Part 4

Adding universes

A (predicative) universe is a class that is closed under elementary comprehension and join and that consists of names only.

Universe

We write Univ[S] for the conjunction of the following formulas:

- $(\forall x \in S)(x \in \Re)$.
- nat $\in S$, where nat is a name of the class N.
- For every term t_{φ} associated to the elementary formula $\varphi[x, \vec{y}, \vec{Z}]$,

$$
\forall \vec{y}(\forall \vec{z} \in S)\left(t_{\varphi}(\vec{y}, \vec{z}) \in S\right)
$$

- $\forall f(\forall a \in S)((\forall x \dot{\in} a)(f x \in S) \rightarrow j(a, f) \in S)$.

In addition,

$$
\mathcal{U}[t]:=\exists X(\Re(t, X) \wedge \operatorname{Univ}[X]) .
$$

Universes can be regarded as the explicit analogies of

- regular sets or regular ordinals if the operations are interpreted as set-theoretic functions,
- admissible sets if the operations are interpreted as partial recursive functions.

Basic ontological properties of universes

Universes do not contain their names

- Univ $[S] \wedge \Re(a, S) \rightarrow a \notin S$.
- $\mathcal{U}[a] \rightarrow a \notin a$.

The names of a class cannot be in a single universe

$$
\operatorname{Univ}[S] \rightarrow \exists x(\Re(x, T) \wedge x \notin S) .
$$

$\mathrm{EC}+(\mathrm{J})$ does not prove the existence of universes

$$
\mathrm{EC}+(\mathrm{J}) \nvdash \exists X \operatorname{Univ}[X] .
$$

The limit axioms (Lim)
The limit axiom (Lim). For a fresh constant ℓ :
(L1) $a \in \Re \rightarrow \ell a \in \Re$,
(L2) $\ell a \in \Re \rightarrow \mathcal{U}[\ell a] \wedge a \dot{\in} \ell a$.

Attention: Non-extensionality of ℓ

$$
\mathrm{EC}+(J) \vdash(\exists x, y \in \Re)(x \doteq y \wedge \ell x \neq \ell y) .
$$

Theorem
(1) $|E C+(J)+(L i m)|+\left(C-I_{N}\right)=\Gamma_{0}$.
© $|\mathrm{EC}+(J)+(\operatorname{Lim})|+\left(\mathbb{L}-\mathrm{I}_{\mathrm{N}}\right)=\varphi\left(1, \varepsilon_{0}, 0\right)$.

Sets in explicit mathematics: a sketch
We fix some universe U and introduce a further class constant S for the class of sets (with respect to U) and an individual constant σ. For better intuitive reading, write

$$
\{f x: x \dot{\in} a\} \quad \text { and } \quad \sigma(a, f)
$$

Closure rules for S : For all a and f :

$$
a \in U \wedge(\forall x \dot{\in} a)(f x \in S) \rightarrow\{f x: x \dot{\in} a\} \in S
$$

Induction for S : For all formulas $\varphi[x]$:

$$
\begin{gathered}
(\forall a \in U)(\forall f \in(a \rightarrow S))((\forall x \dot{\in} a) \varphi[f x] \rightarrow \varphi[\{f x: x \dot{\in} a\}]) \\
\rightarrow(\forall x \in S) \varphi[x] .
\end{gathered}
$$

Example:

- Let e be some name of the empty class and let id be the term $\lambda x . x$. Then we have

$$
e \in U \quad \text { and } \quad(\forall x \dot{\in} e)(i d(x) \in S)
$$

Thus $\{x: x \dot{\in} e\} \in S$, and this codes the empty set. Write emp for $\{x: x \dot{\in} e\} \in S$.

- Now consider the terms $t:=\lambda x$.emp. Then we have

$$
\text { nat } \in U \quad \text { and } \quad(\forall x \in \text { nat })(t x \in S) .
$$

Hence $\{t x: x \in$ nat $\} \in S$. Since all $t x$ are equal to emp this codes the set whose only element is emp.

- Now suppose that we have the sets $\{f x: x \dot{\in} a\}$ and $\{g y: y \dot{\in} b\}$ with $a, b \in U$. Then we first define the class

$$
\{\langle 0, x\rangle: x \dot{\in} a\} \cup\{\langle 1, y\rangle: y \dot{\in} b\}
$$

and let c be one of its names that belongs to U. We alss let h be an operation, i.e. a first-order term that satisfies

$$
h(\langle i, x\rangle)= \begin{cases}g x & \text { if } i=0 \\ h x & \text { if } i=1\end{cases}
$$

Then $(\forall x \dot{\in} c)(h x \in S)$. Hence $\{h x \dot{\in} c\} \in S$ and codes the union of $\{f x: x \dot{\in} a\}$ and $\{g y: y \dot{\in} b\}$.

Recursive definition of the extensional equality of sets

$$
\begin{aligned}
& \{f x: x \dot{\in} a\} \equiv\{g y: y \dot{\in} b\} \quad: \Leftrightarrow \\
& (\forall x \dot{\in} a)(\exists y \dot{\in} b)(f x \equiv g y) \wedge(\forall y \dot{\in} b)(\exists x \dot{\in} a)(f x \equiv g y) .
\end{aligned}
$$

Definition of the elementhood of sets: For all objects $r \in S$:

$$
r \tilde{\in}\{g y: y \dot{\in} b\} \quad \Leftrightarrow \quad(\exists y \dot{\in} b)(r \equiv g y) .
$$

A short interlude: least universes

Replace the constant ℓ by $\hat{\ell}$ and the axioms (Lim) by ($\widehat{\mathrm{Lim}}$):
(L̂1) $a \in \Re \rightarrow \hat{\ell} a \in \Re$,
(L̂2) $\hat{\ell} a \in \Re \rightarrow \mathcal{U}[\hat{\ell} a] \wedge a \dot{\in} \hat{\ell} a \wedge(\forall b \in \Re)(\mathcal{U}[b] \wedge a \dot{\in} b \rightarrow \hat{\ell} a \subseteq b)$.
Thus:

- $\hat{\ell} a$ is the name of the intersection of all universes that contain a.
- Least universes are defined by reference to the totality of all classes.
- $\mathrm{EC}+(\mathrm{J})+(\widehat{\mathrm{Lim}})+\left(\mathbb{L}-\mathrm{I}_{N}\right)$ closely related to T_{0} and thus much stronger than $\mathrm{EC}+(\mathrm{J})+(\mathrm{Lim})+\left(\mathbb{L}-\mathrm{I}_{\mathrm{N}}\right)$.

Explicit Mahlo

$\mathrm{EC}+(\mathrm{J})+(\mathrm{Lim})$ describes the explicit analogue of an inaccessible universe or of an recursively inaccessible universe. It is predicatively justified or reducible according the the Feferman-Schütte approach.

What if we go a step further?

An ordinal α is callled a Mahlo ordinal iff

$$
(\forall f: \alpha \rightarrow \alpha)(\exists \beta<\alpha)(\beta \in \operatorname{Reg} \wedge f: \beta \rightarrow \beta)
$$

We live in a Mahlo world - roughly speaking - if for every class A and for every operation f that maps classes to classes there exists a universe $U(A, f)$ such that A is represented in $U(A, f)$ and f maps $U(A, f)$ to $U(A, f)$.

In the language of explicit mathematics:

$$
\begin{aligned}
f \in[\Re]_{1} & :=(\forall x \in \Re)(f x \in \Re) \\
f \in[a]_{1} & :=(\forall x \dot{\in} a)(f x \dot{\in} a)
\end{aligned}
$$

Mahlo axioms (M)

$(\mathrm{M} 1) a \in \Re \wedge f \in[\Re]_{1} \rightarrow \mathrm{~m}(a, f) \in \Re$,
$(\mathrm{M} 2) \mathrm{m}(a, f) \in \Re \rightarrow \mathcal{U}[\mathrm{m}(a, f)] \wedge a \dot{\in} \mathrm{~m}(a, f) \wedge f \in[\mathrm{~m}(a, f)]_{1}$.

Theorem
(1) $\left|\mathrm{EC}+(\mathrm{J})+(\mathrm{M})+\left(\mathrm{C}-\mathrm{I}_{\mathrm{N}}\right)\right|=\varphi(\omega, 0,0)$.
(2) $\left|E C+(J)+(M)+\left(\mathbb{L}-I_{N}\right)\right|=\varphi\left(\varepsilon_{0}, 0,0\right)$.

Thank you for your attention!

