
SR

Automated Theorem Proving
– Foundations of SAT-Solving –

July 2019

Wolfgang Küchlin

Symbolic Computation Group
Wilhelm-Schickard-Institute of Informatics

Faculty of Mathematics and Sciences

Universität Tübingen

Steinbeis Transferzentrum
Objekt- und Internet-Technologien (OIT)

Wolfgang.Kuechlin@uni-tuebingen.de
http://www-sr.informatik.uni-tuebingen.de



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 2 SR

Contents

Propositional Resolution 
 Theorem Proving by Deduction, based on clauses
 Clause: disjunction of literals, e.g. (x ∨ ¬y ∨ z) ≡ {x,¬y,z}
 From 2 clauses C1 and C2, deduce new resolvent clause R 

where C1 ∧ C2 ⊨ R, hence {C1, C2 } ≡ {C1, C2, R }
 Prove SAT(ℱ)=false by deducing ⊥ (represented by unsatis-

fiable empty clause { } =: □) since ℱ ≡ ℱ ∪ { } ≡ ℱ ∧ ⊥ ≡ ⊥

Elementary DPLL SAT-Solving
 Historical Davis-Putnam-Logemann-Loveland Method (1962)
 Compute SAT(F) in place as follows:

• Try some variable assignment x=true
• Compute other variable assignments as immediate consequences
• Carry on, until success, or backtrack to try x=false.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 3 SR

The Resolution Rule

 (sole) inference rule:                                                                                                       

where C´ = C ⋃ {ℓ} and D´ = D ⋃ {¬ℓ} are clauses.
The resolvent R = C ⋃ D is deduced by resolving parent clauses 
C´ and D´ on the literal ℓ. We write {C´, D´} ⊢ R.

 Examples:

Res
DC

}{D}{C
∪

¬∪∪ 

v}{x,
u}{v}u,{x,

v}u,y,{x,
z}v,{u,z}y,{x,

¬
¬¬

¬
¬¬



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 4 SR

Example: Resolution proof-tree

F3={{x,y}, {x,¬y,z}, {¬x}, {¬y,¬z}}
{x,y}    {x,¬y,z}

{x,z}   {¬x}

{x,y}   {¬x} {z}    {¬y,¬z}

{y}                                    {¬y}

□



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 5 SR

Clauses and Implications, Soundness, Completeness
 A clause embeds a variety of implications:

 Example:  (x ∨ y ∨ z) ≡ ¬(¬x ∧ ¬y) ∨ z ≡ (¬x ∧ ¬y → z)
 But also: (x ∨ y ∨ z) ≡ ¬(¬x) ∨ (y ∨ z) ≡ (¬x → y ∨ z)

 Resolution represents deduction of implications
 Parent clauses (A ∨ x) and (B ∨ ¬x), resolvent (A ∨ B)
 (A ∨ x) ≡ (¬(¬A) ∨ x) ≡ (¬A → x)
 (B ∨ ¬x) ≡ (x → B) 
 From (¬A → x) and (x → B) follows (¬A → B) ≡ (¬(¬A) ∨ B) ≡ (A ∨ B)

 The resolution calculus is sound. For all sets ℱ of clauses and 
all clauses D, we have: ℱ ⊢*Res D  implies ℱ ⊨ D

 Hence: ℱ ⊢*Res D  implies ℱ ≡ ℱ ∪ D
 Theorem: the resolution calculus is refutation complete:

ℱ ⊨ ⊥ implies ℱ ⊢*Res □



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 6 SR

Subsumption and Unit Resolution

 Clause C subsumes clause D iff C ⊆ D.
 Constraint D is subsumed by C, because C is stronger. 

 If C ⊆ D then C ⊨ D.
 Because D ≡ C ∨ R  for some R

 Lemma: Subsumed clauses are redundant and can be cancelled
 Let C ⊆ D. Then ℱ ∪ C ≡ ℱ ∪ C ∪ D.
 Absorption Law: F∧(F∨G) ≡ F, hence C ≡ C∧(C∨R) ≡ C∧D

 In Unit Resolution one of the parent clauses is a Unit (singleton)
 For parent clauses (A ∨ x) and (¬x), the resolvent is (A)
 Unit resolution is valuable, because A is shorter than (A ∨ x).
 Moreover, the (shorter) resolvent subsumes the longer parent: A∧(A∨x) ≡ A
 Hence the parent can be cancelled



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 7 SR

Resolution proof procedure
 Let C be a set of axioms (constraints). In order to prove a theorem 

D, i.e. C ⊨ D, proceed as follows:
1. Negate D. Convert C ⋃ ¬D into CNF. Call the result F.
2. Repeat

i. Compute all non-tautological resolvents R from F
ii. If □∈ R, return „proof“.
iii. Delete from R all subsumed clauses. // forward subsumption
iv. If R = { }, return „disproof“.  // □ not found, no more deductions possible
v. Delete from F all clauses subsumed by R. // backward subsumption
vi. F := F ⋃ R

 Theorem [refutation completeness]: If C ⊨ D, the proc. stops in (ii)
 Otherwise the procedure stops in (iv), because there are at most 

3n subsumption-free clauses in n variables (x, ¬x, don´t care x).
 Bad news: far too many useless deductions, memory explodes.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 8 SR

SAT-Solving with the DPLL Algorithm
DPLL: Davis-Putnam-Logemann-Loveland
 DPLL dates from 1960/62, significantly improved to CDCL
 CDCL (conflict driven clause learning) ~1996

Decision procedure for SAT-Solving problem SAT(F)
 Compute SAT(F)=? Is there a satisfying assignment for F?
 Alternative formulation: eliminate quantifiers in ∃x1,…,xn:F
 Idea: Iteratively try to construct an assignment, propagating the 

consequences at each step, backtrack exhaustively if necessary 
CDCL is method of choice for SAT (no contention)
 Solves „well-behaved“ problems with millions of variables
 Many „real“ problems are „well-behaved“: circuit and protocol 

verification, configuration problems, software verification.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 9 SR

History: the Davis-Putnam Algorithm (DP-1960)

 Martin Davis, Hilary Putnam: A Computing Procedure for
Quantification Theory. Journal of the ACM 7:201--215 (1960)
 Context: proving theorems of predicate logic

• Formula P is a contradiction iff there is a finite contradiction
• Iteratively generate the Herbrand universe Hi and substitute into P
• Each instance P(Hi) is a propositional formula, then solve SAT(P(Hi))

The DP-1960 algorithm consists of 3 rules
1. One-Literal Rule (Unit Propagation – UP)
2. Affirmative-Negative Rule (Pure Literal – PL)
3. Elimination of conflicts (Resolution)

 Later, rule 3 was replaced by 3* (DPLL, 1962)
3*.  Splitting Rule (Case distinction SAT-Solving)



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 10 SR

History: the Davis-Putnam Algorithm (DP-1960)

Rule 1 (One-Literal Clauses)
a) F is inconsistent, if it contains two unit clauses {p} and {¬p}
b) Else, if F contains a unit clause {p}, then delete all clauses

containing p, and delete ¬p from all clauses. 
The result F´ is inconsistent iff F is inconsistent.

a) The case of a unit clause {¬p} is analogous to (b).
If F´ is empty, then F is consistent.

• All clauses were deleted, hence all are satisfied.

Rule 2 (Affirmative-Negative Rule)
 If an atom p appears only positively (affirmative) or only

negatively, then delete all clauses containing p.
 The result F´ is inconsistent iff F is inconsistent.
 If F´ is empty, then F is consistent.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 11 SR

History: the Davis-Putnam Algorithm (DP-1960)

Rule 3 (Elimination of Atomic Formulas)
 If an atom p appears both positively (in clause set A) and

negatively (in clause set B), then
form clause-sets A´ and B´ with A = A´ ∨ p and B = B´ ∨ ¬p 
and rearrange F into F = (A´ ∨ p) ∧ (B´ ∨ ¬p) ∧ R, 
where p does not occur in A´, B´ and R. 
Now F is inconsistent iff F´ = (A´ ∨ B´) ∧ R is inconsistent

 Proof: 
F is inconsistent iff it is inconsistent for both p=0 and p=1. 
F= A´ ∧ R for p=0, and F= B´ ∧ R for p=1, 
hence F is inconsistent iff
F´ = (A´ ∧ R) ∨ (B´ ∧ R) = (A´ ∨ B´) ∧ R is inconsistent.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 12 SR

History: the Davis-Putnam Algorithm (DP-1960)

 Implementation of Rule 3 (Eliminating Atomic Formulas)
 Rearrange F into F = (A´ ∨ p) ∧ (B´ ∨ ¬p) ∧ R
 F is inconsistent iff F´ = (A´ ∨ B´) ∧ R is inconsistent
 In short: factor out p and resolve on p. (A´ ∨ B´) consists of all 

resolvents between clauses in A and clauses in B.
• Ex.: (a ∨ p) ∧ (b ∨ p) ∧ (c ∨ ¬p) ∧ (d ∨ ¬p) = [(a ∧ b) ∨ p] ∧ [(c ∧ d) ∨ ¬p] 

Form (a ∧ b) ∨ (c ∧ d) = (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d). These are
exactly the resolvents. The parent clauses can be deleted: if (a ∧ b) is
satisfied in F´, then F is satisfied by additionally setting p=0, and
analogously, if (c ∧ d) is satisfied in F´, then we may set p=1 to satisfy F.

 Bad news: clauses get longer, and clause set explodes: F´ = 
(A´ ∨ B´) ∧ R is no longer in CNF, needs fresh CNF conversion



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 13 SR

Example: the Davis-Putnam Algorithm (DP-1960)

The DP-Algorithm consists of 3 rules
1. One-Literal (Unit Propagation – UP)
2. Affirmative-Negative (Pure Literal – PL)
3. Elimination of conflicts (Resolution)

Example
 S0 = {{x, y, z}, {¬x, y, z}, {¬x}, {z, ¬y}}
 Rule 1c (UP of ¬x): S1 = {{y, z}, {z, ¬y}}
 Rule 3 (resolution on y): S2 = {{z}, {z}} = {{z}}
 Rule 2 (PL of z}: S3 = { }, hence consistent.

Rule 3 renders DP-1960 inefficient
 In order to eliminate p from F, ALL resolvents over p have to be

computed. This leads to an explosion of new clauses.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 14 SR

Existential Quantifier Elimination (EQE) with DP-1960

The DP-Algorithm consists of 3 rules
1. One-Literal (Unit Propagation – UP)
2. Affirmative-Negative (Pure Literal – PL)
3. Elimination of conflicts (Resolution)

 Rules 2 and 3 yield an EQE procedure
 SAT as an EQE problem: SAT(F) iff ∃x1,…,xn:F ≡ ⊤ and

UNSAT(F) iff ∃x1,…,xn:F ≡ ⊥
 Definition: ∃p.F ≡ F[p/⊤] ∨ F[p/⊥]

 If p is pure then F = (A´ ∨ p) ∧ R, hence ∃p.F ≡ R ∨ (A´∧ R) ≡ R 
 … else F=(A´ ∨ p) ∧ (B´ ∨ ¬p) ∧ R, hence ∃p.F ≡ (A´ ∨ B´) ∧ R.
 One of the rules is applicable as long as there are literals in F
 In the end, either F = { } (F is SAT) or F = { { } } (F is UNSAT)



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 15 SR

Example: EQE with DP-1960

First approach: Use rule 3 until all literals are pure
 Rule 1 is special case of rule 3

Example
 S0 = {{x, y, z}, {¬x, y, z}, {¬x}, {z, ¬y}}
 Rule 3 (resolution on y): S1 = {{x, z}, {¬x, z}, {¬x}}
 Rule 3 (resolution of x): S2 = {{z}, {¬x, z}, {¬x}}
 Rule 2 (PL of z): S3 = {{¬x}}
 Rule 2 (PL of ¬x): S4 = { }, hence consistent.

Second approach: Prefer rule 2 over rule 3
 Rule 2 (PL of z): S1 = {{¬x}}; Now ¬x is pure and S2 = { }.

But EQE is not really SAT-Solving
 We may not get a satisfying assignment on impure literals



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 16 SR

The Davis-Logemann-Loveland Algorithm (DPLL 1962)
 Martin Davis, George Logemann, and Donald Loveland. A Machine Program for

Theorem Proving. Communications of the ACM 5:394—397 (1962).

Rule 3* (Splitting Rule, replaces Rule 3)
 If p occurs both positively and negatively in F, rearrange F into

F = (A ∨ p) ∧ (B ∨ ¬p) ∧ R, where p does not occur in R.
 F is inconsistent iff both (A ∧ R) and (B ∧ R) are inconsistent
 Proof: F is inconsistent iff it is inconsistent for both p=0 and for

p=1. Now F= A ∧ R for p=0, and F= B ∧ R for p=1.
 Implementation of Rule 3*
 Set p=1 and p=0 one after another in F (e.g. as unit clauses)
 Do not form new clauses, instead perform unit propagation. 
 Clauses are shortened, sometimes eliminated, the problem is

simplified, especially through unit propagation.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 17 SR

History: The Davis-Logemann-Loveland Algorithm



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 18 SR

The DPLL Algorithm (of 1962)

boolean DPLL(ClauseSet S){

//1. Simplify S (unit constraint propagation)
while (S contains a unit clause {ℓ}) {

delete from S clauses containing ℓ;       // unit-subsumption
delete ¬ℓ from all clauses in S                // unit-resolution mit subsumption

}

//2. Trivial case?
if (�∈S)  return false;                                         // constraint unsatisfiable
if (S=={}) return true;                                        // nothing left to satisfy

//3. Case split and recursion
choose a literal ℓ occurring in S;       // Heuristic (intelligence) needed!
if( DPLL(S ⋃ {ℓ}) ) return true;                         // first recursive branch: try ℓ := true
else if ( DPLL(S ⋃ {¬ℓ}) ) return true;              // backtracking: try ℓ := false
else return false;

}



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 19 SR

Observations for DPLL in practice

No deduction of new clauses 
 No dynamic storage allocation 

Algorithm lives (and dies) with unit propagation 
 UP dominates run-time in practice (> 90% UP).
 This is necessarily so:

• With 100 variables there are 2100 cases without UP
• With complete UP there are only 99 propagations
• Typical value in practice: 90 propagations, 210 remaining cases

 Lesson from practice (and secret behind DPLL)
 Only few decisions are essential, the remaining cases follow 

as immediate consequences, ruling out many theoretical 
alternatives.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 20 SR

Example: SAT-Solving with DPLL

S0 = {{x, y, z}, {¬x, y, z}, {¬x}, {z, ¬y}}
 unit propagation of ¬x

• {¬x} subsumes {¬x, y, z}, hence ¬x ∧ (¬x ∨ y ∨ z) ≡ ¬x
• {¬x} unit-resolves with {x, y, z} to {y, z}, and {y, z} subsumes {x, y, z}

S1 = {{y, z}, {z, ¬y}}
 Heuristically choose y as decision variable:
 Case 1: let y=1 
 S2 = {{y}, {y, z}, {z, ¬y}} 
 unit propagation of y yields S3 = {{z}}, 
 unit propagation of z yields S4 = { }, return true.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 21 SR

Variable Selection Heuristics for DPLL

Some Heuristics for variable selection:
 Coose the literal which occurs most often.

• Then the formula is simplified in the most places
 Choose a literal L from 2-clause (binary clause) {K, ¬L}.

• Then K=1 if L=1, resp. L=0 if K=0, because clause encodes (L → K)
• Clever choice of K resp. L immediately leads to UP, eliminating a decision

 Choose a literal from a short(est) clause.
• Will soon produce a binary clause, then a UP

 For each literal L, compute how F would be shortened by UP 
after assigning L. Choose that L which has the greatest effect.

• This simplifies F most before the next decision.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 23 SR

First Step from DPLL to CDCL: Elementary Learning

 If F=0 after a sequence of variable assignments xi = bi, bi ∈
{0, 1}, i.e. β(F)=0, then we have hit upon a root N of F.
 N is given by a term N=(⋀{xi} ⋀{¬yi}), β(xi)=1, β(yi)=0
 We have N ⊨ ¬F and hence F ⊨ ¬N

The negation ¬N yields a clause C
 F ⊨ C implies F ≡ F ∧ C, i.e. C may be safely added to F.
 We have „learned“ to avoid this root in the future.

CDCL: conflict driven clause learning (first idea only)
 Good: C need only contain the decision variables in N
 Bad: in general, many decisions were taken before hitting the 

root, not all of them relevant for the root. C is still far too long, 
does not capture the root condition precisely, i.e. C is too special 
and of limited re-use.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 24 SR

Example: Elementary CDCL

S0 = {{x, y}, {¬y, z}, {¬z, x}}
 Heuristically choose decision variable x :
 Case 1: let x=0 
 S1 = {{¬x}, {x, y}, {¬y, z}, {¬z, x}}
 unit propagation ¬x
 S2 = {{y}, {¬y, z}, {¬z}}
 unit propagation y
 S3 = {{z}, {¬z}}
 unit propagation z
 S4 = {{ }}, return false

We learn that S0 = 0 if x=0, hence C = {x}.
 If we restart SAT(S0), we are directed away from the root.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 25 SR

Example: Elementary CDCL

Analysis of example S0 = {{x, y}, {¬y, z}, {¬z, x}}
x y z S0

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

 In the future, the learned clause C = {x} directs us away
from any of those 4 roots
 E.g. after a fresh call and attempted propagations ¬z und ¬y

 From the previous variable 
assignments we learned: we hit
the root N=(x=0, y=1, z=1).

 Since x was the only decision
variable, we further learn that N 
is part of a cluster of 4 roots.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 26 SR

Principle of Learning in CDCL

 Learning to avoid a bad sequence of decisions
 So far: we learn to avoid the sequence of decisions with which 

we hit the root
 But not all of these decisions may be relevant for the root. 

Key insight: start learning process with conflict clause K
 Conflict clause (failure clause) K is the clause which becomes 

empty in Step 2 of DPLL, i.e. β(K)=0.
 The failure is caused by all literals in K becoming 0. This set is 

relatively small.
 Now we need to find only those decisions, which caused these 

literals to  become 0.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 27 SR

Principle of Learning in CDCL

 Learning process starting with conflict clause K
 For conflict clause Κ, β(K)=0 is always due to a unit propagation 

in Step 1 (decisions never fail a clause).
 As a consequence of a decision, some clause R („reason“-

clause) became unit and forced L=1 for a literal L in R.
 As an immediate consequence, K failed, i.e. the sole remaining 

literal L´ in unit clause K was forced to L´=0.
 Hence L und L´ are complementary literals and R and K have a 

resolvent without this literal. Since K and R were unit, this 
resolvent is also a failure clause K´ (under the current 
assignment). Now iterate the process …. 

 In this way, all UP-literals can be successively removed, until 
only decision variables (without reason clause) remain.

 (there are still some open details)



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 28 SR

Example: Principle of Learning in CDCL

S0 = {{x, y}, {¬y, z}, {¬z, x}}. We made the assignments:
 x=0 (Decision), y=1 (Unit Propagation), z=1 (Unit Propagation)
 Now {{x, y}, {¬y, z}, {¬z, x}}. 
 Conflict clause is K={¬z, x}, Reason for conflict is R = {¬y, z}
 Resolvent on conflict literal z (first learnt clause) is L1={x, ¬y}
 Notice that L1 is false under current assignment. It contains both

a decision variable x and a unit propagation variable y. 
 We can get rid of ¬y by resolving with its reason {x, y}. So L2={x}
 Now if we backtrack to before the assignment on x, there is no

decision left: x=1 now becomes a unit propagation.
 In general we continue learning clauses until we hit the first „UIP 

clause“ (unique implication point): It contains a single variable on 
the highest level of assignment. After backtracking it is unit.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 29 SR

Example: Principle of Learning in CDCL

Analysis of Example S0 = {{x, y}, {¬y, z}, {¬z, x}}
x y z S0

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Future hits into cluster N´´= (x=0) (e.g. by a different UP 
sequence) are precluded by learned clause K´ = {x}.

 From failure clause K={¬z, x} 
we learn: we hit the cluster of
roots N=(x=0, z=1)

 After resolution of K with R2={¬y, 
z} we learn {¬y, x}, i.e. N´= 
(x=0, y=1) is a ``neighboring´´
cluster of roots.

 After resolution with R1={x, y} we
learn {x} with cluster N´´= (x=0).



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 30 SR

Example: CDCL based proof learning

 Clause set S0 = { {x, y}, {x, ¬y}, {¬x, y}, {¬x, ¬y} }
 S0 (x=1) = { {1, y}, {1, ¬y}, {0,   y}, {0,   ¬y} } : propagate unit y=1
 S0 (x=1,y=1) = { {1, 1}, {1,   0}, {0,   1}, {0,    0} } = 0 = conflict!
 A decision (x=1) forced conflicting propagations y=1 and y=0, obviously by 2 

clauses containing  {.., y, ..} and {.., ¬y, ..} 
 Hence there is a resolvent on y, in this case {¬x, y}, {¬x, ¬y} ⊢ {¬x}.
 Add {¬x} to C, because it is a logical consequence of C.
 Backtrack to just before the decision on x (no matter how far!). Now x=0 is a 

forced unit propagation by {¬x} (no more decision)
 S1 = {{¬x}, {x, y}, {x, ¬y}, {¬x, y}, {¬x, ¬y} } : propagate x=0
 S1(x=0) = { {1},  {0, y}, {0, ¬y}, {1,   y}, {1,   ¬y} } : propagate y=1
 S1(x=0, y=1) = { {1},  {0, 1}, {0,   0}, {1,   1}, {1,    0} } = conflict !
 Hence there is a resolvent on y, in this case {x, y}, {x, ¬y} ⊢ {x}, add {x} to S1

 Without any decision on x, we have a final conflict in S2 = {{¬x}, …, {x}} ⊢ □



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 31 SR

Resolution proof explaining UNSAT(C)

{x, y}, {x, ¬y}, …  …, {¬x}Final proof of UNSAT(S):

{x}

Resolution Proof of UNSAT(S(x=1)),
respectively of S ⊨ {¬x} :

{¬x, y}, {¬x, ¬y} 

{¬x}

{ }

C = { {x, y}, {x, ¬y}, {¬x, y}, {¬x, ¬y} }

The answer is easy if you take it logically (Paul Simon)



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 32 SR

Note on UnSAT Cores

Usually, only a (small) subset of S is unsatisfiable
This is called an UnSAT Core
 S may contain very many different UnSAT cores
 The clauses used in the final resolution proof of UnSAT 

produced by the solver contains an UnSAT Core
An UnSAT Core is minimal if it becomes SAT if any 

clause is removed (all clauses are necessary)
 In practice, cores produced by solvers are close to minimal
 can be easily reduced to minimal by trial and error

UnSAT Cores are essential to explain UnSAT
 If UnSAT(S) points to defect in S, explanation is essential
 Result is useless without explanation



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 33 SR

Note on Implicants and Prime Implicants

S0 = {{x, y}, {¬y, z}, {¬z, x}}
SAT(S0) = {x=1, z=1, y=1} yields an implicant, x∧y∧z ⊨S0

 but y is unnecessary: x∧z is also an implicant; y is „don´t care“
A Prime Implicant is an implicant which cannot be

shortened (minimal implicant)
 there may be many prime implicants contained in a model
 different models may/will contain different prime implicants

Extracting Prime Implicants from the final clause state
 SAT solver always computes complete models
 remove any unnecessary literal (all clauses must remain true)

• Now some literals may become necessary which were not before
 Now iterate the process as long as possible.



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 34 SR

Summary: Decision Procedures for Propositional Logic
 Davis-Putnam 1960 (variable elimination rules 2 and 3)
 DP 1960 (Rule 2): Let F contain a pure literal p. 

 Then F  ≡ (A ∨ p) ∧ R (where p not in A, R)
 Hence F ≌ R (p is eliminated from F)

 DP 1960 (Rule 3) : Let F contain a complementary literal p
 Then F ≡ (A ∨ p) ∧ (B ∨ ¬p) ∧ R (where p not in A, B, R)
 Hence F ≌ (A ∨ B) ∧ R (p is eliminated from (A ∨ B) ∧ R)
 F increases in size, but is strictly „simpler“ because p is eliminated.

 Davis-Logemann-Loveland 1962 (splitting rule):
 F is inconsistent iff both (A ∧ R) and (B ∧ R) are inconsistent

• No fresh CNF conversion necessary, split in 2 smaller formulas, divide&conquer

 SAT-Solving (optimization of splitting rule):
 F inconsistent iff both F|p=0 and F|p=1 inconsistent

 Resolution: (A ∨ p)∧(B ∨ ¬p)∧R ≡ (A ∨ p)∧(B ∨ ¬p)∧(A ∨ B)∧R



Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 25.07.2019 35 SR

Literature

1. M. Davis and H. Putnam. A computing procedure for quantification theory. 
J.ACM 7(3), 1960

2. M. Davis, G. Logemann and D. Loveland. A machine program for theorem
proving. C.ACM 5, 1962

3. A. Biere, M. Heule, H. van Maaren, T. Walsh (eds.). Handbok of Satisfiability. 
IOS Press 2009. (Comprehensive current account of SAT based methods)

4. M. Davis and H. Putnam. A computing procedure for quantification theory. 
J.ACM 7(3), 1960

5. J. P. Marques-Silva. Search Algorithms for Satisfiability Problems in 
Combinatorial Switching Circuits. PhD Thesis, U. Michigan, 1995

6. J. P. Marques-Silva, K. A. Sakallah. GRASP: A new search algorithm for
satisfiability. In: Intl. Conf. Computer Aided Design., Nov 1996.

7. J. P. Marques-Silva, K. A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. In: IEEE Transactions on Computers., May 1999.

8. D. E. Knuth. Satisfiability. The Art of Computer Programming Vol 4 Fasc. 6. 
Addison Wesley, 2016


	Automated Theorem Proving� – Foundations of SAT-Solving – ��July 2019
	Contents
	The Resolution Rule
	Example: Resolution proof-tree
	Clauses and Implications, Soundness, Completeness
	Subsumption and Unit Resolution
	Resolution proof procedure
	SAT-Solving with the DPLL Algorithm
	History: the Davis-Putnam Algorithm (DP-1960)
	History: the Davis-Putnam Algorithm (DP-1960)
	History: the Davis-Putnam Algorithm (DP-1960)
	History: the Davis-Putnam Algorithm (DP-1960)
	Example: the Davis-Putnam Algorithm (DP-1960)
	Existential Quantifier Elimination (EQE) with DP-1960
	Example: EQE with DP-1960
	The Davis-Logemann-Loveland Algorithm (DPLL 1962)
	History: The Davis-Logemann-Loveland Algorithm
	The DPLL Algorithm (of 1962)
	Observations for DPLL in practice
	Example: SAT-Solving with DPLL
	Variable Selection Heuristics for DPLL
	First Step from DPLL to CDCL: Elementary Learning
	Example: Elementary CDCL
	Example: Elementary CDCL
	Principle of Learning in CDCL
	Principle of Learning in CDCL
	Example: Principle of Learning in CDCL
	Example: Principle of Learning in CDCL
	Example: CDCL based proof learning
	Resolution proof explaining UNSAT(C)
	Note on UnSAT Cores
	Note on Implicants and Prime Implicants
	Summary: Decision Procedures for Propositional Logic
	Literature

