
A Note on Kripkean Countermodels for
Intuitionistically Unprovable Sequents

Jörg Hudelmaier

WSI, University of Tübingen

Abstract. We present a slight modification to an ordinary multi-
succedent sequent calculus for intutionistic propositional logic which al-
lows straightforward extraction of Kripkean countermodels from failing
derivation constructions.

For classical propositional logic there exists an immediate relation between fail-
ing sequent calculus derivations for a given propositional sequent and Boolean
counterexamples for this sequent: any completed branch constructed during an
attempt to derive a sequent which does not end in an axiom may be directly read
as a countermodel for this sequent. For intuitionistic logic the situation is more
complicated. First of all sequent calculi for intuitionistic logic have to contain
noninvertible rules. Therefore nonderivability of a given sequent is not witnessed
by a single non closed branch but by a tree of sequents all of whose branches
are non closed. Considering for instance a well known multisuccedent calculus
LJ for intuitionistic propositional logic with axioms M,a ⇒ a,N and rules

(E∧)
M,a, b, a ∧ b ⇒ N

M,a ∧ b ⇒ N
M ⇒ a, a ∧ b,N M ⇒ b, a ∧ b,N

M ⇒ a ∧ b,N
(I∧)

(E∨)
M,a, a ∨ b ⇒ N M, b, a ∨ b ⇒ N

M,a ∨ b ⇒ N
M ⇒ a, b, a ∨ b,N

M ⇒ a ∨ b,N
(I∨)

(E→)
M,a → b ⇒ a,N M, b, a → b ⇒ N

M,a → b ⇒ N
M,a ⇒ b

M ⇒ a → b,N
(I→)

(cf. [3]) nonderivability of the sequent ⇒ a → b, b → a is witnessed by the tree
of sequents

a ⇒ b b ⇒ a

⇒ a → b, b → a

indicating the fact that both possible choices of the principal formula lead to
nonclosed completed branches.

Moreover the trees witnessing nonderivability of a sequent do not in general
correspond to Kripkean counterexamples for this sequent (cf. [1]) in a straight-
forward manner. For instance the sequent (c → a) → a, (a → b) → a ⇒ a has
an (infinite) tree witnessing its nonderivability which starts as follows:



...
M, c ⇒ a M, c, a ⇒ b

M, c ⇒ a, c → a, a → b
M, c ⇒ a, c → a

M, c ⇒ a M, a ⇒ b
M ⇒ a, c → a, a → b

M ⇒ a, c → a
M ⇒ a

(where M consists of the two formulas (c → a) → a and (a → b) → a.) Here the
branches ending in M,a ⇒ b and M, c, a ⇒ b are finite because the right pre-
misses of both possible E→-inferences equal the conclusion; the leftmost branch,
however, contains infinitely many copies of the sequent M, c ⇒ a. So if we con-
sider a straightforward Kripkean model of the form

c c, a
∖ /

c a
∖ /

∅

obtained from this sequent tree, then the formula (a → b) → a is false in every
world on the leftmost branch and thus the sequent (c → a) → a, (a → b) → a ⇒

a is evaluated to true in the bottom world.

Now we consider a slight modification LS of the calculus LJ. LS has the same
rules as LJ except for I→: the I→-rule of LS is a two-premiss rule of the form

M,a ⇒ b,N M, a ⇒ b

M ⇒ a → b,N

The new two-premiss I→-rule is obviously admissible for the calculus LJ; on
the other hand if the new calculus LS derives a sequent M,a ⇒ b, then it also
derives M,a ⇒ b,N , thus the one-premiss I→ is admissible for LS and the two
calculi are equivalent.

For LS we shall show that sequent trees witnessing nonderivability of a given
sequent may be directly read as Kripkean counterexamples for this sequent.
Considering e.g. the previous example we have the following failing deduction
tree:



M, c, c, a ⇒ b
(∗) M, c, c ⇒ a, a, a → b M, c, a ⇒ b

M, c ⇒ a, c → a, a → b
M, c ⇒ a, c → a

M, c ⇒ a M, a ⇒ b
M ⇒ a, c → a, a → b

M ⇒ a, c → a
M ⇒ a

(Here the sequent marked with an asterisk has been obtained as the left premiss
of an application of our new I→-rule.)

Now this tree immediately yields the following obvious counterexample for
our sequent:

c, a c, a
∖ /

c c, a
∖ /

c a
∖ /

∅

(Note that this countermodel is a more elaborate form of the well known counter-
model for the so called Peircean formula ((a → b) → a) → a; the countermodel
constructed in this way is, therefore, in general not minimal.)

In order to show that model extraction based on our calculus LS succeeds for
all nonderivable sequents, we start by defining the notion of a refutable sequent:

Definition. A sequent s is refutable, iff
a) s is not an axiom of LS and moreover

i) for all formulas a∧ b occurring on the left hand side of s and all formulas a∨ b

occurring on the right hand side of s both formulas a and b occur on the left
hand side resp. right hand side and
ii) for all formulas a ∧ b occurring on the right hand side of s and all formulas
a ∨ b occurring on the left hand side of s either the formula a or the formula b

occurs on the right hand side resp. left hand side and
iii) for all formulas a → b occurring on the left hand side of s either the formula
a occurs on the right hand side of s or the formula b occurs on the left hand side
of s and
iv) for all formulas a → b occurring on the right hand side of s the formula a

occurs on the left hand side and the formula b occurs on the right hand side of
s or



b) s is not an axiom of LS and moreover

i) condition i) of part a) does not hold and the sequent obtained from s by
adding the subformulas a and b of the offending formula a ∧ b resp. a ∨ b to the
left hand side resp. right hand side of s is refutable or

ii) condition ii) of part a) does not hold and one of the sequents obtained from
s by adding either the subformula a or the subformula b of the offending formula
a ∧ b resp. a ∨ b to the right hand side resp. left hand side of s is refutable or

iii) condition iii) of part a) does not hold and one of the sequents obtained from
s by adding either the subformula a of the offending formula a → b to the right
hand side of s or the subformula b of a → b to its left hand side is refutable or

iv) condition iv) of part a) does not hold and the sequent obtained from s by
adding the subformula a of the offending formula a → b to the left hand side of
s and the subformula b to its right hand side is refutable or

c) none of the previous conditions holds and s is not an axiom of LS and
a1 → b1, . . . , an → bn are all implications on the right hand side of s for which
either ai is not on the left hand side of s or bi is not on its right hand side and
all n sequents obtained from s by adding ai to its left hand side and replacing
its right hand side by bi are refutable.

Using this definition we may associate with any refutable sequent s its refu-
tation tree as follows:

Definition. a) If s is refutable according to condition a), then the refutation
tree of s consists of s alone,

b) if refutability of s is established from refutability of a sequent s′ by one
of the conditions b), then the refutation tree of s is the same as the refutation
tree of s′,

c) if refutability of s is established from refutability of the sequents s1, . . . , sn

according to condition c), then the refutation tree of s consists of the n refutation
trees for the si made into a new tree by adding s as the new root.

We show that the refutable sequents are exactly the sequents not derivable
by LS:

Proposition 1. No refutable sequent is derivable.

Proof. If a sequent s is refutable according to condition a), then it is not an axiom
and for all possible LS-inferences leading to s one of the premisses is contained
in s; thus s is not derivable by LS.

If refutability of s is established according to condition b) from refutability
of another sequent s′, then s′ is not derivable by the induction hypothesis and
since s is contained in s′, the sequent s is not derivable either.

If refutability of s is established according to condition c) from refutabil-
ity of all sequents s1, . . . , sn, then the inferences with principal formulas a1 →

b1, . . . , an → bn are the only inferences leading to s for which none of the pre-



misses is contained in s. Therefore nonderivability of the sequents s1, . . . , sn

according to the induction hypothesis implies nonderivability of s. ⊓⊔

The converse inclusion is proved by considering the following calculus CRIP
due to Dyckhoff and Pinto [2] which consists of axioms of the form p1 →

b1, . . . , pn → bn,M ⇒ N , where all pi are propositional variables, M and N

are disjoint sets of propositional variables and none of the pi occurs in M and
rules

M,a, b ⇒ N
M,a ∧ b ⇒ N

(1)
M ⇒ a,N

M ⇒ a ∧ b,N
(2)

M ⇒ b,N
M ⇒ a ∧ b,N

(3)
M,a ⇒ N

M,a ∨ b ⇒ N
(4)

M, b ⇒ N
M,a ∨ b ⇒ N

(5)
M ⇒ a, b,N

M ⇒ a ∨ b,N
(6)

M,p, b ⇒ N
M, p, p → b ⇒ N

(7)

M, b ⇒ N
M, (c → d) → b ⇒ N

(8)
M, c → d, d → b ⇒ N
M, (c ∨ d) → b ⇒ N

(9)
M, c → (d → b) ⇒ N
M, (c ∧ d) → b ⇒ N

(10)

M1,c1, d1→b1⇒d1 . . . Mm,cm,dm→bm⇒dm M, e1⇒f1 . . . M, en⇒fn

M ⇒ e1 → f1, . . . , en → fn, N

where p in rule (7) is a propositional variable and where in the last rule, i.e. rule
(11) M is of the form (c1 → d1) → b1, . . . , (cm → dm) → bm,M ′, Mi is M with
(ci → di) → bi deleted, all formulas of M ′ are either propositional variables or
formulas of the form p → b, where p is a propositional variable not occurring in
M ′ and N is a set of propositional variables disjoint from M ′.

The derivable sequents of the calculus CRIP are exactly the nonderivable
sequents of LJ, hence the same as the nonderivable sequents of LS. Thus in
order to show that all nonderivable sequents of LS are refutable we have to show

Proposition. All sequents derivable by CRIP are refutable.

Proof. If a sequent s is an axiom of CRIP of the form p1 → b1, . . . , pn →

bn,M ⇒ N , where M consists of atomic formulas, then p1 → b1, . . . , pn →

bn,M ⇒ N, p1, . . . , pn is refutable and the sequent s results from this sequent
by at most n applications of condition b)iii).

For the cases corresponding to applications of the rules (1) to (8) we use the
following

Lemma 1. a) If a sequent M,a, b ⇒ N is refutable, then so is the sequent
M,a, b, a ∧ b ⇒ N .

b) If a sequent M,a ⇒ N or a sequent M, b ⇒ N is refutable, then so is the
sequent M,a, a ∨ b ⇒ N resp. M, b, a ∨ b ⇒ N .

c) If a sequent M ⇒ a, b,N is refutable, then so is the sequent M ⇒ a, b, a∨

b,N .
d) If a sequent M ⇒ a,N or a sequent M ⇒ b,N is refutable, then so is the

sequent M ⇒ a, a ∧ bN resp. M ⇒ b, a ∧ b.



e) If a sequent M, b ⇒ N is refutable, then so is the sequent M, b, a → b ⇒ N .
f) If a sequent M,a ⇒ b,N is refutable, then so is the sequent M,a ⇒ b, a →

b,N .

Proof. All claims are proved by straightforward inductions on the definition
of refutability. In all cases the only relevant clauses are conditions a): If the
original sequents satisfied condition a), then the transformed sequents satisfy
a), too. Conditions b) and c) may be directly reduced to the relevant induction
hypotheses. ⊓⊔

Now if a premiss of one of the rules (1) to (6) is refutable, then the sequent
obtained from it by introducing the corresponding principal formula is refutable,
too and an application of condition b)i) or b)ii) shows that the conclusion is
refutable, too.

If, however, a premiss of a rule (7) or (8) is refutable, then the principal
formula p → b resp. (c → d) → b may be introduced and an application of
condition b)iii) yields the refutability of the conclusion.

The cases corresponding to applications of the rules (9) and (10) are covered
by parts a) and b) of the following

Lemma 2. a) If a sequent M, c → b, d → b ⇒ N is refutable, then so is the
sequent M, (c ∨ d) → b ⇒ N .

b) If a sequent M, c → (d → b) ⇒ N is refutable, then so is the sequent
M, (c ∧ d) → b ⇒ N .

c) If a sequent M, c, d → b is refutable, then so is the sequent M, (c → d) → b.

Proof. a) If M, c → b, d → b ⇒ N is refutable according to condition a) and M

contains b, then M, (c∨d) → b ⇒ N is refutable according to the same condition.
If, however, N contains both c and d, then M, c → b, d → b ⇒ c∨d,N is refutable
according to a) and so is M, (c∨ d) → b ⇒ c∨ d,N , but from the latter sequent
the required sequent M, (c ∨ d) → b ⇒ N results by an application of condition
b)iii).

For the induction step we use the obvious

Lemma 3. If a sequent M,a → b ⇒ N is refutable and the sequent M,a →

b, b ⇒ N is not refutable, then the sequent M,a → b ⇒ a,N is refutable. More-
over the refutation of the latter sequent is not longer than the refutation of the
former one.

Thus if M, c → b, d → b ⇒ N is refutable according to condition b), and
M, c → b, d → b, b ⇒ N is not refutable, then M, c → b, d → b ⇒ c, d,N is
refutable and the induction hypothesis is applicable to this sequent, resulting in
a refutable sequent M, (c ∨ d) → b ⇒ c, d,N . From this sequent we obtain the
refutable sequent M, (c ∨ d) → b ⇒ c, d, c ∨ d,N by an application of lemma 1
and from this sequent we obtain the required sequent M, (c ∨ d) → b ⇒ N by
applications of b)ii) and b)iii). If, however M, c → b, d → b, b ⇒ N is refutable,



then by the induction hypothesis the sequent M, (c∨ d) → b, b ⇒ N is refutable
and thus the required sequent M, (c∨d) → b, b ⇒ N is refutable by an application
of b)ii).

If refutability of the sequent M, c → b, d → b ⇒ N results by an appli-
cation of condition c), then either M contains the formula b or N contains
both formulas c and d. In the former case the induction hypothesis applies to
all refutable sequents M, c → b, d → b, ai ⇒ bi resulting in refutable sequents
M, (c ∨ d) → b, ai ⇒ bi and from these sequents we obtain the required sequent
by an application of condition c). In the latter case the formulas c and d disap-
pear from the refutable sequents M, c → b, d → b ⇒ ai and applying condition
c) again to the transformed sequents M, (c ∨ d) → b, ai ⇒ bi we may introduce
besides N also the formula c∨d. From the resulting sequent we may then obtain
the required sequent M, (c ∨ d) → b ⇒ N by an application of b)iii).

b) If M, c → (d → b) ⇒ N is refutable by condition a) and N contains c, then
M, c → (d → b) ⇒ c∧ d,N is refutable and therefore both M, (c∧ d) → b ⇒ c∧

d,N and M, (c∧d) → b ⇒ N are refutable. If, however, M contains d → b, then
either N contains d or M contains b. The former case is symmetric to the case
just mentioned, while in the latter case the required sequent M, (c∧d) → b ⇒ N

is itself refutable by condition a).

If M, c → (d → b) ⇒ N is refutable by condition b), then either M, c →

(d → b), d → b ⇒ N or M, c → (d → b) ⇒ c,N is refutable. In the latter
case refutations of M, (c ∧ d) → b ⇒ c,N and M, (c ∧ d) → b ⇒ c, c ∧ d,N and
M, (c∧d) → b ⇒ c∧d,N and M, (c∧d) → b ⇒ N result from applications of the
induction hypothesis, lemma 1, condition b)ii) and condition b)iii) respectively.
In the former case either M, c → (d → b), d → b, b ⇒ N is refutable and
therefore M, (c∧ d) → b), d → b, b ⇒ N is refutable by the induction hypothesis
and M, (c∧d) → b) ⇒ N is refutable by condition b)iii) or M, c → (d → b), d →

b ⇒ d,N is refutable. Then from the sequent M, c → (d → b) ⇒ d,N as before by
applications of the induction hypothesis, lemma 1, condition b)ii) and condition
b)iii) we obtain the required sequent M, (c∧d) → b ⇒ N . Finally if our sequent
results from an application of condition c), then we may apply the induction
hypothesis to a sequent M, c → (d → b), b, ai ⇒ bi resp. one of the sequents
M, c → (d → b), ai ⇒ bi. In the former case the sequent M, (c ∧ d) → b) ⇒ N

results by the same application of condition c). In the latter case the formula
c∧d may be added to the formulas of N and the formula c resp. d in the sequent
obtained by applying condition c). This sequent, then, is the required sequent
M, (c ∧ d) → b) ⇒ N .

c) If M, c, d → b ⇒ N is refutable by condition a), then either M contains
b and M, c, (c → d) → b ⇒ N is refutable by condition a) or N contains d and
M, c, d → b ⇒ c → d,N and M, c, (c → d) → b ⇒ c → d,N are refutable by
condition a) and from the latter sequent the required sequent M, c, (c → d) →

b ⇒ N results by an application of b)iii).

If M, c, d → b ⇒ N results by an application of condition b)iii) from a
refutable sequent M, c, d → b ⇒ d,N , then we may apply the induction hy-
pothesis to this sequent and according to lemma 1 we may add the formula



c → d to the right hand side of the resulting sequent obtaining the sequent
M, c, (c → d) → b ⇒ d, c → d,N and from this sequent by an application of
condition b)iv) and an application of condition b)iii) we arrive at the required
sequent M, c, (c → d) → b ⇒ N .

If M, c, d → b ⇒ N results by an application of condition b)iii) from a
refutable sequent M, c, d → b, b ⇒ N , then we may apply the induction hypoth-
esis to this sequent and from the resulting sequent we may obtain the sequent
M, c, (c → d) → b ⇒ N by an application of b)iii).

If our sequent M, c, d → b ⇒ N results from a sequent s′ by a different
application of condition b), then we may apply the induction hypothesis to s′

and the same application of b) leads to the required transformed sequent.
If M, c, d → b ⇒ N results from n sequents M, c, d → b, ai ⇒ bi by an

application of condition c), then N contains the formula d and we may apply
the induction hypothesis to all these sequents and again apply the condition c)
with the modification that we also introduce the formula c → d on the right
hand side to obtain the sequent M, c, (c → d) → b ⇒ c → d,N . (This is possible
because the left hand side of this sequent contains the formula c and the right
hand side contains d.) From this sequent by an application of b)iii) we obtain
the required sequent M, c, (c → d) → b ⇒ N . ⊓⊔

Now the only remaining rule to consider is rule (11): If all sequents di, ci →

bi,Mi ⇒ di and all sequents M, ej ⇒ fj are refutable and p1, . . . , pt are all
propositional variables for which M ′ contains a formula pk → g, then by the
preceding lemma the sequents di, (ci → di) → bi,Mi ⇒ di are refutable and
from these sequents and the sequents M, ej ⇒ fj by an application of condition
c) we may arrive at the sequent M ⇒ c1 → d1, . . . , cm → dm, e1 → f1, . . . , en →

fn, p1, . . . , pt, N , because none of the pk occurs in M . From this sequent by m+t

applications of b)iii) we arrive at the required sequent M ⇒ e1 → f1, . . . , en →

fn, N . ⊓⊔

Having thus established that all nonderivable sequents are refutable we may
associate with every nonderivable sequent s a so called canonical countermodel
C(s) whose underlying tree is the same as the underlying tree of the refutation
tree of s and whose assignment function stipulates a propositional variable to be
true at a given node of this tree, iff the propositional variable occurs on the left
hand side of the corresponding sequent in the refutation tree. Then we show

Theorem. If a sequent s is not a theorem of intuitionistic propositional logic,
then s is evaluated to false in the canonical countermodel C(s) of s.

Proof. s is refutable, so we may use induction on the definition of refutability:
If s is refutable according to condition a), then the theorem obviously holds. If

it is refutable according to condition b) and by virtue of refutability of some other
sequent s′, then C(s) equals C(s′) and therefore by the induction hypothesis s′ is
evaluated to false in C(s), but s′ contains s, hence s is evaluated to false, too. If,
finally, s is found to be refutable according to condition c), then a straightforward
induction on the complexity of formulas of s shows that all formulas on the left



hand side of s are evaluated to true and all formulas on the right hand side of s

are evaluated to false. The only significant case we have to consider is the case
of implications on the right hand side of s: If a → b occurs on the right hand
side of s and a occurs on its left hand side and b on its right hand side, then by
the induction hypothesis a is evaluated to true and b is evaluated to false and
hence a → b is evaluated to false. If, however, either a does not occur on the left
hand side or b does not occur on its right hand side, then we have a refutable
sequent s′ obtained from s by adding a to the left hand side and replacing the
right hand side by b. Then by the induction hypothesis a is true and b is false
in the submodel C(s′) of C(s) and therefore a → b is false in C(s). ⊓⊔
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3. Schütte,K: Vollständige Systeme modaler und intuitionistischer Logik , Springer 1968


