequent T (c → a) →

a, T (a → b) → a, Fa this gives us the following Kripkean counterexample (among
infinitely many others): c, a c, a

∖ /

c c, a
∖ /

c a
∖ /

∅

Finally for the calculus LU we obtain the semantics defined by the following
clauses: A formula Ta → b is valid in a frame F iff either Ta → b and Fa are
valid in a 1-subframe of F or Ta → b and Fa are valid in F or Ta → b and
Tb are valid in F . Thus we obtain a new alternative homomorphic semantics for
intuitionistic propositional logic.

References

1. Dyckhoff, R.: Contraction free sequent calculi for intuitionistic logic. In: Journal of

Symbolic Logic 57(1992, pp. 795–807
2. Hudelmaier, J.: An n log n-SPACE decision procedure for intuitionistic propositional

logic. In:Journal of Logic and Computatation 3 (1993) 63–75
3. Kripke, S.: Semantical analysis of intuitionistic logic. I. In: Crossley, J.N & M.A.E.

Dummett (eds.): Formal systems and recursive functions, North Holland 1965,
pp.92–130

4. Miglioli, P. & Moscato, U. & Ornaghi, M.: Avoiding duplications in tableau systems
for intuitionistic logic and Kuroda logic. In: Logic Journal of the IGPL, 5(1997),
pp. 145–168

5. Pinto, L. & Dyckhoff,R.: Loop-free construction of counter-models for intuitionistic
propositional logic. In: Behara & Fritsch & Lintz (eds.): Symposia Gaussiana, Conf.

A, de Gruyter 1995, pp. 225–232
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