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1. INTRODUCTION

Introductory statistical physics, as taught in the Basic Module Thermodynamics and Statistical
Mechanics mostly deals with homogeneous systems, and applications to real systems are
restricted essentially to the equation of state of ideal classical and quantum gases. Beyond the
classical ideal gas, real gases are treated with a perturbative treatment via the virial expansion
and the mean-field approximation. Some aspects of phase transitions in homogeneous
systems are introduced in a thermodynamic manner.
In projects 5 and 6 you will learn more about simulations addressing the phemonenon of
phase transitions with the examples of the Ising model and the hard rod model.
However, there is a large class of theoretically and practically relevant phenomena in statistical
physics which occur in inhomogeneous systems, i.e. systems where the averaged number
density of particles is not constant throughout space. Inhomogeneities always occur when
there is a fixed external potential acting on the particles of the system, such as a confining
boundary or wall (see Fig. 1.1, left panel) or an inhomogeneous external field such as elec-
tric/magnetic fields. But also without external fields inhomogeneous systems are possible
in equilibrium: think of the interface between a vapor and a liquid phase at coexistence (see
Fig. 1.1, right panel). Experimentally relevant phenomena in inhomogeneous systems are the
adsorpotion at surfaces and consequently the appearance of surface tensions, the adsorption
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in small pores and the ensuing possible shifts of phase coexistence (capillary condensation),
the appearance of wetting transitions at flat walls and many more.
For the description of the equilibrium state of inhomogeneous systems, the framework of
Statistical Mechanics (as taught in the Basic Module) is fully applicable. In view of the technical
difficulties which you encountered when applying the various ensembles to simple model
systems you might wonder whether it is an impossible task to calculate e.g. an inhomogeneous
number density profile ρ(r) for a given system (specified by a certain interatomic potential) in
a given external field. Fortunately, there exists a theoretical approach which simplifies this taks:
Density Functional Theory (DFT). In short, DFT states that there exists a unique functional
for the grand potential, depending on ρ(r), which upon minimization gives the equilibrium
value of the grand potential and the associated density profile is indeed the equilibrium profile.
With this information at hand, all other properties can be calculated.
The drawback of DFT is that for most systems (i.e. most types of interatomic potential) this
unique functional is only known approximately. For systems in one dimension (1D) with a
nearest-neighbor interaction potential, the exact functional can be derived. In this project,
you will treat such a 1D system (for simplicity defined on a lattice, i.e. on discrete points on
a line) of rodlike particles which mutually interact with a hard potential. The equilibrium
density profile near a hard wall will be numerically computed, as well as surface tensions and
adsorptions. These can be compared to exact, analytical results. The numerics involves a
simple form of techniques which appear in many classical DFT calculations: evaluation of
free energy functionals with weighted densities and their functional derivatives, as well as the
solution of nonlinear integral equations by iteration.

1.1. REMINDER OF THE GRAND CANONICAL ENSEMBLE FOR HOMOGENEOUS SYSTEMS

DFT is formulated in the grand canonical ensemble (GCE) which we briefly review. The GCE
assumes the existence of a huge reservoir in which the actual system (with fixed volume V ) is
embedded. The reservoir and the system may freely exchange heat and particles. Therefore
the control parameters, set by the reservoir and determining the equilibrium state of the
system, are the chemical potential µ and the temperature T . The associated thermodynamic
potential of the GCE is the grand potential Ω(µ,V ,T ) depending on its natural variables
{µ,V ,T }. Remember that the grand potential and the free energy F (N ,V ,T ) of a homogeneous
system are connected by a Legendre transformation

Ω(µ,V ,T ) = F (N ,V ,T )−µN . (1.1)

In the GCE, the grand potential follows from the grand partition function Zgc

Ω(µ,V ,T ) =−kT ln Zgc, (1.2)

where k is Boltzmann’s constant. For a homogeneous system of isotropic (spherical) particles
with coordinates ri and momenta pi , the grand partition function is defined by

Zgc(µ,V ,T ) =
∞∑

N=0

1

hd N N !

∫
d d r1...

∫
d d rN

∫
d d p1...

∫
d d pN exp(−βHN +βµN )(1.3)

=: Trcl exp(−βHN +βµN ) , (1.4)
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Figure 1.1: Illustration of “typical DFT problems”:
(Left) Density profile ρ(z) of hard spheres with diameter σ near a hard wall.
Comparison between DFT and Monte–Carlo simulations. The packing fraction
η = (π/6)σ3ρ far away from the wall (in the homogeneous bulk) is 0.43, not far
from freezing (0.49). One clearly sees “layering”, i.e. the packing of the spheres in
equidistant layers with layer distance ≈σ.
(Right) Density profile of a liquid–vapor interface for a model fluid with repulsions
and attractions (typical for all moelcules). The model is a so–called square–well
fluid. Pictures taken from Ref. [1].

where d is the dimension of the system and β= 1/(kT ). The symbol Trcl signifies “classical
trace” and abbreviates the sum over N and the position and momentum integrals. (In that
way the expression for Zgc is formally identical in classical and quantum systems.) HN is the
(classical) Hamiltonian which for N particles with mass m interacting with pair potentials u(r)
reads

HN = KN +UN , (1.5)

= ∑
i

p2
i

2m
+

N∑
i , j

i< j

u(ri − r j ) . (1.6)

Recall that in the expression for Zgc the integrals over momenta can be done straightforwardly
with the result:

Zgc(µ,V ,T ) =
∞∑

N=0

1

λd N N !

∫
d d r1...

∫
d d rN exp(−βUN +βµN ) , (1.7)

(1.8)

where λ= h/
p

2πmkT is the thermal de Broglie wavelength (h is Planck’s constant).
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For an arbitrary pair potential u, further simplification is in general not possible. Thus, the
actual problem of classical statistical mechanics lies in the position dependencies of the
classical trace (the “configuration integral”). It is worth, however, to recall the calculable case
of the ideal gas (u =UN = 0) for which we find:

Zgc,id(µ,V ,T ) =
∞∑

N=0

1

λd N N !
V N exp(βµN ) (1.9)

= exp

(
V

λd
exp(βµ)

)
→ (1.10)

Ωid(µ,V ,T ) = −kT
V

λd
exp(βµ) . (1.11)

All thermodynamics is contained inΩid. Consider:

−N = ∂Ωid

∂µ
=− V

λd
exp(βµN ) → (1.12)

µ=µid = kT ln
Nλd

V
(1.13)

and

pid = −Ω
V

= kT

λd
exp(βµ) (1.14)

= kT
N

V
= kTρ , (1.15)

where we used Eq. (1.13) and have recovered the ideal gas equation of state with ρ = N /V
being the particle number density.

1.2. INHOMOGENEOUS SYSTEMS

For inhomogenous systems, there is only a slight change. The volume V as a natural variable
does not make sense any more since the occupied volume of the system is governed by the
external potential. Zgc is defined as before

Zgc(µ,T ) = Trcl exp(−βHN +βµN ) (1.16)

but the classical Hamiltonian has an additional piece due to the external potential

HN = KN +UN +VN , (1.17)

VN = ∑
i

V ext(ri ) . (1.18)

The external contribution is simply the sum over contributions from a space–dependent
external potential V ext(r) acting on each particle individually (one calls this a one body poten-
tial). As discussed, this external potential makes the density distribution inhomgeneous. An
inhomogenous density profile ρ(r) can be expressed as a grand canonical average of a density
operator ρ̂

ρ(r) = 〈ρ̂(r)〉 (1.19)

4



with

ρ̂(r) =
N∑

i=1
δ(r− ri ) . (1.20)

The meaning is clear: the operator is only nonzero when any of the particles is at position r.
The average over positions and momenta is defined via

〈...〉 := 1

Zgc
Trcl exp(−βHN +βµN )... = Trcl f0... (1.21)

which defines the grand canonical equilibrium phase space density f0 = 1
Zgc

exp(−βHN +βµN ).

It is normalized, i.e. Trcl f0 = 1. Note that this definition of a density profile is consistent with a
modification of the the thermodynamic identity (1.12):

−N = ∂Ω

∂µ
→ −ρ(r) = δΩ

δ(µ−V ext(r))
(1.22)

which links the density profile ρ(r) to a functional derivative ofΩ.
It is again instructive to solve the case of an ideal gas in an external potential. Quite analogous
to the derivation of Eq. (1.11) we find

Zgc,id(µ,T ) =
∞∑

N=0

1

λd N N !

(∫
d d r exp(β(µ−V ext(r))

)N

(1.23)

= exp

(
1

λd

∫
d d r exp(β(µ−V ext(r))

)
→ (1.24)

Ωid(µ,T ) = −kT
1

λd

∫
d d r exp(β(µ−V ext(r)) . (1.25)

Then the density profile becomes

ρ(r) =− δΩid

δ(µ−V ext(r))
= 1

λd
exp(β(µ−V ext(r)) . (1.26)

We can get rid of the chemical potential µ if we assume that at some reference point in
the system (where V ext = 0) the density is give by ρ0. Then according to Eq. (1.13) we have
exp(βµ) = ρ0λ

d and thus

ρ(r) = ρ0 exp(−βV ext(r)) . (1.27)

This is the barometric law!
The connection between free energy and grand potential via the Legendre transformation (1.1)
can also be generalized:

F [ρ(r),T ] = Ω(µ,T )+
∫

d d r(µ−V ext(r))ρ(r) (1.28)

= −kT
1

λd

∫
d d r exp(β(µ−V ext(r))+

∫
d d r(µ−V ext(r))ρ(r) (1.29)
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The proper conjugate variable to µ is not N anymore but the density profile ρ(r). Therefore,
the free energy is a functional rather than a function, and we empahsize this by using a special
font. From Eq. (1.26) we have µ−V ext(r) = kT ln[ρ(r)λd ] and therefore

Fid[ρ(r),T ] = kT
∫

d d rρ(r)
(
ln[ρ(r)λd ]−1

)
. (1.30)

This is the ideal gas free energy functional. Note that it is independent of the external potential
(that is the purpose of the Legendre transform!) and thus it is an intrinsic property of the
system.

1.3. DENSITY FUNCTIONAL THEORY (DFT)

Consider a particular system, characterized by its specific pair potential. For a certain external
potential, the equilibrium phase space density is given by f0 (see Eq. (1.21). The formulation
of DFT rests on the following lemma and two theorems:

Lemma: Minimum property forΩ:

We introduce a functionalΩ[ f ] where f is an arbitrary phase space density:

Ω[ f ] = Trcl f (HN −µN +kT ln f ) . (1.31)

Note that for f = f0 = 1
Zgc

exp(−βHN +βµN ), Ω[ f ] becomes the equilibrium grand

potentialΩ0 of the system:

Ω[ f0] = Trcl f0 (−kT ln Zgc) =−kT ln Zgc (1.32)

= Ω0 . (1.33)

Then:

Ω[ f ] ≥Ω0 , (1.34)

i.e. in equilibrium the grand potential is minimized.

We expect this to hold since it is nothing but the maximum entropy principle, applied to
the GCE.

Theorem 1: Uniqueness of F [ρ]:

For a particular fluid, F [ρ] is a unique functional of the equilibrium density profile.

Theorem 2: Grand potential functional of the densityΩ[n]:

Let n(r) be some average of the microscopic density associated with a nonequilibrium
phase space probability fn . Then the generalized grand potential functional introduced
in the Lemma is

Ω[ fn] ≡Ω[n] =F [n]+
∫

drn(r)V ext(r)−µ
∫

drn(r) (1.35)

and acquires its minimum at equilibrium, n = ρ, withΩ[ρ] =Ω0.
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The proof of the lemma and the two theorems can be found in Appendix A. Further details can
be found in the lecture notes by Roland Roth [1], Sec. 1–2.
Traditionally, the yet unknown but unique free energy functional is decomposed as

F [ρ] = Fid[ρ]+Fex[ρ] (1.36)

where the ideal gas part

Fid[ρ] = kT
∫

d d rρ(r)
(
ln[ρ(r)λd ]−1

)
. (1.37)

was computed in the previous section. The second part is called excess part (meaning “ex-
cess over ideal”) and this part is in general unknown and theoretical insights are needed to
determine or to approximate it.
Using this decomposition, we can use theorem 2 to write down an equation for the equilibrium
density profile ρ(r):

δΩ

δn(r)

∣∣∣∣
n(r)=ρ(r)

= δF

δn(r)

∣∣∣∣
n(r)=ρ(r)

+V ext(r)−µ (1.38)

= δFid

δn(r)

∣∣∣∣
n(r)=ρ(r)

+ δFex

δn(r)

∣∣∣∣
n(r)=ρ(r)

+V ext(r)−µid −µex (1.39)

= 0 . (1.40)

Here we split the chemical potential µ in an ideal gas part and in an excess part as well. Using
µid = kT ln[ρ0λ

d ] (from Eq. (1.13), ρ0 is a reference density where V ext = 0 and the density
profile is locally flat) and the functional derivative of Fid we find

kT ln[ρ(r)λd ]+ δFex

δn(r)

∣∣∣∣
n(r)=ρ(r)

+V ext(r)−kT ln[ρ0λ
d ]−µex = 0 → (1.41)

ρ(r) = ρ0 exp

(
−βV ext(r)+βµex −β δFex

δn(r)

∣∣∣∣
n(r)=ρ(r)

)
(1.42)

This is an implicit, highly nonlinear equation for ρ(r). There is no dependence on the thermal
de Broglie wavelength λ anymore, owing to the introduction of the reference density ρ0.

2. HARD RODS IN 1D ON A LATTICE

Investigating lattice models has often helped in formulating general concepts in statistical
physics, if not initiating them. Additionally, lattice models often take up the role of a simplified
version of a continuum model of interest, in the hope they retain the basic physics, e.g. the
type of phase transition. One of the most popular examples is the lattice gas model (equivalent
to the Ising model) to explore the phase transitions (see project 5).
Here we consider a 1D lattice, formed by discrete points on a line. On this lattice, a hard
rod of length L covers L consecutive points and configurations of hard rods which overlap
are forbidden (see Fig. 2.1 for an example with L = 3). We define densities ρs as number of
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Figure 2.1: Lattice model for hard rods in 1D.

particles per lattice point s. We adopt the following convention: For a rod with left–most point
fixed at s, the density is ρs = 1, otherwise zero. Since the densities are ensemble–averaged
quantities, they can take continuous values but with the obvious constraint ρs ∈ [0,1]. (We are
in the GCE: the system is connected to a reservoir with chemical potential µ and may freely
exchange particles with it. Therefore the occupation of a lattice point s by a rod may change
and what we record in ρs is an average occupation.) Since a rod covers L consecutive points, it
makes sense to define a local packing fraction by

n(1)
s =

s∑
s′=s−L+1

ρs′ . (2.1)

It sums the densities over L−1 preceding points to s and s itself. Rods which sit at these points
also cover s. Therefore, we have the same constraint as for the densities, n(1)

s ∈ [0,1]. The local
packing fraction is an example of a weighted density which is formed of the density profile
convoluted with a weight function. Such weighted densities are very important in classical
DFT.
Without proof, we state that the free energy functional for this system is given by

F [ρ] = Fid[ρ]+Fex[ρ] with (2.2)

βF id[ρ] =∑
s
ρs(lnρs −1) , (2.3)

βF ex[ρ] =∑
s

(
Φ0D(n(1)

s )−Φ0D(n(0)
s )

)
, (2.4)

Φ0D(η) = η+ (1−η) ln(1−η) , (2.5)

n(0)
s =

s−1∑
s′=s−L+1

ρs′ . (2.6)

and consequently the grand potential functional is

Ω[ρ] = F [ρ]+∑
s

(V ext
s −µ)ρs . (2.7)

(2.8)

A very essential property of this functional is the so-called 0D limit: When you restrict the
system to a cavity of length S such that only one particle fits in (i.e. S = L..2L −1), then the
excess free energy of such a cavity times β isΦ0D(η) where η is the average occupancy (packing
fraction) in the cavity. In 1D, the requirement of the correct 0D limit is enough to arrive at the
exact functional, in higher dimensions it leads to very good approximations. The derivation of
the functional can be found in [2] (excerpt of a talk by M. Oettel).
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2.1. COMPUTATIONAL PROBLEM: DENSITY PROFILE BETWEEN HARD WALLS

We will numerically compute the density profile and the surface tension of 1D hard rods of
length L at a hard wall. The computation will be done on a grid with M À L points in a slit
geometry with two hard walls. The setup is depicted in Fig. 2.2.
Notation: Tasks to be performed are in blue and important equations for the solution are in
red.

Figure 2.2: Numerical setup.

The equilibrium density profile is found by the variational derivative

δΩ

δρ
= 0 → ∂Ω

∂ρs
= 0 , (2.9)

which in the discrete lattice model amounts to the partial derivative with respect to all density
points. Performing this derivative (check!), we find

lnρs +βµex
s +βV ext

s −βµ = 0 or (2.10)

ρs = exp(β[µ−µex
s ]) exp(−βV ext

s ) with (2.11)

µex
s =

(
δFex

δρ

)
s

. (2.12)

exp(−βV ext
s ) =

{
0 (rodinsidewall)
1 (otherwise)

(2.13)

The functional derivative of the excess free energy, evaluated at point s, is (check!)

βµex
s =

s+L−1∑
s′=s

Φ0D′
(n(1)

s′ )−
s+L−1∑
s′=s+1

Φ0D′
(n(0)

s′ ) (2.14)

Φ0D′
(η) = dΦ0D(η)

dη
=− ln(1−η) . (2.15)

Note that e.g. both summands in βµex
s are nonzero in the interval [2, M −1] (i.e., also at points

where the density is zero and these correspond to points “inside” the walls), however, the local
excess chemical potential is zero there (why?). One sees that the minimizing equation ((2.11)
together with (2.14)) corresponds to a strongly non–linear, coupled set of equations for the
ρs . The bulk chemical potential µ is an input parameter which implicitly determines the bulk

9



density ρ0 in the middle of the (sufficiently large) slit. The corresponding bulk packing fraction
is η0 = Lρ0.
The numerically easiest way to solve the minimizing equation to get the equilibrium profile
ρeqs is by Picard iteration with mixing. For that, define a suitable starting density profile ρs,0

and iterate the equation according to

ρnew
s,i = exp(β[µ−µex

s [ρs,i ]]) exp(−βV ext
s ) , (2.16)

ρs,i+1 = (1−α)ρs,i +αρnew
s,i , (2.17)

where α< 1 is a parameter which ensures that the iteration does not lead to divergence. With
increasing η0 it should be chosen smaller and smaller. Convergence is achieved if ρs,i+1 and
ρs,i do not differ anymore, as expressed, e.g., by the criterion∑

s
(ρnew

s,i −ρs,i )2 < ε , (2.18)

where ε is a small parameter. More information on these type of Picard iterations can be found
in the review by Roland Roth [1].
Having obtained ρeq, the surface tension between the lattice fluid and the hard wall can be
determined in the following way. In 1D, the surface tension is actually a “point” tension.
Thermodynamically, this is the excess grand potential,

γ = Ω[ρeq]−Ω(ρ0), (2.19)

which is the difference between the grand potential (2.7) of the equilibrium profile near one
wall and the bulk grand potential. The bulk grand potential is simply

Ω(ρ0) =−p(ρ0)V =−p(ρ0)
∞∑

swall

1, (2.20)

so the value of γ depends on where one defines the location of the wall, i.e. from which point
swall onwards the fluid domain starts. In our slit geometry we have two hard walls, so we find

2γ = Ω[ρeq]−Ω(ρ0) =Ω[ρeq]+p(ρ0)
swall,2∑
swall,1

1 =Ω[ρeq]+p(ρ0)(swall,2 − swall,1 +1) , (2.21)

For our problem, it makes sense to assign the fluid domain to those points where the density
is nonzero, i.e. swall,1 = L+1 and swall,2 = M −L.
In 1D, one can determine the surface tension also analytically, with the following argument.
Consider a bulk fluid with density ρ0 and occupying the volume V . The excess chemical
potential µex(ρ0) in the fluid is actually the excess grand potential of an inserted rod at a fixed
location, i.e the difference between the grand potential of the fluid with the fixed rod and the
bulk grand potential −p(ρ0)V (Widom’s insertion trick). The equilibrium density profile of the
fluid with the fixed rod corresponds to a hard wall profile “left” and “right” from the fixed rod.
Thus this excess grand potential is just twice the hard wall surface tension, minus the bulk
grand potential for those points around the fixed rod where the density is zero:

µex(ρ0) = 2γ+ (2L−1)p(ρ0) . (2.22)
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2.2. TASKS:

• Consider the hard rod system at the constant reference density ρ0 (in the middle of
the slit). From the functional, calculate analytically p(ρ0) =−Ω/V , µex(ρ0) = ∂Fex/∂N
and γ(ρ0) (from Eq. (2.22)) in terms of the bulk weighted densities n(1) = ρ0L and n(0) =
ρ0(L−1).

• Check all blue items in the previous section.

• Write a code which solves the minimizing equation (2.11) for L = 3 and L = 10 and for
bulk packing fractions η0 = 0.1,0.2, ...,0.9, respectively.

• Plot the density profiles ρeqs at one wall in a suitable manner.

• Compute the surface tension numerically from the excess grand potential. Check that it
agrees with the analytical result.

• Compute the excess adsorption Γ through

2Γ=
swall,2∑
swall,1

(ρeqs −ρ0) . (2.23)

Check that Gibbs’ adsorption equation Γ=−dγ/dµ is fulfilled. Incidentally, integrating
the adsorption equation with respect to µ is the most popular method to determine
surface tensions in simulations.

• (∗) For the surface tension, you must have determined the grand potential of the equi-
librium profile which can be written as a sum over lattice points of a grand potential
density ωs ,Ω[ρeq] =∑

sωs[ρeq]. Verify that ωs is actually not symmetric under reflections
around the slit midpoint. How can you determine γ unambiguously, if you want to use
only half of the profile, i.e. the density profile at one wall?
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A. PROOF OF THE LEMMA AND THE TWO THEOREMS OF DFT

Remember the equilibrium phase space probability of a microstate in the grand canonical
ensemble:

f0(Γ) = 1

Zgc
exp(−βHN +Nβµ) . (A.1)

Summation over N and integration over position–momentum of N particles is termed classical
trace:

Trcl (. . . ) :=
∞∑

N=0

1

h3N N !

∫
(. . . ) dr1dp1 . . .drN dpN (A.2)

With this new notation

Zgc = Trcl exp(−βHN +Nβµ), Trcl f0 = 1 . (A.3)

We may regard a generalized (non–equilibrium) grand potential Ω[ f ] as a functional of a
general phase space probability f . From thermodynamics we expect that Ω[ f0] ≡ Ω is a
minimum, i.e. Ω[ f ] ≥Ω[ f0].

• Lemma: Minimum property ofΩ[ f ]:

Ω[ f ] = Trcl f (β−1 ln f +HN −Nµ) = Trcl f (β−1 ln f −β−1 ln(Zgc f0)) (A.4)

Check

Ω[ f0] = Trcl f0(β−1 ln f0 −β−1 ln(Zgc f0)) =−β−1 ln Zgc =Ω , (A.5)

as it should be. For the minimum property, consider

Ω[ f ]−Ω[ f0] = β−1 [
Trcl f ln f −Trcl f ln f0

]
(A.6)

= β−1Trcl f0

[
f

f0
ln

f

f0
− f

f0
+1

]
(A.7)

This holds since Trcl f0 = Trcl f = 1. Since x ln x ≥ x −1 (x > 0), we immediately find

Ω[ f ]−Ω[ f0] ≥ 0 . (A.8)
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• Theorem 1:
For some specific fluid, F [ρ] is a unique functional of the equilibrium density profile.
Note that the free energy does not depend explicitly on V ext(r) but only through ρ(r). To
see that, remember VN = ∫

drρ̂V ext and HN = KN +UN +VN with KN , UN – kinetic and
potential energy. Then (with ψ(r) =µ−V ext(r)):

F = Ω[ψ(r)]+
∫

d 3rρ(r)[µ−V ext(r)] (A.9)

= Trcl
[

f0(β−1 ln f0 +HN −Nµ)+ f0(Nµ−VN )
]

(A.10)

= Trcl f0(β−1 ln f0 +KN +UN ) (A.11)

Since

f0(Γ) = 1

Zgc
exp(−β(KN +UN +VN )+Nβµ) , (A.12)

we have f0 ≡ f0[V ext], i.e. the equilibrium phase space probability is a functional of the
external potential. Since

ρ(r) = Trcl ρ̂ f0 , (A.13)

we have ρ ≡ ρ[ f0[V ext]].
If we can show a one–to–one correspondence ρ(r) ↔ V ext(r), then also f0 ≡ f0[ρ] and
thus also F ≡F [ρ].
We define the following Hamiltonians, equilibrium phase space densities and grand
potentials

H1 = KN +UN +VN ,1, H2 = KN +UN +VN ,2

f0,1 = f0[V ext
1 ], f0,2 = f0[V ext

2 ]

Ω1 =ΩH1 [ f0,1] Ω2 =ΩH2 [ f0,2]

Assume now ρ[V ext
1 ] = ρ[V ext

2 ], i.e. that two different external potentials lead to the same
density profile. The minimum property ofΩ entails

Ω2 <ΩH2 [ f0,1] = Trcl f0,1(H2 −Nµ+β−1 ln f0,1) (A.14)

= Ω1 +Trcl [ f0,1(VN ,2 −VN ,1)] (A.15)

= Ω1 +
∫

dr ρ(r)[V ext
2 (r)−V ext

1 (r)] (A.16)

We may exchange subscripts 1↔2:

Ω1 <Ω2 +
∫

dr ρ(r)[V ext
1 (r)−V ext

2 (r)] (A.17)

and add the two inequalities:

Ω2 +Ω1 <Ω1 +Ω2 , (A.18)

which contradicts the assumption ρ[V ext
1 ] = ρ[V ext

2 ]. Thus, different V ext lead to different
ρ and thus there is a one–to–one correspondence between V ext and ρ.
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• Theorem 2:
Let n(r) be some average of the microscopic density associated with a nonequilibrium
phase space probability fn . Then the generalized grand potential functional is

Ω[n] =F [n]+
∫

drn(r)V ext(r)−µ
∫

drn(r) (A.19)

and acquires its minimum at equilibrium, n = ρ, withΩ[ρ] =Ω.

Given the above points, the proof is trivial:

Ω[ fn] = Trcl fn(β−1 ln fn +KN +UN +VN −Nµ) (A.20)

= F [n]+
∫

drn(r)V ext(r)−µ
∫

drn(r) ≡Ω[n] (A.21)

We have shown already thatΩ[ f0] ≤Ω[ fn], thus alsoΩ[ρ] ≤Ω[n].
These theorems are called the Hohenberg–Kohn–Mermin theorems. The practical importance
lies in the following:

• There exists a unique free energy functional F [n] due to (n =)ρ(r) ↔ V ext(r). The
minimization of the associatedΩ[n] determines the equilibrium density profile ρ:

0 = δF

δn(r)

∣∣∣∣
n(r)=ρ(r)

+V ext(r)−µ . (A.22)

• Although the precise form of F [n] is unknown for most systems (except the ideal gas and
one–dimensional systems), one may construct trial functionals F ′[n] whose equilibrium
density profiles are given by δΩ′[n]/δn)n=ρ′ = 0. That the grand potential is bounded
from below, i.e.

Ω[ρ′] ≥Ω[ρ] . (A.23)

is not of help since one does not know the correct functional form ofΩ[n].
Rather it gives the straightforward possibility to define a model system by F ′[n] and
exploit its implications through the functional formulation of liquid state physics.
Unfortunately, it is difficult to constrain F ′[n] such that it gives an internally consistent
model of a fluid with two–body potentials.
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