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Sand 14, 72076 Tübingen, Germany

2 The Wellcome Trust Centre for Neuroimaging, UCL
12 Queen Square, London, United Kingdom

Abstract. This paper shows that active-inference-based, flexible, adap-
tive goal-directed behavior can be generated by utilizing temporal gra-
dients in a recurrent neural network (RNN). The RNN learns a dynami-
cal sensorimotor forward model of a partially observable environment. It
then uses this model to execute goal-directed policy inference online. The
internal neural activities encode the predictive state of the controlled en-
tity. The active inference process projects these activities into the future
via the RNN’s recurrences, following a tentative sequence of motor com-
mands. This sequence is adapted by back-projecting error between the
forward-projected hypothetical states and the desired goal states onto the
motor commands. As an example, we show that a trained RNN model
can be used to precisely control a multi-copter-like system. Moreover, we
show that the RNN can plan hundreds of time steps ahead, unfolding
non-linear imaginary paths around obstacles.
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1 Introduction

Recently, it was shown that recurrent neural forward models can be used to com-
pute the inverse kinematics of many-joint robot arms [12]. LSTM-like RNNs [6,
10] were trained to estimate end-effector poses based on specified arm configura-
tions. back-propagation through time (BPTT) was used to iteratively optimize a
goal-oriented inverse mapping, that underwrites the goal-directed movement of
the robot arm; essentially enacting the unfolding goal-directed optimization pro-
cess. In this paper we extend this mechanism into a dynamic scenario, planning
control trajectories dynamically through time.

In the motor control literature, direct inverse models [7] learn direct map-
pings from goal states to actions, which works only when the typically redun-
dant inverse mappings are convex. Multiple forward-inverse models [15] as well
as constraint Jacobians have been proposed for inverse redundancy resolution.
However, the results are always direct mappings from desired states to motor
control commands, precluding online adaptations. Models that encode redun-
dancies and resolve them on the fly are related to human motor control [1], but
the requisite population-encoded spaces do not scale up to larger control spaces.



We show that dynamic active-inference-based processes, which are corollaries
of the free-energy-based inference principle [3, 5], implemented within RNNs, can
generate suitable control commands when trajectory redundancies need to be re-
solved on the fly and even when more complex trajectories need to be found. The
RNN learns a recurrent forward model, developing internal predictive encodings
that reflect unobservable but inferable system dynamics. The resulting online
active inference process projects neural activities into the future via the network
recurrences, following a tentative sequence of motor commands. This sequence is
adapted by back-projecting the error between the hypothetical and desired (goal-
like) future system states onto anticipated motor commands, effectively inferring
on the fly an action sequence that leads to the goal. Thus, the mechanism solves
a sequential policy optimization problem. In exemplary multi-copter-like simu-
lations, we show that the approach can not only control dynamical systems with
high precision, but even infer longer-term action sequences to circumnavigate
obstacles.

2 Recurrent Anticipatory Neural Control Model

The RNN model consists of two main processing components. First, training the
forward model, that is, learning a neural approximation of the dynamical sys-
tem of interest. Second, inferring dynamic action sequences in order to generate
adaptive goal-directed behavior in a continuous, dynamic control scenario.

2.1 Learning the Forward Model

Let us consider a simplified formulation of a discrete-time dynamical system. At
a certain time step t the system is in a specific system state. Because we assume a
dynamic, partially observable Markov decision process (POMDP) [13], the next
system state is typically not deducible exactly from the current observables.
Thus, we separate the system state into the perceivable state components st ∈ Rn

and the hidden state components σt ∈ Rm Additionally, the system can be
influenced via k control commands denoted by xt ∈ Rk. The next system state
(st+1,σt+1) is determined by

(st,σt,xt)
Φ7−−→ (st+1,σt+1), (1)

where the mapping Φ models the forward dynamics of the system. Thus, the next
system state depends on the current control inputs as well as, in principle, on the
entire state history somehow encoded in the (hidden) system state components.

The task of the forward model learner is to approximate the forward model Φ
given the current state st and current control commands xt, as well as an internal
memory encoding derived from the previous state information {s0, s1, . . . , st−1}
and motor commands {x0,x1, . . . ,xt−1}. Learning proceeds by dynamically pro-
cessing current state information and predicting the next state information. We
propose to use LSTM-like RNNs [6] for this task because LSTMs can predict
accurately and can associate even temporally dispersed input events, which is
essential when learning forward models in POMDPs. Moreover, LSTMs pro-
vide stable gradients over long time periods, which is critically important when
complex control trajectories are required.



2.2 Action Sequence Inference

Given a certain action sequence and an initial state, the RNN can predict a state
progression that is expected when executing the imagined action sequence by
means of the learned recurrent forward model. To effectively control the system,
however, the inverse mapping is required, that is, an action sequence needs to
be inferred to approach a desired goal-state (or follow a sequence of goal-states)
from an initial state. In a stationary scenario, this can be accomplished by means
of BPTT in combination with gradient descent, as shown, for example, in [12].
However, this principle cannot be directly projected into the temporal dynamic
domain, because motor commands need to be executed sequentially and the
commands are dynamically interdependent over time.

Our active inference procedure, sketched-out in Fig. 1, unfolds within the
RNN system. At any point in “world” time t, the RNN has a certain internal
neural activity reflecting the dynamical system’s state, which the RNN recur-
rently updates given the current state and motor command signals. Additionally,
the RNN maintains a preinitialized anticipated action sequence, that is, an action
policy, and anticipated gradient statistics. At each world time step, the policy is
(further) refined taking the actually encountered experiences into account. Cur-
rently, the anticipated action sequence has a fixed length, which corresponds to
the actual temporal planning horizon T .

Based on the previous system state as well as the previous forward RNN hid-
den activations, that is, the recurrent context, the action policy is adapted by
generating a sequence of error gradients. This is accomplished by projecting the
predicted state progression into the future given the current action policy and
back-projecting the discrepancy (quantified by the loss L) between the predicted
state and the desired goal-state (or sequence of goal states) in time using back-
propagation through time (BPTT) [14]. As a result, the L is projected onto the
action policy, thus updating it. During the forward-projection, the RNN is fed
with its own state prediction. After back-projecting the error, the input gradient
is computed via
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where h indexes the hidden units after the input layer, nett
′

h denotes the weighted
sum of inputs (or net input) into unit h at time t′, and t′ with t ≤ t′ ≤ t+T is the
running time index over the projected future sequence. Note that each gradient

signal δt
′

h recursively depends on the future δt
′+1
h′ , δt

′+2
h′ , . . . , δt+T

h′ signals, which
carry the gradient information back through time. For each world time step,
the above procedure is repeated several times and embedded in a higher level
optimization framework, for which we use Adam [8], which is more robust and
usually faster than vanilla gradient descent with momentum. To move on to the
next world time step, the first action of the refined sequence is executed (includ-
ing system and RNN update) and the anticipated action sequence begins with
its successor. The new last action is initialized with the previous last or a neutral
action. The accumulated gradient statistics of Adam (first two moments) are re-
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Fig. 1. The continuous action inference procedure. In each iteration, an optimization
cycle (gray boxes) is performed, refining the anticipated actions. Within an optimiza-
tion cycle the progression of the dynamical system is projected into the future (here
T = 5 time steps ahead) and the discrepancy between the predicted state and the
desired goal-state is back-projected via BPTT onto the individual motor commands
of the policy. The black lines indicate context and information forward flow. The blue
lines indicate gradient flow. x̃t

′,t′′ refers to the action vector for time step t′′ based on
the context of world time step t′. Within the optimization cycle, s̃τ,t

′,t′′ refers to the
state prediction for time step t′′ based on the context of world time step t′ in the τ -th
optimization iteration, whereas

?
st

′′
refers to the desired system state for time step t′′.

.

tained to provide an uninterrupted continuation of the optimizer dynamics. As a
result, the active inference mechanism can be applied seamlessly and a continu-
ous, active inference process unfolds, generating goal-directed interactions with
the environment while continuing to plan the next steps.

2.3 On the Relation to Active Inference and Free Energy

Conceptually, the current scheme inherits the important aspect of active infer-
ence; namely, casting the control problem in terms of planning as inference. The
crucial aspect of our scheme – that renders it a form of active inference – is that
the control variables xt

′

i are not deterministic states but random variables that
are inferred online. This is necessarily the case because we consider control in
the future – before it is realized. Effectively, this means that fictive policies are
inferred under prior beliefs about outcomes. Crucially, this inference is updated
online by assimilating outcomes to date, performing sequential policy optimiza-
tion. In other words, instead of a fixed state-action policy, we infer policies online
with the help of the learned forward model. On this view, our scheme is effec-
tively minimizing a path integral of (free) energy, where the energy corresponds
to the cost function L. The goal can be regarded as a prior expectation about
the path’s endpoint, while the sum of squared errors measures the discrepancy



between predicted and realized state-space trajectories. Formally speaking, this
measure corresponds to the expected free energy under the policy in play – and
the path integral approximates an Hamiltonian action.

3 Experiments
Our experiments are based on a simple dynamical system simulation of a multi-
copter-like object, which we call rocket ball. The rocket ball is positioned in
a rectangular environment with gravity. It has two propulsion units spread at
a 45◦ angle from the vertical axis to both sides, inducing thrust forces in the
respective direction. Each unit can be throttled within the interval [0, 1].

We considered three different scenarios, which are depicted in Fig. 2. In the
free scenario, each target point can be approached directly somewhat linearly,
while with increasingly complex obstacle constellations, reaching the goal state
requires increasingly complex anticipatory behavior. For each scenario we trained
an RNN with one hidden layer consisting of 16 LSTM blocks, which addition-
ally provide block-wise gate-to-gate connections [10, 11]. We also tried standard
RNNs, which, however, yielded significantly less accurate predictions and which
could not be used for precise control.

At each time step a network is fed with the current position of the rocket
ball as well as with the current action command (left and right thrust). The
network output is the prediction of the position, the velocity, and the acceler-
ation of the rocket ball for the next time step. In preliminary experiments it
appeared that predicting the velocity and acceleration, while only signaling po-
sition information as input, forces the RNN to make more use of the recurrences
(partially observable state). For all scenarios, we trained an RNN with 2 000
sequences each consisting of 200 time steps using stochastic sampling (no mini-
batches) and Adam with default parameters (learning rate η = 0.001, first and
second moment smoothing factors β1 = 0.9, β2 = 0.999). The training sequences
were generated based on continuously randomly adjusted thrust values. All ex-
periments were implemented using the JANNLab framework [9]. Note that the
approach can in principle be implemented in an online-learning fashion, learning
and exploiting the dynamics of the observed system concurrently.

Fig. 2. Illustration of three rocket ball scenarios. The rocket ball (blue) has to reach
the target (green). The red circle indicates the current position estimate predicted by
the RNN. In free space (left), the rocket ball can approach the target directly. With a
convex obstacle (center) a short detour is necessary. The concave obstacle case (right)
requires a further ranging detour and, in addition, the local minima are more dominant.



3.1 Short-Term Inference

In free space, only short-term planning is required. The goal is to control the
rocket ball such that it reaches the target as quickly and accurately as possible.
We obtained the best performing controller by presenting the goal-state at each
time-step during back-projection. Moreover, zero velocity and – to a lesser extent
– zero acceleration in the goal-state is useful to suppress oscillations around the
target. The best trade-off between robust goal state maintenance control and
prospective behavior while approaching the target yielded a planning horizon
of about 6-8 time steps. Shorter planning horizons increase overshooting, while
longer ones decrease the control precision. To infer the action policy, we used
Adam with η = 0.01 and β1, β2 = 0.9 and 30 iterations per active inference
cycle. In all situations, the target was reached with a precision (RMSE) below
10−3 (the environment has a height of 2 units). Fig. 3 depicts a short exemplary
image sequence of a target approach. While the goal is reached accurately, the
thrust is throttled down in anticipation of avoiding overshooting.

3.2 Long-Term Inference

In order to handle the obstacle scenarios (cf. Fig. 2), it was necessary (i) to
extend the planning horizon enabling the formation of more complex, indirect
imaginary pathways towards the goal state and (ii) to present the goal-state
only late in the future projection (here always only at the end of the planning
horizon), which enables the RNN to anticipate sequences in which the state
temporarily moves away from the target. We used Adam with a more aggressive
learning rate of η = 0.1 but only one error projection per world time step.

Since long-term planning is fairly imprecise, we simultaneously used short-
term planning, which assumes control once the distance to the target state is
below a certain threshold. As a result, the rocket ball can reach the target with
high precision when facing a convex and even a partially concave obstacle. Note,
however, the goal reaching trajectories that evolve are only temporarily stable.
They may collapse after some time as the inference process permanently searches
for solutions that fulfill only the final state objective. At the moment no further
constraints are added to the loss function.

We systematically evaluated the required planning length by means of 20
random trials (the rocket ball is initially placed to the left of the obstacle and
the target to the right of the obstacle) for several planning horizons. Fig. 4 shows
the fraction of trials in which the target was reached after 1 000 world time steps
dependent on the set planning horizon. To provide an impression of the system’s
behavior, Fig. 5 shows six imaginary flight trajectories anticipated by the RNN.

Fig. 3. Image sequence of the rocket ball approaching the target. The red line represents
the actual imagined future state progression unfolded by the RNN. The length of the
thrust expulsion indicates the respective force.
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Fig. 4. Reaching the target (i.e. success probability) in the complex scenario depends
on the scenario’s complexity as well as on the planning horizon (x-Axis).

Fig. 5. Exemplar trajectories imagined by the RNN: while long term inference (120
steps) leads around the obstacle, short term inference (red) points towards the target.

4 Summary and Conclusion

We have shown that LSTMs, which learn a sensorimotor forward model in a dy-
namic control scenario, can generate active-inference-based, goal-directed action
policies online. Active inference is accomplished by projecting neural activities
into the future and back-projecting the error between the forward projections
and currently desired goal states onto motor commands. The mechanism was
even applicable for planning around obstacles more than hundred time steps
into the future.

In should be noted that we could not achieve similar results with standard
RNNs. Additionally, the usage of the Adam-based BPTT played an essential role
in our system, particularly when unfolding long-term policies. Adam inherently
stabilizes the gradient by smoothing it and by suppressing gradient fluctuations,
dividing the gradient by its current variance estimate. As a result, the emerg-
ing policy tends to avoid uncertain regions of the gradient landscape, unfolding
and adapting trajectory plans in a dynamically changing but stable manner. In
other words, the mechanism attempts to achieve the extrinsic goal state while
maintaining a stable trajectory, which is intrinsically motivated. Interestingly,
expected free energy can also be decomposed into intrinsic and extrinsic val-
ues [4]. The extrinsic value corresponds to the degree to which goals or prior
preferences are realized. In contrast, the intrinsic value scores the reduction in



uncertainty about hidden or unobservable states afforded by a particular course
of action. It should be explored further to which extent these two notions are
indeed complementary or even identical.

Future work concerns adding suitable gradient optimization terms to the loss
function, such as a term to minimize motor control effort to foster the generation
of fully optimal paths. Moreover, additional scenarios involving more complex
environments need to be evaluated to confirm the robustness of the approach.
At the moment the system essentially learns control in only one dynamic system
scenario. Thus, the grand challenge remains to extend this approach to hierar-
chical control scenarios, in which distinct sensorimotor controllers are necessary
depending on the current event-based circumstances [2] and mutual interac-
tions with other dynamical objects, possibly blending control responsibilities
over event boundaries incorporating multiple temporal resolutions.
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