I. Hard rods on discrete lattices

Density functional theory (DFT)

$$
F=F\left[\rho_{i}(\boldsymbol{s})\right]
$$

(Free energy is a unique functional of the density distribution over the lattice sites: $\rho_{i}(\boldsymbol{s})=n_{i}(\boldsymbol{s}) /$ site , i.e. the functional does not depend on the external potential $V_{i}(\boldsymbol{s})$)

$$
F=F^{\mathrm{id}}+F^{\mathrm{ex}}=\underbrace{\beta^{-1} \sum_{s} \sum_{i} \rho_{i}(\boldsymbol{s})\left(\log \rho_{i}(\boldsymbol{s})-1\right)}_{\text {ideal gas contribution }}+F^{\mathrm{ex}}
$$

There is a constructive procedure to obtain good approximations for $F^{\mathrm{ex}}[\rho]$
Dimensional crossover:

- imagine cavities which can hold exactly one rod

Excess free energy of such a cavity is known exactly: $\beta F^{\mathrm{ex}, 0 \mathrm{D}}=\Phi^{0 \mathrm{D}}$

- $F^{\text {ex }}[\rho]$ must deliver $\Phi^{0 \mathrm{D}}$ if density distributions are restricted to such a cavity !

I. Hard rods on discrete lattices: OD excess free energy

- packing fraction $\eta \leq 1=$ filling probability of cavity

- excess chemical = excess free energy needed to put one rod into cavity potential

$$
\begin{array}{cc}
\mu^{\mathrm{ex}}= & -\beta^{-1} \log \left\langle e^{-\beta H_{1 \mathrm{p}}}\right\rangle * \\
H_{1 \mathrm{p}}: \text { energy (Hamiltonian) for placing particle into cavity } \\
& \infty \text { if cavity is filled } \\
0 \text { if cavity is empty } \\
\mu^{\mathrm{ex}}=\quad-\beta^{-1} \log (1-\eta)
\end{array}
$$

* is called „potential distribution theorem"

It looks like the free energy from the partition function for 1 rod in a statistical environment.

- thermodynamic relation:

$$
\beta \mu^{\mathrm{ex}}=\frac{d \Phi^{0 \mathrm{D}}}{d \eta} \rightarrow \Phi^{\mathrm{OD}}=\eta+(1-\eta) \log (1-\eta)
$$

I. Hard rods on discrete lattices: LC functional - 1D

We will show that for hard rods (1D) this will generate the exact free energy functional!
Example: One component, $\quad L=3$
There are 3 cavities:

Only the largest (maximal) cavity is relevant, others are contained in it.

Packing fraction
Free Energy

$$
\begin{aligned}
\eta & =\rho_{1}+\rho_{2}+\rho_{3} \\
\Phi^{0 D} & =\eta+(1-\eta) \log (1-\eta)
\end{aligned}
$$

Note that such a cavity could be anywhere in the system (not just at the points $s=1,2,3$).

Trial functional: $\quad \beta F^{\mathrm{ex}}[\rho]=\sum_{s=-\infty}^{\infty} \Phi^{\mathrm{OD}}\left(n^{(1)}(s)\right)$

$$
n^{(1)}(s)=\sum_{s^{\prime}=s-L+1}^{s} \rho_{s^{\prime}}
$$

That is a weighted density which sums over all densities at points s' since associated rods at s' cover the point s!

I. Hard rods on discrete lattices: LC functional - 1D

$$
\beta F^{\mathrm{ex}}[\rho]=\sum_{s=-\infty}^{\infty} \Phi^{0 \mathrm{D}}\left(n^{(1)}(s)\right)
$$

$$
n^{(1)}(s)=\sum_{s^{\prime}=s-L+1}^{s} \rho_{s^{\prime}}
$$

Not yet OK. The sum over s means that you go over the 1D lattice with a stencil that cuts out three consecutive points. When you apply this to the maximal cavity:

Elimination can be done with:

$$
\beta F^{\mathrm{ex}}[\rho]=\sum_{s=-\infty}^{\infty} \Phi^{\mathrm{OD}}\left(n^{(1)}(s)\right)-\sum_{s=-\infty}^{\infty} \Phi^{\mathrm{OD}}\left(n^{(0)}(s)\right)
$$

$$
n^{(0)}(s)=\sum_{s^{\prime}=s-L+1}^{s-1} \rho_{s^{\prime}}
$$

I. Hard rods on discrete lattices: LC functional - 1D

That's it! The functional

$$
\beta F^{\mathrm{ex}}[\rho]=\sum_{s=-\infty}^{\infty} \Phi^{\mathrm{OD}}\left(n^{(1)}(s)\right)-\sum_{s=-\infty}^{\infty} \Phi^{\mathrm{OD}}\left(n^{(0)}(s)\right)
$$

is not only correct for all OD cavities, but for all density distributions! (Percus 1976, 1989 using way more difficult arguments)

Consequences: For a homogenous fluid we obtain

$$
\begin{aligned}
& \beta \mu=\log \rho-L \log (1-L \rho)+(L-1) \log (1-(L-1) \rho) \\
& \beta p=\log \frac{1-(L-1) \rho}{1-L \rho}
\end{aligned}
$$

Clearly, chemical potential and pressure are diverging when $\rho \rightarrow \frac{1}{L}$
(close-packing limit) (close-packing limit)

I. Hard rods on discrete lattices: LC functional - 1D

One dimension and many components
Example: $M=2$ components with $L_{1}=3$ and $L_{2}=2$
It helps to imagine that species 2 is slightly thicker:

The maximal cavity is this one:

Therefore, we can generalize the weighted densities

$$
\begin{aligned}
& n^{(1)}(s)=\sum_{s^{\prime}=s-L_{1}+1}^{s} \rho_{1, s^{\prime}}+\sum_{s^{\prime}=s-L_{2}+1}^{s} \rho_{2, s^{\prime}} \\
& n^{(0)}(s)=\sum_{s^{\prime}=s-L_{1}+1}^{s-1} \rho_{1, s^{\prime}}+\sum_{s^{\prime}=s-L_{2}+1}^{s-1} \rho_{2, s^{\prime}}
\end{aligned}
$$

and our functional still does the job! (Try yourself graphically with the stencil!)

$$
F^{\mathrm{ex}}[\rho]=\sum_{s=-\infty}^{\infty} \Phi^{0 \mathrm{D}}\left(n^{(1)}(s)\right)-\sum_{s=-\infty}^{\infty} \Phi^{0 \mathrm{D}}\left(n^{(0)}(s)\right)
$$

I. Hard rods on discrete lattices: LC functional - D>1

Two dimensions (and more ...)

It is still true that the set of points with nonzero density in a maximal cavity corresponds to the set of points „covered by a rod"

Example: Rods with size 2×3

Thus we generalize the weighted density $n^{(1)}$:

$$
n^{(1,1)}(s)=\sum \bullet \bullet \bullet \bullet \quad+\sum_{\bullet}^{\bullet} \bullet s
$$

maximal cavity
(sum over densities at the points depicted)

I. Hard rods on discrete lattices: LC functional - D>1

Two dimensions (and more ...)
The trial functional would then be

$$
\beta F^{\mathrm{ex}}[\rho]=\sum_{s=\left(s_{x}, s_{y}\right)} \Phi^{\mathrm{OD}}\left(n^{(1,1)}(\boldsymbol{s})\right)
$$

Apply this to the maximal cavity (move the stencil over the cavity density distribution).
The thus generated extra terms can all be eliminated by extending the functional to:

$$
\begin{aligned}
& \beta F^{\mathrm{ex}}[\rho]=\sum_{s=(s, s, s)} \Phi^{0 \mathrm{DD}}\left(n^{(1,1)}(\boldsymbol{s})\right)-\sum_{s=(s, s, s)} \Phi^{0 \mathrm{D}}\left(n^{(0,1)}(\boldsymbol{s})\right)-\sum_{s=\left(s_{s}, s,\right)} \Phi^{0 \mathrm{D}}\left(n^{(1,0)}(\boldsymbol{s})\right)+\sum_{s=(s, s, s)} \Phi^{\mathrm{OD}\left(n^{(0,0)}(\boldsymbol{s})\right)} \\
& n^{(0,1)}(\boldsymbol{s})=\sum \bullet{ }^{\circ} \cdot{ }^{s}+\sum_{\bullet}^{\bullet} \times s
\end{aligned}
$$

$$
\begin{aligned}
& n^{(0,0)}(\boldsymbol{s})=\sum_{\bullet}^{\times}{ }_{\bullet}^{\times}{ }_{\bullet}^{\times s}+{ }_{\bullet}^{\times}+{ }_{\bullet}^{\times s}
\end{aligned}
$$

I. Hard rods on discrete lattices: LC functional - D>1

Two dimensions (and more ...): summary

So, the general form of the Lafuente-Cuesta functional on hypercubic lattices is given by

$$
\beta F^{\mathrm{ex}}=\sum_{s} D_{\alpha_{1}} \ldots D_{\alpha_{d}} \Phi^{0 \mathrm{D}}\left(n^{\left(\alpha_{1}, \ldots, \alpha_{d}\right)}(\boldsymbol{s})\right)
$$

where

$$
\begin{aligned}
& \text { d number of dimensions } \\
& D_{\alpha} f(\ldots, \alpha, \ldots)=f(\ldots, 1, \ldots)-f(\ldots, 0, \ldots) \quad \text { difference operator } \\
& n^{\left(\alpha_{1}, \ldots, \alpha_{d}\right)}(\boldsymbol{s}) \quad \text { weighted densities } \quad\left(\alpha_{i}=0,1\right) \\
& n^{\left(\alpha_{1}, \ldots, \alpha_{d}\right)}(\boldsymbol{s})=\sum_{p=1}^{M}\left(\sum_{s_{1}^{\prime}=s_{1}-L_{1}^{p}}^{\left.s_{1}-\cdots+\sum_{s_{d}=s_{d}-L_{d}^{p}}^{s_{d}-1+\alpha_{d}}\right)} \rho_{p, s^{\prime}}=: \sum_{p=1}^{M} w_{p}^{\alpha} * \rho_{p}(\boldsymbol{s})\right. \\
& M \quad \text { number of parallelepiped species } \\
& \boldsymbol{L}^{p}=\left\{L_{1, \ldots,}^{p}, L_{d}^{p}\right\} \quad \text { vector of parallelepiped side lengths of species } p \\
& \boldsymbol{s}=\left\{s_{1, \ldots}, s_{d}\right\} \quad \text { lattice position vector } \\
& w_{p}^{\alpha}(\boldsymbol{s}) \quad \text { weight function for species } p \\
& \boldsymbol{\alpha}=\left\{\alpha_{1, \ldots}, \alpha_{d}\right\} \quad \text { weight function index }
\end{aligned}
$$

I. Hard rods on discrete lattices: LC functional - D>1

Two dimensions (and more ...)

Unfortunately, these functionals in 2D and 3D are not exact anymore...
Reasons? „Correlations" in 2-particle cavities
Example: Correlated 2-particle cavity for rods with length 2×1

holds

Consequently terms in the free energy should depend on

- and
- - separately

But the OD-functional delivers only
...but they might offer a good picture of the model to start with!

I. Hard rods on discrete lattices: LC functional

Results: 3D - rods with length $1 \times 1 \times L$

$$
\text { order parameter: } \quad Q=\frac{\rho_{1}-\left(\rho_{2}+\rho_{3}\right) / 2}{\rho}
$$

$Q>0$: 1 is majority species
$Q<0$: 1 is minority species

FMT

- nematic transition always with one majority species for $L \geq 4$
- strong first order transition (similar to continuum hard rods)

SIM

- nematic transition for $(L \geq 7)$: one minority species $L \geq 5$ one majority species ($L=5,6$)
- very weak first order transition (unlike continuum hard rods): strong fluctuations
"packing" is well described

I. Hard rods on discrete lattices: LC functional

Results: 3D - rods with length $1 \times 1 \times L$
Phase diagram

in simulations:
no density gap detectable!

