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Point of departure

Systems of explicit mathematics introduced by S. Feferman in 1975. Since
then they play an important role in foundational discussions:

Original aim: formal framework for constructive mathematics, in
particular Bishop-style constructive mathematics.

First vesions of explicit mathematics based on intuitionistic logic;
later formulated in a classical framework.

Close relationship to systems of second order arithmetic and set
theory; instrumental for reductive proof theory.

Logical foundations of functional and object oriented programming
languages.
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Feferman’s three classsic papers:

A language and axioms for explicit mathematics, in: J. N. Crossley
(ed.), Algebra and Logic, Lecture Notes in Mathematics 450,
Springer, 1975;

Recursion theory and set theory: a marriage of convenience, in: J. E.
Fenstad, R. O. Gandy, G. E. Sacks (eds.), Generalized Recursion
Theory II, Studies in Logic and the Foundations of Mathematics 94,
Elsevier, 1978;

Constructive theories of functions and classes, in: M. Boffa, D. van
Dalen,K. McAloon (eds.). Logic Colloquium ’78, Studies in Logic and
the Foundations of Mathematics 97, Elsevier, 1979.
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Basic ontology (modern approach)

Formulated in a language L with first and second order variables and con-
stants.

The general universe (first order objects)

Unspecified general objects, (constructive) operations, bitstrings,
programs, . . . .

These objects form a partial combinatory algebra.

Classes (second order objects)

Classes are simply collections of objects.

These classes help to “structure” the universe.

As we will see, more versatile than “traditional” type theories.
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The element relation ∈ and the naming relation <

t ∈ S ::: object t is an element of class S

(Strong form of polymorphism: an object may belong to many classes.)

Equality of classes defined by

S = T := ∀x(x ∈ S ↔ x ∈ T ).

Classes can be addressed via there names:

<(t,S) ::: object t is a name of class S .
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Explicit representation and equality

(E1) ∃x<(x , S),

(E2) <(r ,S) ∧ <(r ,T ) → S = T ,

(E3) <(r ,S) ∧ S = T → <(r ,T ).

Some abbreviations:

s ∈̇ t := ∃X (<(t,X ) ∧ s ∈ X ),

s =̇ t := ∃X (<(s,X ) ∧ <(t,X )),

S ⊆ T := (∀x ∈ S)(x ∈ T ),

s ⊆̇ t := ∃X ,Y (<(s,X ) ∧ <(t,Y ) ∧ X ⊆ Y ),

s ∈ < := ∃X<(s,X ) (although < is in general not a class).
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Basic characteristics of this operational framework

Reconcile the intensional with the extensional point of view:
Intensionality on the level of objects (names) and extensionality on
the level of classes.

The general universe of discourse simply is a patial combinatory
algebra; typical examples: Kleene’s first and second model, the graph
model, the (total) term model, . . . .

Self-application of objects – we often call them operations – to each
other is possible; however, it does not necessarily produce a value.
The exact nature of these operations is purposely left open.

The universe is open-ended but has some simple closure properties.

No specific ideology.
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The language L
Basic vocabulary:

Variables for individuals: a, b, c , f , g , h, x , y , z , . . . .

Variables for classes A,B,C ,R,S ,T ,X ,Y ,Z , . . . .

Many individual constants and a class constant N.

Function symbol ◦ for (partial) term application.

Relation symbols ↓, ∈, =, and <.

Indiividual terms (r,s,t,. . . ):

ind. variables | ind. constants | (s ◦ t)

As usual:

st := (s ◦ t)

s1(s2 . . . sn) := s1s2 . . . sn := (. . . (s1s2) . . . sn).
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Logic of partial terms (Beeson)

t↓ ::: term t has a value;

s ' t := (s↓ ∨ t↓ → s = t).

Some characteristic properties

x↓.

c↓ if c is a constant.

st↓ → (s↓ ∧ t↓).

A[t] → t↓ for atomic A[t].

A[t] ∧ t↓ → ∃xA[x ].
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Moses Schönfinkel (1889 – 1942)

The inventor of Combinatory Logic:
Equivalent to predicate logic.

Haskell Brooks Curry (1900 – 1982)

Further development of combinatroy logic.
Mathematical analysis of substitution (and
conversion) of terms.
Curry’s paradox.
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Partial combinatory algebra

Combinatory axioms, pairing and projections

(PCA1) k 6= s.

(PCA2) kab = a.

(PCA3) sab↓ ∧ sabc ' (ac)(bc).

(PCA4) p0〈a, b〉 = a ∧ p1〈a, b〉 = b, where 〈a, b〉 := pab.

Immediate consequences

λ-abstraction, fixed point theorem.

A “computational engine”, acting on our universe.
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λ-Abstraction

For each term t and each variable x we can find a term – written (λx .t) –
such that its variables are those of t minus x and

(λx .t)↓ and (λx .t)x ' t.

s↓ → (λx .t)s ' t[s/x ].

Proof.

Induction on t.

(1) If t is the variable x , then (λx .t) := skk.

(2) If t is a variable different from x or a constant, then (λx .t) := kt.

(3) If t is the term t1t2, then (λx .t) := s(λx .t1)(λx .t2).
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Fixed point theorem

There exists a closed term fix such that

fix(f )↓ ∧ g = fix(f ) → ∀x(gx ' fgx).
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A formula A is called

stratified iff the relationsymbol < does not occur in A;

elementary iff it is stratified and does quantify over classes.

Finite axiomatization of uniform elementary comprehension such that:

Theorem

For every elementary formula ϕ[u, ~v , ~W ] with at most the indicated free
variables there exists a closed term tϕ such that:

1 ~z ∈ < → tϕ(~y , ~z) ∈ <,

2 <(~z , ~Z ) → ∀x(x ∈̇ tϕ(~y , ~z) ↔ ϕ[x , ~y , ~Z ]).

Hence, tϕ(~y , ~z) is a name of {x : ϕ[x , ~y , ~Z ])}.

Comprehension for non-stratified formulas may lead to inconsisteny.
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The natural numbers (N, 0, sN, pN, dN, rN)

Some abbreviations:

f ∈ (Nk → N) := (∀x1, . . . , xk ∈ N)(f (x1, . . . xk) ∈ N)),

t ′ := sNt.

Basic N-axioms

(N1) 0 ∈ N ∧ a ∈ N → a′ ∈ N.

(N2) a′ 6= 0 ∧ pN0 = 0 ∧ pN(a′) = a.

(N3) x ∈ N ∧ y ∈ N ∧ x = y → dN(a, b, x , y) = a.

(N4) x ∈ N ∧ y ∈ N ∧ x 6= y → dN(a, b, x , y) = b.
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Number-valued primitive recursion

(N5) a ∈ N ∧ f ∈ (N2 → N) → rN(a, f ) ∈ (N→ N).

(N6)
a, b ∈ N ∧ f ∈ (N2 → N)

∧ g = rN(a, f )

}
→ g0 = a ∧ g(b′) = f (b, (gb)).

The elementary theoy of classes EC is formulated in the classical logic of
partial individual terms with equality.

Elementary theory of classes

EC := (E) + (PCA) + (N) + (el.comp.)
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What are sets of natural numbers?

SetN := {f : f ∈ (N→ N)}

b ε a := a ∈ SetN ∧ b ∈ N ∧ ab = 0.

So – provisionally – we assume that sets of natural numbers are repre-
sented by total operations from N to N.
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Forms of induction on N

Set induction (S-IN)

0 ε a ∧ (∀x ∈ N)(x ε a → x ′ ε a) → (∀x ∈ N)(x ε a).

Class induction (C-IN)

0 ∈ S ∧ (∀x ∈ N)(x ∈ S → x ′ ∈ S) → (∀x ∈ N)(x ∈ S).

Formula induction (L-IN)

ϕ[0] ∧ (∀x ∈ N)(ϕ[x ] → ϕ[x ′]) → (∀x ∈ N)ϕ[x ].
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Theorem (First observation)

1 EC + (S-IN) ≡ PRA.

2 EC + (C-IN) ≡ ACA0 ≡ PA.

3 EC + (L-IN) ≡ ACA.

Remark

With set induction we can prove that sets have specific prioperties.
In general, this form of induction cannnot be used in order to show
that specific terms represent sets.

If only set induction is available, axioms (PR1) and (PR2) are needed
for having closure under primitive recursion.

If class induction is available, the usual fixed point theorem of a PCA
proves the existence of a closed term with the properties of rN.

G. Jäger (Bern University) Foundational Crisis, Explicit Mathematics July 2019 19 / 28



Part 3 – Turning to explicit mathematics

Lemma (Set-valued recursion)

There exists a closed term rec such that EC + (C-IN) proves:

a ∈ SetN ∧ b ∈ N ∧ f ∈ (N× SetN → SetN) ∧ g = rec(a, f ) →

g ∈ (N→ SetN) ∧ g(0) = a ∧ g(b′) = f (b, g(b)).

But thus far, SetN has very weak closure properties. For example, it is not
closed under arithmetical comprehension.

The unbounded minimum (or search) operator µ

(µ.1) f ∈ (N→ N) ↔ µf ∈ N,

(µ.2) f ∈ (N→ N) ∧ (∃x ∈ N)(fx = 0) → f (µf ) = 0.
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Remark

Least standard model of the applicative part of EC(µ) by means of Π1
1

recursion theory: The objects are the natural numbers and

(x ◦ y) interpreted as {x}E(y),

where E is the well-known type-2 equality functional

E(h) =

{
0 if ∃n(h(n) = 0),
1 otherwise.

Theorem

1 EC(µ) + (S-IN) ≡ PA.

2 EC(µ) + (C-IN) ≡ Π0
∞-CA<ε0 ≡ Σ1

1-AC.

3 EC(µ) + (L-IN) ≡ Π0
∞-CA<εε0 .
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Remark

EC(µ) + (S-IN) may be considered as a reformulation of Feferman’s
system W and is proof-theoretically equivalent to his K(α).

EC(µ) + (C-IN) is proof-theoretically equivalent to K(β).
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Adding join (J)

If a names a class and f maps all elements of this class to classes,

(∀x ∈̇ a)(fx ∈ <),

we write b = Σ(a, f ) for the assertion

∀x(x ∈̇ b ↔ x = 〈p0x , p1x〉 ∧ p0x ∈̇ a ∧ p1x ∈̇ f (p0x)),

stating that b names the disjoint union of the classes named fy for y
ranging over a. The join axiom (J) claims the existence of such disjoint
unions.

Join (J)

a ∈ < ∧ (∀x ∈̇ a)(fx ∈ <) → j(a, f ) ∈ < ∧ j(a, f ) = Σ(a, f ).

G. Jäger (Bern University) Foundational Crisis, Explicit Mathematics July 2019 23 / 28



Part 3 – Turning to explicit mathematics

Theorem

1 EC + (J) + (S-IN) ≡ PRA.

2 EC + (J) + (C-IN) ≡ ACA0 ≡ PA.

3 EC + (J) + (L-IN) ≡ Π0
1-CA<ε0 ≡ Σ1

1-AC.

Theorem

1 EC(µ) + (J) + (S-IN) ≡ ACA0 ≡ PA.

2 EC(µ) + (J) + (C-IN) ≡ Π0
1-CA<ε0 ≡ Σ1

1-AC.

3 EC(µ) + (J) + (L-IN) ≡ Π0
1-CA<ϕε00

.
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Some ontological observations

Two forms of power classes

Strong power class (SP). For every class X there exists a class Y
such that Y consists exactly of the names of all subclasses of X,

∀X∃Y ∀z(z ∈ Y ↔ ∃Z (<(z ,Z ) ∧ Z ⊆ X )).

Weak power class (WP). It only claims that for each class X there
exists a class Y such that each element of Y names a subclass of X
and for any subclass of X at least one of its names belongs to Y ,

∀X∃Y ((∀z ∈ Y )(∃Z ⊆ X )(<(z ,Z )) ∧ (∀Z ⊆ X )(∃z ∈ Y )<(z ,Z )).

Remark

Even the uniform version of (WP) is consistent with EC.
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Theorem

1 The names of a class never form a class, i.e.

EC ` ∀X¬∃Y (Y = {z : <(z ,X )}).

2 Hence, (SP) is inconsistent with EC.

3 It is consistent with EC (though not provable there) to assume that
there exists the class of all names.

4 The theory EC + (J) proves that not all objects are names.

5 The theory EC + (J) proves the negation of (WP).
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Operational extensionality (Op-Ext)

∀f , g( ∀x(fx ' gx) → f = g ).

Full definition by cases (DV)

(a = b → dV (u, v , a, b) = u) ∧ (a 6= b → dV (u, v , a, b) = v).

Remark

If we set (Tot) := ∀x , y(xy↓), then we have:

1 EC + (Op-Ext) + (DV) is inconsistent.

2 EC + (Op-Ext) + (Tot) is consistent.

3 EC + (Op-Ext) + ∀x(x ∈ N) is inconsistent.

4 EC + (Tot) + ∀x(x ∈ N) is inconsistent.
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Proof of (1). We set

s := fix(λyx .dV (1, 0, y , (λz .0)))

and thus have

sx ' (λyx .dV (1, 0, y , (λz .0)))sx ' dV (1, 0, s, (λz .0)).

Hence, if s = (λz .0), then sx = 1 for all x , which is impossible. There-
fore, s 6= (λz .0). Hence, sx = 0 for all x . By (Op-Ext) we thus have
s = (λz .0). But this is a contradiction.
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