Part 3

Turning to explicit mathematics

Point of departure

Systems of explicit mathematics introduced by S. Feferman in 1975. Since then they play an important role in foundational discussions:

- Original aim: formal framework for constructive mathematics, in particular Bishop-style constructive mathematics.
- First vesions of explicit mathematics based on intuitionistic logic; later formulated in a classical framework.
- Close relationship to systems of second order arithmetic and set theory; instrumental for reductive proof theory.
- Logical foundations of functional and object oriented programming languages.

Feferman's three classsic papers:

- A language and axioms for explicit mathematics, in: J. N. Crossley (ed.), Algebra and Logic, Lecture Notes in Mathematics 450, Springer, 1975;
- Recursion theory and set theory: a marriage of convenience, in: J. E. Fenstad, R. O. Gandy, G. E. Sacks (eds.), Generalized Recursion Theory II, Studies in Logic and the Foundations of Mathematics 94, Elsevier, 1978;
- Constructive theories of functions and classes, in: M. Boffa, D. van Dalen,K. McAloon (eds.). Logic Colloquium '78, Studies in Logic and the Foundations of Mathematics 97, Elsevier, 1979.

Basic ontology (modern approach)

Formulated in a language \mathbb{L} with first and second order variables and constants.

The general universe (first order objects)

- Unspecified general objects, (constructive) operations, bitstrings, programs,
- These objects form a partial combinatory algebra.

Classes (second order objects)

- Classes are simply collections of objects.
- These classes help to "structure" the universe.
- As we will see, more versatile than "traditional" type theories.

The element relation \in and the naming relation \Re

$$
t \in S \quad::: \text { object } t \text { is an element of class } S
$$

(Strong form of polymorphism: an object may belong to many classes.)

Equality of classes defined by

$$
S=T:=\forall x(x \in S \leftrightarrow x \in T) .
$$

Classes can be addressed via there names:

$$
\Re(t, S) \quad::: \quad \text { object } t \text { is a name of class } S .
$$

Explicit representation and equality

(E1) $\exists x \Re(x, S)$,
(E2) $\Re(r, S) \wedge \Re(r, T) \rightarrow S=T$,
$(\mathrm{E} 3) \Re(r, S) \wedge S=T \rightarrow \Re(r, T)$.

Some abbreviations:

$$
\begin{aligned}
s \dot{\in} t & :=\exists X(\Re(t, X) \wedge s \in X) \\
s \doteq t & :=\exists X(\Re(s, X) \wedge \Re(t, X)) \\
S \subseteq T & :=(\forall X \in S)(x \in T) \\
s \subseteq t & :=\exists X, Y(\Re(s, X) \wedge \Re(t, Y) \wedge X \subseteq Y) \\
s \in \Re & :=\exists X \Re(s, X) \quad \text { (although } \Re \text { is in general not a class). }
\end{aligned}
$$

Basic characteristics of this operational framework

- Reconcile the intensional with the extensional point of view: Intensionality on the level of objects (names) and extensionality on the level of classes.
- The general universe of discourse simply is a patial combinatory algebra; typical examples: Kleene's first and second model, the graph model, the (total) term model,
- Self-application of objects - we often call them operations - to each other is possible; however, it does not necessarily produce a value. The exact nature of these operations is purposely left open.
- The universe is open-ended but has some simple closure properties.
- No specific ideology.

The language \mathbb{L}

Basic vocabulary:

- Variables for individuals: $a, b, c, f, g, h, x, y, z, \ldots$
- Variables for classes $A, B, C, R, S, T, X, Y, Z, \ldots$.
- Many individual constants and a class constant N .
- Function symbol o for (partial) term application.
- Relation symbols $\downarrow, \in,=$, and \Re.

Indiividual terms (r,s,t,...):

$$
\text { ind. variables } \mid \text { ind. constants } \mid(s \circ t)
$$

As usual:

$$
\begin{aligned}
s t & :=(s \circ t) \\
s_{1}\left(s_{2} \ldots s_{n}\right) & :=s_{1} s_{2} \ldots s_{n}:=\left(\ldots\left(s_{1} s_{2}\right) \ldots s_{n}\right) .
\end{aligned}
$$

Logic of partial terms (Beeson)

$$
\begin{gathered}
t \downarrow::: \text { term } t \text { has a value; } \\
s \simeq t:=(s \downarrow \vee t \downarrow \rightarrow s=t) .
\end{gathered}
$$

Some characteristic properties

- $x \downarrow$.
- $c \downarrow$ if c is a constant.
- $s t \downarrow \rightarrow(s \downarrow \wedge t \downarrow)$.
- $A[t] \rightarrow t \downarrow$ for atomic $A[t]$.
- $A[t] \wedge t \downarrow \rightarrow \exists x A[x]$.

Moses Schönfinkel (1889-1942)

The inventor of Combinatory Logic:
Equivalent to predicate logic.

Haskell Brooks Curry (1900-1982)
Further development of combinatroy logic.
Mathematical analysis of substitution (and conversion) of terms.
Curry's paradox.

Partial combinatory algebra

Combinatory axioms, pairing and projections
(PCA1) $k \neq s$.
(PCA2) $k a b=a$.
(PCA3) sab $\downarrow \wedge$ sabc $\simeq(a c)(b c)$.
(PCA4) $\mathrm{p}_{0}\langle a, b\rangle=a \wedge \mathrm{p}_{1}\langle a, b\rangle=b, \quad$ where $\langle a, b\rangle:=\mathrm{pab}$.

Immediate consequences

λ-abstraction, fixed point theorem.

A "computational engine", acting on our universe.

λ-Abstraction

For each term t and each variable x we can find a term - written ($\lambda x . t$) such that its variables are those of t minus x and

- $(\lambda x . t) \downarrow$ and $\quad(\lambda x . t) x \simeq t$.
- $s \downarrow \rightarrow(\lambda x . t) s \simeq t[s / x]$.

Proof.

Induction on t.
(1) If t is the variable x, then $(\lambda x . t):=$ skk.
(2) If t is a variable different from x or a constant, then $(\lambda x . t):=\mathrm{k} t$.
(3) If t is the term $t_{1} t_{2}$, then $(\lambda x . t):=\mathrm{s}\left(\lambda x . t_{1}\right)\left(\lambda x . t_{2}\right)$.

Fixed point theorem

There exists a closed term fix such that

$$
\operatorname{fix}(f) \downarrow \wedge \quad g=f i x(f) \rightarrow \forall x(g x \simeq f g x)
$$

A formula A is called

- stratified iff the relationsymbol \Re does not occur in A;
- elementary iff it is stratified and does quantify over classes.

Finite axiomatization of uniform elementary comprehension such that:

Theorem

For every elementary formula $\varphi[u, \vec{v}, \vec{W}]$ with at most the indicated free variables there exists a closed term t_{φ} such that:
(1) $\vec{z} \in \Re \rightarrow t_{\varphi}(\vec{y}, \vec{z}) \in \Re$,
(2) $\Re(\vec{z}, \vec{Z}) \rightarrow \forall x\left(x \dot{\in} t_{\varphi}(\vec{y}, \vec{z}) \leftrightarrow \varphi[x, \vec{y}, \vec{z}]\right)$.

Hence, $t_{\varphi}(\vec{y}, \vec{z})$ is a name of $\left.\{x: \varphi[x, \vec{y}, \vec{Z}])\right\}$.

Comprehension for non-stratified formulas may lead to inconsisteny.

The natural numbers $\left(\mathrm{N}, 0, \mathrm{~s}_{\mathrm{N}}, \mathrm{p}_{\mathrm{N}}, \mathrm{d}_{\mathrm{N}}, \mathrm{r}_{\mathrm{N}}\right)$

Some abbreviations:

$$
\begin{aligned}
f \in\left(\mathrm{~N}^{k} \rightarrow \mathrm{~N}\right) & \left.:=\left(\forall x_{1}, \ldots, x_{k} \in \mathrm{~N}\right)\left(f\left(x_{1}, \ldots x_{k}\right) \in \mathrm{N}\right)\right), \\
t^{\prime} & :=\mathrm{s}_{\mathrm{N}} t .
\end{aligned}
$$

Basic N -axioms

(N1) $0 \in \mathrm{~N} \wedge a \in \mathrm{~N} \rightarrow a^{\prime} \in \mathrm{N}$.
$(\mathrm{N} 2) a^{\prime} \neq 0 \wedge \mathrm{p}_{\mathrm{N}} 0=0 \wedge \mathrm{p}_{\mathrm{N}}\left(a^{\prime}\right)=a$.
(N3) $x \in \mathrm{~N} \wedge y \in \mathrm{~N} \wedge x=y \rightarrow \mathrm{~d}_{\mathrm{N}}(a, b, x, y)=a$.
$(N 4) x \in N \wedge y \in N \wedge x \neq y \rightarrow \mathrm{~d}_{\mathrm{N}}(a, b, x, y)=b$.

Number-valued primitive recursion

$(\mathrm{N} 5) a \in \mathrm{~N} \wedge f \in\left(\mathrm{~N}^{2} \rightarrow \mathrm{~N}\right) \rightarrow r_{\mathrm{N}}(a, f) \in(\mathrm{N} \rightarrow \mathrm{N})$.
(N6) $\left.\quad \begin{array}{c}a, b \in N \wedge f \in\left(\mathrm{~N}^{2} \rightarrow \mathrm{~N}\right) \\ \wedge g=\mathrm{r}_{\mathrm{N}}(a, f)\end{array}\right\} \rightarrow g 0=a \wedge g\left(b^{\prime}\right)=f(b,(g b))$.

The elementary theoy of classes EC is formulated in the classical logic of partial individual terms with equality.

Elementary theory of classes

$$
\mathrm{EC}:=(\mathrm{E})+(\mathrm{PCA})+(\mathrm{N})+\text { (el.comp. })
$$

What are sets of natural numbers?

$$
\begin{aligned}
\operatorname{Set}_{\mathrm{N}} & :=\{f: f \in(\mathrm{~N} \rightarrow \mathrm{~N})\} \\
b \varepsilon a & :=a \in \operatorname{Set}_{\mathrm{N}} \wedge b \in \mathrm{~N} \wedge a b=0 .
\end{aligned}
$$

So - provisionally - we assume that sets of natural numbers are represented by total operations from N to N .

Forms of induction on N

Set induction $\left(S-\mathrm{I}_{\mathrm{N}}\right)$

$$
0 \varepsilon a \wedge(\forall x \in N)\left(x \varepsilon a \rightarrow x^{\prime} \varepsilon a\right) \rightarrow(\forall x \in N)(x \varepsilon a) .
$$

Class induction $\left(\mathrm{C}-\mathrm{I}_{\mathrm{N}}\right)$

$$
0 \in S \wedge(\forall x \in N)\left(x \in S \rightarrow x^{\prime} \in S\right) \rightarrow(\forall x \in N)(x \in S)
$$

Formula induction $\left(\mathbb{L}-\mathrm{I}_{\mathrm{N}}\right)$

$$
\varphi[0] \wedge(\forall x \in N)\left(\varphi[x] \rightarrow \varphi\left[x^{\prime}\right]\right) \rightarrow(\forall x \in N) \varphi[x] .
$$

Theorem (First observation)

(1) $\mathrm{EC}+\left(\mathrm{S}-\mathrm{I}_{\mathrm{N}}\right) \equiv$ PRA.
(2) $\mathrm{EC}+\left(\mathrm{C}-\mathrm{I}_{\mathrm{N}}\right) \equiv \mathrm{ACA} \mathrm{A}_{0} \equiv \mathrm{PA}$.
(3) $E C+\left(\mathbb{L}-I_{N}\right) \equiv A C A$.

Remark

- With set induction we can prove that sets have specific prioperties. In general, this form of induction cannnot be used in order to show that specific terms represent sets.
- If only set induction is available, axioms (PR1) and (PR2) are needed for having closure under primitive recursion.
- If class induction is available, the usual fixed point theorem of a PCA proves the existence of a closed term with the properties of r_{N}.

Lemma (Set-valued recursion)

There exists a closed term rec such that $\mathrm{EC}+\left(\mathrm{C}-\mathrm{I}_{\mathrm{N}}\right)$ proves:

$$
\begin{gathered}
a \in \operatorname{Set}_{\mathrm{N}} \wedge b \in \mathrm{~N} \wedge f \in\left(\mathrm{~N} \times \operatorname{Set}_{\mathrm{N}} \rightarrow \operatorname{Set}_{\mathrm{N}}\right) \wedge g=\operatorname{rec}(a, f) \rightarrow \\
g \in\left(\mathrm{~N} \rightarrow \operatorname{Set}_{\mathrm{N}}\right) \wedge g(0)=a \wedge g\left(b^{\prime}\right)=f(b, g(b)) .
\end{gathered}
$$

But thus far, $\operatorname{Set}_{\mathrm{N}}$ has very weak closure properties. For example, it is not closed under arithmetical comprehension.

The unbounded minimum (or search) operator μ
$(\mu .1) \quad f \in(\mathrm{~N} \rightarrow \mathrm{~N}) \leftrightarrow \mu f \in \mathrm{~N}$,
$(\mu .2) \quad f \in(\mathrm{~N} \rightarrow \mathrm{~N}) \wedge(\exists x \in \mathrm{~N})(f x=0) \rightarrow f(\mu f)=0$.

Remark

Least standard model of the applicative part of $\mathrm{EC}(\mu)$ by means of Π_{1}^{1} recursion theory: The objects are the natural numbers and

$$
(x \circ y) \text { interpreted as }\{x\}^{\mathrm{E}}(y),
$$

where E is the well-known type-2 equality functional

$$
\mathrm{E}(h)= \begin{cases}0 & \text { if } \exists n(h(n)=0) \\ 1 & \text { otherwise }\end{cases}
$$

Theorem
(1) $\mathrm{EC}(\mu)+\left(\mathrm{S}-\mathrm{I}_{\mathrm{N}}\right) \equiv \mathrm{PA}$.
(2) $\mathrm{EC}(\mu)+\left(\mathrm{C}-\mathrm{I}_{\mathrm{N}}\right) \equiv \Pi_{\infty}^{0}-\mathrm{CA}_{<\varepsilon_{0}} \equiv \Sigma_{1}^{1}-\mathrm{AC}$.
(3) $\mathrm{EC}(\mu)+\left(\mathbb{L}-\mathrm{I}_{\mathrm{N}}\right) \equiv \Pi_{\infty}^{0}-\mathrm{CA}_{<\varepsilon_{\varepsilon_{0}}}$.

Remark

- $\mathrm{EC}(\mu)+\left(\mathrm{S}-\mathrm{I}_{\mathrm{N}}\right)$ may be considered as a reformulation of Feferman's system W and is proof-theoretically equivalent to his $\mathrm{K}^{(\alpha)}$.
- $\mathrm{EC}(\mu)+\left(\mathrm{C}-\mathrm{I}_{\mathrm{N}}\right)$ is proof-theoretically equivalent to $\mathrm{K}^{(\beta)}$.

Adding join (J)

If a names a class and f maps all elements of this class to classes,

$$
(\forall x \dot{\in} a)(f x \in \Re),
$$

we write $b=\Sigma(a, f)$ for the assertion

$$
\forall x\left(x \dot{\in} b \leftrightarrow x=\left\langle\mathrm{p}_{0} x, \mathrm{p}_{1} x\right\rangle \wedge \mathrm{p}_{0} x \dot{\in} a \wedge \mathrm{p}_{1} x \dot{\in} f\left(\mathrm{p}_{0} x\right)\right),
$$

stating that b names the disjoint union of the classes named fy for y ranging over a. The join axiom (J) claims the existence of such disjoint unions.

Join (J)

$$
a \in \Re \wedge(\forall x \dot{\in} a)(f x \in \Re) \rightarrow j(a, f) \in \Re \wedge j(a, f)=\Sigma(a, f) .
$$

Theorem

(1) $\mathrm{EC}+(\mathrm{J})+\left(\mathrm{S}-\mathrm{I}_{\mathrm{N}}\right) \equiv$ PRA.
(2) $\mathrm{EC}+(\mathrm{J})+\left(\mathrm{C}-\mathrm{I}_{\mathrm{N}}\right) \equiv \mathrm{ACA}_{0} \equiv \mathrm{PA}$.
(3) $\mathrm{EC}+(\mathrm{J})+\left(\mathbb{L}-\mathrm{I}_{\mathrm{N}}\right) \equiv \Pi_{1}^{0}-\mathrm{CA}_{<\varepsilon_{0}} \equiv \Sigma_{1}^{1}-\mathrm{AC}$.

Theorem

(1) $\mathrm{EC}(\mu)+(\mathrm{J})+\left(\mathrm{S}-\mathrm{I}_{\mathrm{N}}\right) \equiv \mathrm{ACA}_{0} \equiv \mathrm{PA}$.
(2) $\mathrm{EC}(\mu)+(\mathrm{J})+\left(\mathrm{C}-\mathrm{I}_{\mathrm{N}}\right) \equiv \Pi_{1}^{0}-\mathrm{CA}_{<\varepsilon_{0}} \equiv \Sigma_{1}^{1}-\mathrm{AC}$.
(3) $\mathrm{EC}(\mu)+(\mathrm{J})+\left(\mathbb{L}-\mathrm{I}_{\mathrm{N}}\right) \equiv \Pi_{1}^{0}-\mathrm{CA}_{<\varphi_{\varepsilon_{0}} 0}$.

Some ontological observations

Two forms of power classes

- Strong power class (SP). For every class X there exists a class Y such that Y consists exactly of the names of all subclasses of X,

$$
\forall X \exists Y \forall z(z \in Y \leftrightarrow \exists Z(\Re(z, Z) \wedge Z \subseteq X))
$$

- Weak power class (WP). It only claims that for each class X there exists a class Y such that each element of Y names a subclass of X and for any subclass of X at least one of its names belongs to Y,

$$
\forall X \exists Y((\forall z \in Y)(\exists Z \subseteq X)(\Re(z, Z)) \wedge(\forall Z \subseteq X)(\exists z \in Y) \Re(z, Z))
$$

Remark

Even the uniform version of (WP) is consistent with EC.

Theorem

(1) The names of a class never form a class, i.e.

$$
\mathrm{EC} \vdash \forall X \neg \exists Y(Y=\{z: \Re(z, X)\})
$$

(2) Hence, (SP) is inconsistent with EC.
(3) It is consistent with EC (though not provable there) to assume that there exists the class of all names.
(9) The theory $\mathrm{EC}+(\mathrm{J})$ proves that not all objects are names.
(5) The theory $\mathrm{EC}+(\mathrm{J})$ proves the negation of (WP).

Operational extensionality (Op-Ext)

$$
\forall f, g(\forall x(f x \simeq g x) \rightarrow f=g) .
$$

Full definition by cases $\left(D_{V}\right)$

$$
(a=b \rightarrow \operatorname{d} v(u, v, a, b)=u) \wedge(a \neq b \rightarrow \operatorname{d} v(u, v, a, b)=v) .
$$

Remark

If we set (Tot) := $\forall x, y(x y \downarrow)$, then we have:
(1) $\mathrm{EC}+(\mathrm{Op}-\mathrm{Ext})+(\mathrm{Dv})$ is inconsistent.
(2) $\mathrm{EC}+(\mathrm{Op}-\mathrm{Ext})+(\mathrm{Tot})$ is consistent.

- $\mathrm{EC}+(\mathrm{Op}-\mathrm{Ext})+\forall x(x \in \mathrm{~N})$ is inconsistent.
- $\mathrm{EC}+($ Tot $)+\forall x(x \in \mathrm{~N})$ is inconsistent.

Proof of (1). We set

$$
s:=\operatorname{fix}\left(\lambda y x . \mathrm{d}_{V}(1,0, y,(\lambda z .0))\right)
$$

and thus have

$$
\mathrm{s} x \simeq(\lambda y x \cdot \mathrm{~d} v(1,0, y,(\lambda z .0))) s x \simeq \mathrm{~d}_{v}(1,0, s,(\lambda z .0))
$$

Hence, if $s=(\lambda z .0)$, then $s x=1$ for all x, which is impossible. Therefore, $s \neq(\lambda z .0)$. Hence, $s x=0$ for all x. By (Op-Ext) we thus have $s=(\lambda z .0)$. But this is a contradiction.

