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Abstract
In the present study, we introduce a novel, self-organized task-switching paradigm that can be used to study more directly the
determinants of switching. Instead of instructing participants to randomly switch between tasks, as in the classic voluntary task-
switching paradigm (Arrington & Logan, 2004), we instructed participants to optimize their task performance in a voluntary task-
switching environment in which the stimulus associated with the previously selected task appeared in each trial after a delay.
Importantly, the stimulus onset asynchrony (SOA) increased further with each additional repetition of this task, whereas the stimulus
needed for a task switch was always immediately available. We conducted two experiments with different SOA increments (i.e., Exp.
1a = 50 ms, Exp. 1b = 33 ms) to see whether this procedure would induce switching behavior, and we explored how people trade off
switch costs against the increasing availability of the stimulus needed for a task repetition. We observed that participants adapted their
behavior to the different task environments (i.e., SOA increments) and that participants switched tasks when the SOA in task switches
approximately matched the switch costs. Moreover, correlational analyses indicated relations between individual switch costs and
individual switch rates across participants. Together, these results demonstrate that participants were sensitive to the increased avail-
ability of switch stimuli in deciding whether to switch or to repeat, which in turn demonstrates flexible adaptive task selection behavior.
We suggest that performance limitations in task switching interact with the task environment to influence switching behavior.
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Our cognitive abilities are fundamentally limited when dealing
with multiple cognitive tasks (for reviews, see, e.g., Koch,
Poljac, Müller, & Kiesel, in press; Pashler, 2000; Salvucci &
Taatgen, 2010). Accordingly, performance costs have been ex-
tensively documented not only when people have to perform
two tasks simultaneously (i.e., dual-tasking/concurrent multi-
tasking; e.g., Pashler, 1984; Welford, 1952) but also when
people alternate between different discrete tasks (i.e., task-
switching/sequential multitasking; e.g., Jersild, 1927; Rogers
& Monsell, 1995). However, multiple task requirements have
become ubiquitous in many different contexts (e.g., González
& Mark, 2004; Hembrooke & Gay, 2003; Strayer & Drews,

2007), and thus we can hardly avoid multitasking to some
extent. For example, rapidly changing circumstances in an in-
dividual’s environment (e.g., changes in task difficulty, task
availability, or rewards for task completion) might favor work-
ing on tasks other than the currently performed one and thus
promote sequential multitasking (e.g., Cohen, McClure, & Yu,
2007; Wisniewski, Reverberi, Tusche, & Haynes, 2015).
Given that adequate behavior is usually not externally signaled
by the environment, people need to flexibly schedule their
activities and they have to decide, for example, when to switch
between tasks (e.g., Burgess, Veitch, de Lacy Costello, &
Shallice, 2000; Kushleyeva, Salvucci, & Lee, 2005; Payne,
Duggan, & Neth, 2007). Thus, successful adaptive multitask-
ing behavior requires our cognitive system to keep track of the
environment but also to consider the performance costs that are
involved in switching tasks (i.e., switch cost; Rogers &
Monsell, 1995). The latter seems especially relevant in light
of the fact that multitasking costs can differ between tasks (e.g.,
Allport, Styles, & Hsieh, 1994; Monsell, Yeung, & Azuma,
2000), can differ between people (e.g., Kray & Lindenberger,
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2000; Lawo, Philipp, Schuch, & Koch, 2012; Poljac et al.,
2010; Redick et al., 2016; Umemoto & Holroyd, 2016), and
can also depend on intra-individual factors such as wakeful-
ness (Bratzke, Rolke, Steinborn, & Ulrich, 2009; Plessow,
Kiesel, Petzold, & Kirschbaum, 2011) and stress (Plessow,
Kiesel, & Kirschbaum, 2012).

In the present study, we introduce a novel voluntary task-
switching paradigm that was designed to shed light on the
questions of whether and how people adapt to switch costs.
Specifically, participants can freely self-organize their behav-
ior in a task-switching environment that sometimes favors a
task switch, in terms of expected objective task performance.
This is realized by delaying the appearance of the stimulus for
the current task in the following trial and by systematically
increasing this delay with the number of task repetitions, until
a task switch resets it. In the present experiments, we wanted
to know whether this dynamic manipulation of repeat-versus-
switch stimulus availability would induce task switches in
participants’ choice behavior without the instruction to ran-
domly choose tasks, as is typically done in voluntary task-
switching experiments (e.g., Arrington & Logan, 2004). If
so, we could also explore how these availability benefits are
traded off against (temporal) switch costs.

Task switching

Clearly, switch costs (i.e., responding more slowly and less
accurately in a task switch than in a task repetition trial) are a
basic and robust phenomenon across different task-
switching procedures. Usually the stimuli associated with
two separate tasks are presented in each trial and participants
are instructed to perform the two tasks in a predictable order
(e.g., Rogers & Monsell, 1995) or to follow external task
cues (e.g., Koch & Allport, 2006; Meiran, 1996) that indi-
cate which task to perform in a given trial (for reviews, see
Kiesel et al., 2010; Monsell, 2003; Vandierendonck,
Liefooghe, & Verbruggen, 2010). Of central interest for the
present study is that some accounts of the underlying mech-
anisms producing these switch costs provide a good theoret-
ical foundation to assume that stimulus availability might
influence task choice behavior: Although within some ac-
counts switch costs are mainly attributed to active top-
down processes that establish a new task set (e.g., Rogers
&Monsell, 1995; Rubinstein, Meyer, & Evans, 2001), many
researchers agree that the carryover of activation from the
preceding task contributes at least partially to worsening task
performance in switch trials (e.g., Allport et al., 1994;
Altmann & Gray, 2008; Hoffmann, Kiesel, & Sebald,
2003; Meiran, Chorev, & Sapir, 2000, Schuch & Koch,
2003; Sohn & Anderson, 2001; Yeung & Monsell, 2003).

In general, passive activation carryover models of switch
costs assume that interfering effects from remaining activation

of the task set applied in trial n–1 delay responses when ap-
plying a new task set in a switch trial n (e.g., Allport et al.,
1994; Gilbert & Shallice, 2002). Strong evidence for the con-
tribution of remaining activation on task switching comes
from the findings of so-called Basymmetrical switch costs^
(e.g., Allport et al., 1994; Yeung & Monsell, 2003)—that is
switch costs are higher when switching from a less familiar,
weaker task (e.g., color naming in a Stroop task) to a well-
practiced, stronger task (e.g., word reading in a Stroop task)
than in the opposite direction. Accounts with activation carry-
over components to explain switch costs offer a quite natural
explanation for this finding by assuming that the weaker task
must be activated to a larger degree in order to overcome the
tendency to respond to the strong task and that this increased
task activation carries over to the next trial, resulting in in-
creased interference when a switch to the strong task is re-
quired (e.g., Gilbert & Shallice, 2002; for alternative
explanations of asymmetrical switch costs, see Bryck &
Mayr, 2008; Schneider & Anderson, 2010).

Importantly, some passive accounts of switch costs strong-
ly imply that a stimulus in the current trial can prime task-set
retrieval (e.g., Allport & Wylie, 2000; Waszak, Hommel, &
Allport, 2003) and involuntarily activate a task depending on
the decay of task-set activation from the preceding trial (e.g.,
Gilbert & Shallice, 2002; Koch & Allport, 2006; Yeung &
Monsell, 2003). Furthermore, the response congruency effects
found in many task-switching studies (e.g., Kiesel, Wendt, &
Peters, 2007; Koch & Allport, 2006; Meiran & Kessler, 2008;
Schneider, 2015a, 2015b, 2017; Yeung, 2010) basically sug-
gest that both relevant and irrelevant task sets are active in a
given trial (see Koch, 2001, for a similar suggestion of simul-
taneous task activation in an incidental task sequence-learning
switching paradigm), so that a corresponding task-irrelevant
stimulus is automatically processed to a certain degree and
interferes with controlled-task processing of the relevant stim-
ulus, based on the current task set. Recently, Schneider
(2015a, 2015b, 2017) even provided empirical evidence that
these response congruency effects cannot be explained merely
by irrelevant (and interfering) response retrievals based on
stimulus–response links. Instead, the corresponding irrelevant
stimulus is translated into a response via the corresponding
task set, which implies the existence of dual-task process-
ing—an account that seems compatible with models of dual-
task limitations that allow for parallel central processing of
multiple tasks (e.g., Mittelstädt & Miller, 2017; Navon &
Miller, 2002; Tombu & Jolicœur, 2003). Thus, it seems quite
reasonable to assume that increasing the availability of a stim-
ulus per se might also promote the activation of a task set
related to this stimulus. Crucially, as we describe in more
detail below, several findings from the voluntary task-
switching (VTS) paradigm provide evidence that tasks are
often selected on the basis of the most active task set (e.g.,
Arrington & Logan, 2005).
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Voluntary task switching

In the VTS paradigm, each task is usually mapped to one hand
and participants select which task they want to perform on a
given trial (e.g., Arrington & Logan, 2004; Poljac & Yeung,
2012; Vandamme, Szmalec, Liefooghe, & Vandierendonck,
2010). For example, participants may be instructed to catego-
rize a number as odd or even by pressing the index or middle
finger of the left hand and to categorize a letter as vowel or
consonant by pressing the index or middle finger of the right
hand. In each trial, a letter and a number are presented simul-
taneously and thus participants can choose to perform either
the number task or the letter task using their corresponding
response hand. Importantly, however, their task choices are
restricted to some degree by global instructions. Specifically,
participants are typically instructed to perform both tasks
equally often and in a random sequence. These instructions
are used to provide sufficient numbers of switches and repeats,
because without these instructions participants only switch
tasks rarely (Arrington & Reiman, 2015; Arrington, Reiman,
& Weaver, 2014; Kessler, Shencar, & Meiran, 2009), which
indicates that participants tend to prefer task repetitions when
they have full control over task transitions.

Notably, the preference for task repetitions is even present
in VTS studies with randomness instructions: Although par-
ticipants generally comply well with the instructions to per-
form each task equally often, the order of tasks is not random.
Instead, participants tend to repeat tasks more often than ex-
pected by chance (e.g., Arrington & Logan, 2005; Dignath,
Kiesel, & Eder, 2015; Masson & Carruthers, 2014; Reuss,
Kiesel, Kunde, & Hommel, 2011; Yeung, 2010). This so-
called repetition bias is especially remarkable because it
stands in contrast to the finding that when generating random
binary sequences, there is a tendency to alternate more often
than to repeat (Nickerson, 2002; Rapoport & Budescu, 1997).

Thus, the finding of a repetition bias suggests that task-
switching limitations can be reflected in task choice as well
as task performance (i.e., robust switch costs that are typically
found; e.g., Arrington & Logan, 2005; Mayr & Bell, 2006). A
straightforward causal interpretation of these two findings
(i.e., repetition bias and switch costs) is that people prefer task
repetitions because task switches are experienced as more
time-consuming and/or more effortful (e.g., Arrington &
Logan, 2005; Mittelstädt, Dignath, Schmidt-Ott, & Kiesel,
2018; Vandierendonck, Demanet, Liefooghe, & Verbruggen,
2012), which is compatible with the underlying claim that
people adapt to switch costs when selecting tasks.

However, the repetition bias provides only an indirect hint
about people’s voluntary switching behavior, and it remains
unclear whether the avoidance of switching reflects a constant
repetition bias or instead is specifically determined by the size
of the switch costs. In this regard, it is important to highlight
how the corresponding task selection mechanisms—that seem

to consider the costs of switching tasks—might operate in
VTS studies. Arrington and Logan (2005) have proposed that
tasks are selected on the basis of the most active task set
whenever participants fail to comply with the instruction to
select a task on the basis of a mental representation of a ran-
dom sequence (see also Arrington, 2008; Arrington & Logan,
2005). The assumption that the degree of activation of a task
set guides task selection is consistent with the idea of a mech-
anism that modulates switching depending on the size of the
switch costs. Specifically, it seems fair to argue that task switch
costs are larger when the previously performed task set is more
active than when this task set is less active. Thus, the idea that
tasks are selected on basis of the most active task set fits nicely
with passive accounts of switch costs in which the most recent-
ly applied task set is the most active one (e.g., Allport et al.,
1994). Note, however, that this account of task selection be-
havior does not exclude the involvement of active top-down
processes. Indeed, it seems quite conceivable that participants
might rely on passive bottom-up processes partly to avoid
effortful active top-down processes that are necessary to finally
execute a task switch—for example, inhibiting the activation
of previously used task sets (e.g., Koch, Gade, Schuch, &
Philipp, 2010; Lien & Ruthruff, 2008; Mayr & Keele, 2000)
and/or activating new task sets (e.g., Rogers &Monsell, 1995).

Importantly, factors that seem to influence task-set activa-
tion also modulate switching behavior. In this respect, two
findings provide further hints that switching limitations are
reflected in choice behavior by showing that changes in switch
costs produce corresponding modulations in switching behav-
ior. First, switch costs and repetition rates decrease when the
response–stimulus interval (RSI) between trials increases
(e.g., Arrington & Logan, 2005; Liefooghe, Demanet, &
Vandierendonck, 2009). Presumably, the previous task set’s
activation decays over time resulting in less influence on task
choice and task performance in the current trial. Second, the
findings of asymmetrical switch costs are also reflected in
switching behavior: Participants tend to perform the weaker
task more often than the stronger task (Yeung, 2010), presum-
ably because their task choice is guided by the remaining
activation of the previously performed task set.

Critically, different types of VTS studies have demonstrat-
ed that stimuli can automatically (i.e., in so far as their influ-
ence counters the instructed goal to select tasks randomly)
influence the selection of a task—most likely because these
stimulus-driven effects on task choice somehow increase the
activation of the corresponding task set. First, participants are
more likely to repeat a task when the stimulus repeats (e.g.,
Demanet, Verbruggen, Liefooghe, & Vandierendonck, 2010;
Mayr & Bell, 2006), and this might be due to the retrieval of
the specific association between a stimulus and response that
was established in the previous trial (Demanet et al. 2010).
Second, stimulus–response congruency effects can also bias
participants to select the task that is response congruent to a
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stimulus in a given trial (Chen & Hsieh, 2013). Third, and
probably most relevant for the present purposes, Arrington
(2008; see also Arrington & Weaver, 2015; Butler, Arrington,
&Weywadt, 2011) systematically investigated the influence of
stimulus availability on task selection in VTS by presenting
two stimuli with variable stimulus onset asynchrony (SOA).
Their results showed that participants were more likely to per-
form the task associated with the first stimulus and that this
likelihood increased with increases in the SOA between the
two stimuli. This indicates that small temporal differences be-
tween stimuli have an impact on task selection in the VTS
paradigm. Taken together, stimulus availability, stimulus repe-
tition, and stimulus–response congruency effects on task
choice in VTS studies provide evidence for influences of the
environment on voluntary control, because these effects dem-
onstrate that stimuli can influence task selection processes
(e.g., Haggard, 2008; Hommel, 2000; Teuchies et al., 2016).

The present approach

Overall, the VTS paradigm has become an important devel-
opment of standard task-switching procedures for studying
self-organized multitasking, because it allows investigating
switching performance when people have control over their
decisions and it reveals insights into the determinants of task
selection. Specifically, the repetition bias and some studies
using the VTS paradigm have already indirectly supported
the idea that people may be influenced by the difficulty of
switching tasks when they select tasks (e.g., repetition bias
and its reduction with increased RSI; Arrington & Logan,
2005), presumably because they guide their task selections
on the basis of the most active task set (e.g., Arrington, 2008).

However, these findings are only indirect and imprecise
measures due to the requirement in the VTS paradigm to se-
lect tasks randomly. This instruction requires participants to
fulfill a further mental requirement in addition to switching
tasks, and this additional requirement might lead to extra cog-
nitive costs. Furthermore, the repetition bias is basically a
violation of the randomness instruction, and it seems fair to
argue that participants might follow these instructions better
when they try to ignore their switch costs as much as possible.
Thus, to study the determinants of switching behavior more
directly, it seems useful to provide participants with a task
environment without any randomness instruction and that di-
rectly requires participants to take switch costs into account—
if possible—when deciding whether to switch.

In the present study, we implemented these requirements in
a new adaptive self-organized task-switching paradigm by
explicitly pitting switch stimulus availability against switch
costs. Thus, we investigated whether the idea that stimulus
characteristics can potentially influence the degree of task ac-
tivation and influence task selection processes can be used to

induce task switches. More precisely, we presented two stim-
uli associated with separate tasks in each trial, but we delayed
the onset of the stimulus for the task most recently performed.
Thus, if participants choose to repeat a task, they had to wait
longer for the task-relevant stimulus on the next trial, and the
stimulus onset asynchrony (SOA) increased further with each
additional repetition of that task. The stimulus needed for a
task switch was always presented without any delay, so the
time between switch and repetition stimuli—and thus the as-
sociated benefit for a switch—increased with the number of
task repetitions. Whenever a participant switched tasks, the
SOA was reset to the first SOA step size. Thus, the trials in
any experimental block could be considered as a sequence of
individual runs of task repetitions, each of which ended with a
switch at a certain SOA (or the block ended).

As was pointed out earlier, it seems reasonable to assume
that the two task sets associated with each stimulus are to a
certain degree active in each trial throughout the experiment
and that task selection behavior is strongly guided by the task
set with the highest activation. We assume that tasks are se-
lected as soon as a certain threshold of task-set activations is
reached (i.e., task activation-selection threshold) before (final)
task processing takes place. Critically, (1) the degree of task-
set activations in a given trial n depends on which task has
been performed on trial n–1 in such a way that the previously
relevant task set is usually the one with the highest activation
at the beginning of trial n (i.e., before stimulus onset in trial n)
and (2) the degree of task-set activations can be further in-
creased or primed by stimuli during trial n (i.e., after stimulus
onset). Following up on the race metaphor proposed by
Arrington (2008) to account for the effects of (random) stim-
ulus SOA on task selection behavior, the task activation-
selection threshold should be reached earlier for the task as-
sociated with the repetition stimulus when stimuli are simul-
taneously presented (i.e., in each trial SOA = 0 ms). With the
adaptive switch stimulus availability manipulation used here,
however, the switch stimulus is presented increasingly earlier
with further task repetitions, thereby gradually increasing
switch-task activation and correspondingly decreasing the
chance of a task repetition. In other words, we assume that
increasing switch stimulus availability (or decreasing repeti-
tion stimulus availability) should increase the probability of
the switch task set to win the race (i.e., reaching the task
activation-selection threshold first) against the repetition task
set. It should be noted that our idea is only based on passive
bottom-up processes influencing the activation level of a task
set (i.e., task recency in advance of a trial and stimulus-driven
effects during a trial). However, active top-down processes
may also influence task-set activations in advance of a trial
(e.g., inhibiting task-set activation) or modulate the impact of
stimulus-driven factors during a trial (e.g., biasing visual at-
tention to one of the two stimuli). We will return to this issue
in our General Discussion.
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Overall, then, the basic procedure of our experiments resem-
bles the VTS paradigm in that participants can decide which of
two tasks to perform in each trial. In contrast to the VTS par-
adigm, however, we did not use any global instructions to
constrain task transitions or choices. Instead, we instructed par-
ticipants to respond as quickly and accurately as possible from
the beginning of each trial. The major goal of the present ex-
periments was to see if under these instructions our procedure is
suitable to induce sufficient switches (while of course still ob-
serving sufficient repetitions). Naturally, we expected that task-
switching costs in RTs would be found in the present paradigm
as they have in many other VTS studies (e.g., Arrington &
Logan, 2004; Mayr & Bell, 2006).

If the present procedure is suitable for monitoring both
switching behavior and switch costs, it would be helpful to
examine switching behavior more closely. Specifically, this
procedure would allow us to explore how much extra switch
stimulus availability (i.e., size of SOA by which repetition
stimulus is delayed) would be necessary to elicit task switches
in individual runs (i.e., distribution of switches at different
SOAs). By using this additional (temporal) measure of task
selection behavior (i.e., switch SOA), we can also explore
how participants trade off the costs of switching to a new task
versus the increasing availability of the stimulus related to the
new task (i.e., comparison of temporal switch costs vs. switch
SOA).

To further explore how switch costs and task choice are
related to each other, we also correlated these two measures
across participants. Given that some within-subjects compar-
isons described above indicate that participants are able to
somehow adapt their task-switching behavior to switch costs,
one might intuitively also assume that individuals with higher
switch costs would have a stronger tendency to repeat tasks.
Somewhat surprisingly, however, the repetition bias is typical-
ly independent of the switch costs (e.g., Arrington & Yates,
2009; Yeung, 2010) or is only weakly related to these costs
(Mayr & Bell, 2006) when correlating these measures across
participants. We speculated that the randomness instructions
in VTS studies might induce additional task selection strate-
gies that obscure any potential correlations between the mea-
sures of switch costs and repetition rates. Thus, we also ex-
plored whether this correlation is present when explicitly
instructing participants only to optimize their performance.
Although the direction of causality cannot be established with
this correlation, it would at least demonstrate that task selec-
tion and task performance are related when participants are
instructed to select tasks for optimal performance.

Experiments 1a and 1b

The basic tasks used in these experiments were the number
and letter tasks used by Rogers and Monsell (1995). Each task

was mapped to the index and middle fingers of one hand.
Participants first trained on these tasks in an alternating-runs
procedure (see Rogers & Monsell, 1995). Then the main ex-
periments followed, in which participants could choose which
task to perform in each trial (see Fig. 1). In these free-choice
blocks, the number and the letter stimulus were both presented
in each trial, but the SOA between the two stimuli depended
on the prior task choices. The stimulus needed for a task
switch was always presented first, and the stimulus needed
for a task repetition was delayed by an SOA that increased
linearly with each repetition of that task. For example, if a
participant had performed the letter task on trial n–1 after
working on the number task on trial n–2 (i.e., trial n–1 was a
switch trial) in Experiment 1a, the letter stimulus was present-
ed with an SOA of 50 ms on trial n. For each consecutive task
repetition, the SOA increased linearly (i.e., 100 ms on trial n+
1, 150 ms on trial n+2 . . .). Thus, in this setting, task choice
behavior could be studied by examining the SOAs in trials on
which participants decided to switch (i.e., Bswitch SOA^). In
the example in Fig. 1, a number response on trial n+1
corresponded to a task switch trial, and the switch SOA was
100 ms in Experiment 1a, on the basis of two previous letter
responses and the SOA increments used in this experiment.

Experiment 1b was similar to Experiment 1a, except that
the SOA increase was set to 33ms per repetition, to see wheth-
er a smaller SOA increase would also induce switches and to
allow for a more fine-grained measurement of switch SOAs.
In the following sectionswewill describe themethods of these
two experiments together and then separately present the re-
sults of each experiment. Within the results section of
Experiment 1b, we will also provide a comparison of the main
measures between the experiments, to show how participants
adapted to the slightly different task environments and to
check the robustness of the results of Experiment 1a.

Method

Participants In Experiment 1a, 31 native German speakers (23
female, eight male) were individually tested at the University
of Freiburg, Germany. They ranged in age from 19 to 39 years
(M = 24.81), and 30 were right-handed. In Experiment 1b, a
fresh sample of 32 participants (23 female, nine male) from
the same pool was tested. They ranged in age from 19 to 40
years (M = 24.19), and 31 were right-handed. Two additional
participants in Experiment 1a and one additional participant in
Experiment 1b were tested, but one participant in Experiment
1a was excluded due to accuracy below 60%, and the other
two participants did not understand the instructions (assessed
by self-report during and after the experiment) and were elim-
inated prior to any data analysis.

Apparatus and stimuli Stimulus presentation and the record-
ing of responses were controlled by E-Prime software running
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on a Fujitsu Eprimo P920 computer with 24-in. monitor. All
stimuli were presented in white 25-pt Courier New font on a
black background; the stimuli were approximately 7 mm in
height and 5 mm in width. The viewing distance was not
constrained but was approximately 60 cm. In the free-choice
blocks, a white unfilled Bfixation rectangle^ (13 mm × 13
mm) was always presented centrally. In the training blocks,
a 2×2 grid (55 mm in length) was also permanently presented
at the center of the screen. In these blocks the fixation rectan-
gle was positioned within the center of one of the four squares
of the grid (see the Procedure section). The target stimuli were
the numbers 2–9 for the number task (i.e., even/odd) and the
uppercase letters A, E, G, I, K, M, R, and U for the letter task
(i.e., consonant/vowel). The two stimuli were presented side
by side. The specific identities and positions of the two stimuli
were selected randomly, with the constraints that each letter
and number appeared equally often on each side and that no
stimulus was presented twice consecutively. Responses were
registered by using two left-sided and two right-sided external
response buttons that were separated by a distance of 10 cm.
Responses for a task were made with the index and middle
finger of the same hand, and the specific mappings were
counterbalanced across participants.

Procedure Each participant was tested in three alternating-
runs training blocks of 60 trials per block (180 trials in total),
followed by eight free-choice test blocks of 100 trials per
block (800 trials in total).

In the training blocks, the stimuli were always presented
simultaneously in one square of the grid and the squares
switched clockwise between trials (see Rogers & Monsell,
1995). In the free-choice blocks (see Fig. 1), the fixation rect-
angle appeared on the screen for 250 ms at the beginning of
each trial. The stimuli (i.e., one number and one letter) were
then presented inside the fixation rectangle. The stimuli were

only presented simultaneously in the first trial of a block,
whereas in the remaining trials only the stimulus of the previ-
ously unselected task was presented immediately after fixa-
tion. The other stimulus was presented with an SOA that
depended on the length of the current run of responses to this
task. In Experiment 1a, the SOAwas first 50 ms and increased
linearly by 50 ms each time that a task was selected again. In
Experiment 1b, the SOA increments were approximately 33
ms.1 The stimuli (or stimulus) remained on the screen until a
response was made. Following correct responses, the intertrial
interval was 500 ms; then the fixation rectangle for the next
trial appeared. Following an error, an additional error message
was displayed for 500 ms, followed by an instructional screen
indicating the stimulus–response mappings for the two tasks
for 3,500 ms.

For the training blocks, half of the participants were
instructed to perform the letter task when the stimuli appeared
in either of the top two squares and the number task when the
stimuli appeared in either of the bottom two squares. This
assignment was reversed for the other half of the participants.

For the free-choice blocks, participants were instructed that
they could freely choose which task to perform, but that they
should try to respond as quickly and accurately as possible.
Participants were also told that either the letter or number
would appear first in a trial, but they were instructed that the
total trial time measurement started with onset of the first
stimulus. Thus, the total trial time was relevant for partici-
pants. Specifically, participants received the following
instructions:

You have to perform 100 tasks (i.e., trials) in one block.
One of the tasks (i.e., number or letter) appears earlier

1 Due to the screen refresh rate, the SOA increments were always loops of four
times 33 ms and then one time 17ms (i.e., 33, 67, 100, 133, 150, 183, 217 . . .).

Fig. 1 Typical trial sequences in the free-choice blocks of Experiments 1a
and 1b. Stimuli were always presented within the fixation rectangle, but
only the stimulus of the previously unselected task was presented imme-
diately after the fixation time of 250 ms. The stimulus of the previously
selected task was presented with a stimulus onset asynchrony (SOA) that

depended on (a) the previous task choice history (i.e., how often this task
had been selected before) and (b) the experiment-specific SOA increase
(i.e., 50 ms in Exp. 1a and 33 ms in Exp. 1b). The intertrial interval (ITI)
was 500 ms following correct responses
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than the other task in one trial. Reaction time measure-
ment starts with the onset of the first task, and responses
can be given after this onset. You can freely decide
which task you want to perform in one trial, and it is
up to you how often you perform each task in one block.
However, try to be as fast as possible without commit-
ting errors.

Breaks between blocks were self-paced, and participants
received performance feedback (i.e., their mean total trial time
and number of errors) after each block.

Results and discussion

Experiment 1a

The training blocks and the first trial of each block were ex-
cluded from the analyses. We categorized the task performed
on each trial on the basis of the hand used to respond. Then
trials were classified as repetition or switch trials on the basis
of the task performed on trials n and n–1. The reported reac-
tion times (RTs) always indicate the time from the onset of the
stimulus related to the task that the participant performed until
the key press. Note again, however, that participants were
instructed to minimize the total time in each trial. In switch
trials, the total trial time was equal to the RT, whereas in
repetition trials the total trial time was the sum of the RT and
the trial-specific SOA.

For all analyses, we excluded trials following errors (4.97%)
and repetition trials in which participants responded prior to the
onset of the repetition stimulus (0.02%) The remaining trials
were used for percentage error (PE) analyses. For the task
choice and RT analyses, we additionally removed error trials
(5.00%), and finally excluded trials with RTs less than 200 ms
(0.11%) or greater than 3,000 ms (0.52%) as outliers.

Task choice We first analyzed how switching behavior
changed over the course of the experiment. As can be seen in
Fig. 2a, the mean switch rates for the first two blocks were
noticeably lower (.28 and .29, respectively) than for the last
six blocks (.36–.39). This suggests that participants needed
some time to learn the structure of the task environment, but
they showed rather stable switching behavior once they had
done so. For the following analyses, we excluded the first two
free-choice blocks.2

The overall switch rate of the remaining six blocks was .38
(see Table 1), meaning that the corresponding repetition rate
was .62. This switch rate differed from chance (.50), t(30) =

3.60, p = .001. This avoidance of task switches indicates that
participants did not just randomly select a task in each trial of
the present paradigm. We also checked whether there was any
general preference for either the letter or the number task.
Participants performed the two tasks equally often, with a
mean proportion of .49 (SE = .02) for performing the letter
task, and this rate did not differ from chance, p = .684.

Next, we investigated how much stimulus availability was
needed to elicit a task switch. For this purpose, we first calcu-
lated the frequency distribution of SOAs in switch trials over
all participants. As is evident in Fig. 2c, the largest number of
switches were already occurring at the first SOA level (i.e.,
SOA = 50 ms). We then calculated the relative frequency
distribution of switch SOAs separately for each participant.
Assume, for example, that a participant had 100 switch trials
in total, with 30 switches at the first and 50 switches at the

Fig. 2 The left panels display the results of Experiment 1a, and the right
panels display the corresponding results of Experiment 1b. Panels a and b
show the mean switch rates, Pr(switch), across the eight free-choice
blocks. Panels c and d show the overall frequency distribution of switch
trials across the different SOA levels (Exp. 1a: 50, 150, 200 . . . ; Exp. 1b:
33, 67, 100, . . .). Panels e and f display the cumulative distribution
functions of switch SOAs—that is, the probability of switch trials less
than or equal to a specific SOA

2 In both Experiments 1a and 1b, qualitatively very similar results were also
obtained in analyses with other block exclusion procedures (i.e., excluding no
blocks, excluding only the first block, and excluding the first two blocks) and
in analyses with other data preparation procedures on a trial level (i.e., includ-
ing posterror trials, including error trials, and including RT outliers).
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second SOA level. This participant would obtain switch pro-
portions of .30 at SOA = 50 ms and .50 at SOA = 100, respec-
tively. Following this, we computed the corresponding individ-
ual cumulative distribution function (i.e., this would be .80 at
SOA = 100 ms for the participant in our example). Figure 2e
displays the cumulative distribution function averaged over all
participants. As can be seen in this figure, the mean proportion
of switches with an SOA of 50 ms was already .37, and within
an SOA of 100 ms or less the proportion of switches exceeded
.50. Taken together, these results indicate that the majority of
switches were made with very short SOAs.

On the basis of the strongly skewed distribution of switch
SOAs, we decided to calculate the median switch SOA for
each participant, as a summary measure for task choice behav-
ior as a function of SOA. Note that the median switch SOA for
each participant varies in discrete steps according to the cor-
responding SOA step size used in this experiment (i.e., 50,
100, 150 ms . . .). This means, for example, that a participant
with cumulative probabilities of .40 at SOA = 50ms and .80 at
SOA = 100 ms would obtain a median switch SOA of 100 ms.
The resulting average median switch SOA was 130 ms (see
Table 1).

Task performance For the RT analyses, we calculated switch
costs by using the median switch and repetition RTs, because
the use of the median makes the measure of switch costs more
comparable to the median switch SOAs. Table 1 shows the
averaged median switch RT, the median repetition RT, and the
corresponding switch costs (i.e., switch RT – repetition RT).
As can be seen in Table 1, the median RTs were on average
118 ms larger on switch than on repetition trials, and these
switch costs were reliable, t(30) = 7.81, p < .001. Overall, the
PE was low (4.7%), and the PEs did not differ between switch
(4.8%) and repetition (4.7%) trials, p = .861.

Relation between task choice and task performanceWe then
checked how switch SOAs were related to switch costs. As

can be seen in Table 1, the median switch SOAs were quite
similar to the median switch costs, and a paired t test indicated
no reliable difference, p = .566. Thus, this comparison sug-
gests that, on average, participants switched tasks when the
switch stimulus availability delay approximately matched the
switch costs.

Next, to examine individual differences, we plotted the
individual median switch costs against the individual switch
rates to explore how switch costs and switching behavior were
related across participants. Figure 3a shows the corresponding
scatterplot. There was a substantial negative relation between
these two measures, r(31) = – .45, p = .010, indicating that
switch rates were lower with higher switch costs. The corre-
lation of switch costs and switch SOA across participants was
only small and not reliable, r(31) = .13, p = .469. However, as
we already mentioned above, the median switch SOA varied
in discrete steps, and as is evident in Fig. 3c, many participants
had identical median switch SOAs (i.e., 50 or 100 ms). Thus,
this discreteness seems to reduce the sensitivity of this vari-
able, which would be needed to detect the potential correlation
with the continuous measure of switch costs.3

Finally, in post-hoc analyses we also considered the data
from the training blocks, to get some hints about the causal
direction of the correlations between voluntary switch costs
and switch rates across participants.4 Specifically, we comput-
ed the correlations across participants between switch costs in
the training blocks5 (Mmd = 441 ms) and during voluntary
task-switching blocks (see Fig. 4a), and also between switch
costs in the training blocks and switch rates in the voluntary
task-switching blocks (see Fig. 4b). We found a substantial
positive correlation between the individual median switch
costs during the training and voluntary task-switching blocks,
r(31) = .44, p = .012, indicating that individuals with higher
switch costs in the training blocks also had higher switch costs
when they had control of their task transitions. Thus, this
analysis suggests some individual stability of switching limi-
tations across the two switching procedures (i.e., instructed vs.
voluntary). More interestingly, individual training switch
costs were negatively and reliably correlated with individual
switch rates in the voluntary task-switching blocks, r(31) = –
.37, p = .038 [r(31) = .37, p = .041, for the correlation between
training switch costs and voluntary median switch SOAs].

3 For this reason, we also explored the correlations between individual mean
switch costs (i.e., voluntary and training) and mean switch SOAs in the two
experiments. In Experiment 1a, the corresponding correlation between voluntary
switch costs (M = 142 ms) and switch SOAs (M = 159 ms) was r(31) = .41, p =
.021. The correlation between training switch costs (M = 442 ms) and switch
SOA was r(31) = .42, p = .020. In Experiment 1b, the correlation between
voluntary switch costs (M = 154 ms) and switch SOAs (M = 148 ms) was
r(32) = .33, p = .064. The correlation between training switch costs (M =
432 ms) and switch SOAwas r(32) = .30, p = .101.
4 We thank two reviewers for suggesting this analysis.
5 In both Experiments 1a and 1b, we applied the same data preparation pro-
cedure for the 180 trials of the training blocks as we did for the voluntary
blocks.

Table 1 Mean median task switch stimulus onset asynchrony (SOA),
mean switch rates, and mean reaction times (RT) as a function of trial
transition (i.e., median task switch vs. median task repetition), as well as
mean switch costs (i.e., median task switch RT – median task repetition
RT) for Experiments 1a and 1b

Measure Experiment

1a 1b

Switch rate .38 (.03) .30 (.03)

Switch SOA 130 (14) 112 (17)

Task switch RT 714 (21) 734 (27)

Task repetition RT 596 (13) 600 (15)

Switch costs RT 118 (16) 134 (18)

Standard errors of the means are in parentheses
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Thus, the finding that individuals with higher switch costs
during training had lower switching rates in the voluntary
blocks suggests that the individual switch costs were a causal
factor influencing switching rates.

Experiment 1b

We followed the same data preparation procedure as in
Experiment 1a. First, repetition responses prior to repetition
stimulus onset were excluded (0.01%). Then, the 5.10%
posterror trials were excluded from all analyses. For the RT
and choice analyses, the 5.11% error trials were additionally
excluded, and we also excluded trials with RTs less than
200ms (0.04%) and greater than 3,000 ms (0.33%) from these
analyses.

Task choiceAs can be seen in Fig. 2b, participants’ switch rate
was lower for the first block (i.e., .24) than for the other blocks
(i.e., .28–.31). This suggests that participants again adapted
their switching behavior to the SOA manipulation, and appar-
ently did so slightly faster than in Experiment 1a. For the
remaining analyses, the first block was excluded.

The overall switch rate was .30 (i.e., repetition rate of .70),
which differed from the .50 switch rate that would be predicted

by random task choices, t(31) = 7.04, p < .001. Interestingly, as
can be seen in Table 1, participants descriptively switched tasks
less often in this experiment than in Experiment 1a (.38), which
had a higher SOA step size. However, a two-sample t test indi-
cated that this difference was not quite significant, p = .058. In
contrast to Experiment 1a, participants performed the letter task
on a higher proportion of trials than the number task (i.e., .54,
SE = .02), and this mean probability differed from chance (.50),
t(31) = 2.18, p = .037.

Figure 2d shows the frequency distribution of switch
SOAs, and again a high number of switches were made at
the first SOA level. The difference as compared to the next
two SOA levels, however, was not as large as in Experiment
1a. Furthermore, as can be seen in Fig. 2e and f, the mean
proportion of switches for the first SOA level (.26) was lower
than the corresponding proportion for the first SOA level in
Experiment 1a (.37), and this difference was significant, t(61)
= 2.86, p = .006. Figure 2f also shows that—similar to
Experiment 1a—the majority proportion of switches oc-
curred within the first few SOA levels. Interestingly, the .50
proportion of switches was again exceeded at SOA = 100ms,
as in Experiment 1a. Note that this corresponds to the third
SOA level in this experiment, whereas this SOA size had
occurred at the second SOA level in Experiment 1a. This

Fig. 3 The left panels display the results of Experiment 1a, and the right
panels display the corresponding results of Experiment 1b. Panels a and b
show scatterplots of individual switch costs against individual switch

rates. Panels c and d show scatterplots of individual switch costs
against the individual median SOAs of switch trials. Dashed lines
represent the corresponding regression lines
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suggests that participants differentially adapted their behav-
ior to the different dynamic task environments.

Further hints of this adaptive behavior are provided by
comparing the median switch SOAs between the experiments:
As can be seen in Table 1, the median switch SOA in
Experiment 1b amounted to 112 ms, and was thus only slight-
ly and not significantly reduced, p = .402, in Experiment 1b
relative to Experiment 1a.

Task performanceAs can be seen in Table 1, RTs were again
larger on switch than on repetition trials, and these switch
costs of 134 ms were reliable, t(31) = 7.60, p < .001.
Overall, the PE was again low (5.1%), and PEs did not
differ between switch (5.6%) and repetition (4.6%) trials,
p = .394.

We also conducted an analysis of variance (ANOVA) on
median RTs, with the between-subjects factor experiment (i.e.,
Exp. 1a vs. Exp. 1b) and the within-subjects factor transition
(i.e., repeat vs. switch), to see whether task performance dif-
fered significantly between the two experiments. This
ANOVA only yielded a significant main effect of transition
(p < .001), and no significant effects of either experiment (p =
.649) or the interaction (p = .496). Thus, this analysis does not

imply any differences between switch costs in these two
slightly different task environments.

Relation of task choice and task performance As in
Experiment 1a, the median switch costs were approximately
the same size as the median switch SOAs (see Table 1), and a
paired t test yielded no significant differences between these
measures, p = .244.

Finally, we explored the relation of switching behavior and
switch costs on an individual level. Figure 3b shows a
scatterplot of the individual median switch costs against the
individual switch rates. We found a negative correlation sim-
ilar to the one in Experiment 1a, but this correlation was not
significant, r(32) = – .30, p = .090. Note, however, that the
correlation was driven mainly by the three participants with
switch costs higher than 350 ms [i.e., excluding them resulted
in r(29) = .02, p = .924]. Similarly, the correlation between
switch costs and median switch SOA (Fig. 3d) was signifi-
cant, r(32) = .35, p = .049, but not when the three outlier
participants were excluded, r(29) = – .05, p = .814.

We then again computed correlations with individual medi-
an switch costs in the training blocks (Mmd = 452 ms). Similar
to Experiment 1a, there was a significant positive correlation

Fig. 4 The left panels display the results of Experiment 1a, and the right
panels display the corresponding results of Experiment 1b. Panels a and b
show scatterplots of individual switch costs in the training (alternating-
run) task-switching blocks against individual switch costs in the

voluntary task-switching blocks. Panels c and d show scatterplots of
individual switch costs in the training task-switching blocks against indi-
vidual switch rates in the voluntary task-switching blocks. Dashed lines
represent the corresponding regression lines
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between this measure and voluntary switch costs (see Fig. 4b),
r(32) = .52, p = .002. Figure 4d displays a scatterplot of the
individual training switch costs against the individual switch
rates observed in the voluntary blocks. As in Experiment 1a,
we observed a negative—although not reliable—correla-
tion between these two measures, r(32) = – .29, p = .112
[r(32) = .41, p = .020, for the correlation between training
switch costs and voluntary median switch SOA].

General discussion

In the present study we introduced a new adaptive task-
switching paradigm that could be useful to study the determi-
nants of switching behavior more directly—in particular to
investigate whether and how individuals adapt to switching
limitations in self-organized task-switching. In this paradigm,
participants could select which task to perform on each trial,
but in contrast to the classic VTS paradigm we used no in-
structions to select these tasks in a random sequence (e.g.,
Arrington & Logan, 2004). Instead, the availability of tasks
was dynamically adjusted on the basis of an individual’s im-
mediately preceding task selections. More precisely, whereas
a potential switch stimulus was always immediately available,
the stimulus belonging to the previously selected task was
delayed by an amount (i.e., SOA) that increased with each
successive repetition of that task. We reasoned that increasing
switch stimulus availability should correspondingly increase
activation of the switch task set, and we wanted to know
whether this would increase the likelihood of task switches.

The findings of two experiments demonstrate that our
switch stimulus availability manipulation successfully induced
switching behavior. First, participants increased their switching
behavior after facing the constraints of the task environment
(e.g., higher switch rates after the first blocks). Second, partic-
ipants showed reasonable switching behavior with overall
switch rates of .38 (Exp. 1a) and .30 (Exp. 1b) whereas some
previous VTS studies observed little switching behavior with-
out additional global randomness instructions (for a discussion
of these global instructions, see Arrington et al., 2014). For
example, 50 of 66 participants were removed due to insuffi-
cient switches in a study by Arrington and Reiman (2015), and
switch rates were less than .14 across all experimental condi-
tions in a free-choice task-switching study by Kessler et al.
(2009). Third, in particular the between-experiments compari-
sons (i.e., a higher overall switch rate and higher switch rate at
the first SOA level in Exp. 1a than in Exp. 1b) suggest that
participants adapted their switching behavior to the slightly
different dynamic task environments (i.e., SOA increases of
50 vs. 33 ms), whereas switch costs remained stable.
Together, these findings indicate that participants’ switching
behavior was sensitive to the increased delay of repetition-
stimulus availability—presumably because switch stimulus

availabilities increase activations of potential switch tasks,
making it more likely that these tasks are selected.

As was outlined in the introduction, several VTS studies
have also found influences of stimulus-driven effects on task
choice (e.g., Arrington, 2008; Arrington & Weaver, 2015;
Demanet et al., 2010; Mayr & Bell, 2006; Teuchies et al.,
2016). For example, our results are particularly in line with
Arrington’s (2008) finding that stimulus availability influ-
enced task selection. Here, we extended this finding by show-
ing that steadily increasing switch stimulus availability can
induce a task switch. Recent task-switching studies have also
successfully induced switching behavior without a random-
ness instruction by intermixing free- and forced-choice trials
(Fröber & Dreisbach, 2017) or by rewarding task switches
with points (Braun & Arrington, 2018). Thus, the present
study provides further evidence of flexible adaptive switching
behavior by showing that people are also able to adapt their
task selection behavior to the current task environment, in-
cluding task availabilities. Considering again the between-
experiment comparisons (i.e., differences in switch rates but
stable switch costs), the strong avoidance of switching within
the first voluntary task-switching block(s), and that afterward
a bias to repeat tasks was still present (i.e., tasks were not just
randomly selected as one would expect if performance differ-
ences between these transitions play no role), it seems very
likely that the adaptation to the task environment was also
further modulated by switching limitations.

Importantly, the self-organized task-switching paradigm has
advantages for exploring the finding of adaptive task selection
behavior in more detail while also focusing on task perfor-
mance, because both switching behavior and switching limita-
tions are measured on a common scale—namely, time. More
precisely, our experimental procedure provided us with the
opportunity to explore how the temporal costs of task switching
are traded off against the temporal benefits of increased switch
stimulus availability. Results showed that in the two experi-
ments the median size of SOAs in switch trials was similar to
switch costs. Note again that switch costs were constant across
experiments and only the external temporal dynamics of stim-
ulus availability changed across experiments. Thus, this sug-
gests that participants tended to switch tasks when the avail-
ability benefits matched switch costs—a strategy that helped
them to complete the overall block of trials more rapidly.6

6 Note that this switch cost–availability trade-off seems to be rather consistent
with a local strategy to minimize current RTs. It would be also possible to use a
proactive switching strategy to complete the overall block of trials faster. More
precisely, participants could also switch tasks when the availability benefits
were still smaller than the switch costs, to reset the SOA so that they would be
affected by lower SOAs on the following repetition trials. This strategy would
be more consistent with a global strategy of minimizing mean rather than
current RTs. Although the present experiments were not designed to test any
optimization accounts, it should be noted that individuals’ strategy selections
are often driven mainly by local optimization, at the expense of suboptimal
global task performance (Anderson, 1990; Fu & Gray, 2006).
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In retrospect, there is considerable evidence for the idea
that the adaptation of behavior to the environment might be
driven by cost–benefit considerations in which our cognitive
system trades off its own limitations in an optimal manner
against environmental constraints (Anderson, 1990; Carlson
& Stevenson, 2002; Chater & Oaksford, 1999; Howes, Lewis,
& Vera, 2009; Gray, Sims, Fu, & Schoelles, 2006). For exam-
ple, participants are able to adopt optimal information acqui-
sition strategies in arithmetic tasks when they adapt their in-
volved cognitive processes to small temporal delays in infor-
mation availability (Carlson & Stevenson, 2002; Stevenson &
Carlson, 2003). Furthermore, a study that investigated the
neural correlates of task selection in a dynamically changing
task environment somewhat similar to the one used in the
present experiments has provided hints of a neural connection
between task selection and task performance (Wisniewski
et al., 2015).7 Specifically, in this study participants saw a
single stimulus but could choose among three S–R mappings
(i.e., Btask rules^) on a trial-by-trial basis. Stimulus discrimi-
nability was reduced each time the same S–R mapping was
repeated, thus giving participants an incentive to switch task
rules. The results suggested that the same brain regions (i.e.,
dorsal medial prefrontal cortex and dorsal anterior cingulate
cortex) were involved in both choosing a task rule and mon-
itoring stimulus discriminability. Thus, considering all of this
evidence in light of participants’ sensitivity to the temporal
delays in the present study, the finding that the participants
in our sequential multitasking setting selected trade-offs to
minimize the time required to complete a trial supports the
idea that self-organized sequential multitasking also involves
balancing internal costs (i.e., switch costs) and external bene-
fits (i.e., stimulus availability) in order to optimize task per-
formance. In other words, our results suggest that task selec-
tion in self-organized sequential multitasking is partly driven
by (expected) task performance. At this point, it should also be
emphasized, however, that we had no a priori assumption
about the switch cost–SOA trade-offs. Although this finding
was observed across two slightly different task environments
(i.e., different SOA increments), the observed matches of
these two measures in the two experiments might be merely
coincidences of some specific design features present in both
experiments. Thus, the question of optimal adaptive task

selection behavior (in which the trial-specific size of switch
costs is equally traded against the trial-specific task availabil-
ities) should be directly tackled in future studies. In addition,
the basic idea of dynamic task availabilities should be applied
to modified task environments (e.g., different tasks) other than
the ones used in the present experiments (i.e., different SOA
increments).

So far, we have interpreted the results on a rather functional
level—that is, participants adapt to the task environment in
such a way that switching limitations interact with stimulus
availability to influence switching behavior. Although the
question of optimality remains open, one of the issues that
emerges in particular from this discussion is how the underly-
ing mechanisms operate to configure task-selection behavior
in the current task environment. As was elaborated in the
introduction, our approach was primarily motivated by the
idea of passive bottom-up factors influencing switching be-
havior (i.e., priming activation of the switch task set by in-
creasing switch stimulus availability to counteract the carry-
over activation boost from the repetition task set)—thereby
neglecting the involvement of active top-down factors.
However, the jump of switch rates after the first block(s) pro-
vides a strong suggestion that active top-down processes are
also involved in adjusting switching behavior. Unfortunately,
albeit also in line with findings from many VTS studies in
which task-selection behavior reflects interaction of top-
down and bottom-up processes (e.g., Arrington, 2008;
Demanet et al., 2010), we currently have no sophisticated
account of how these processes interacted in the present ex-
periments to influence task selection and task performance.

In this context, intriguing questions regarding awareness of
the processes involved in trading off switch costs and stimulus
availability emerge—first and foremost, whether there is some
metacognitive awareness of switch costs. Intuitively, the
avoidance of task switching (e.g., repetition bias in VTS stud-
ies with randomness instruction) indirectly suggests that peo-
ple must possess some awareness of the costs associated with
switching tasks, and this idea seems also to be supported by
recent studies in which people’s introspection was sensitive to
very small variations in task performance (e.g., Questienne,
Atas, Burle, & Gevers, 2018; Questienne, van Dijck, &
Gevers, 2018). The idea that metacognitive evaluation of
switch costs is a prerequisite factor to Bsuccessfully^ trading
off switch costs against stimulus availability also fits with our
post-hoc interpretation of optimal switching behavior.
Interestingly, however, people do not seem to be aware of their
multitasking costs in dual-task settings (e.g., Bratzke& Bryce,
2016; Bryce & Bratzke, 2014). Nevertheless, participants
adapt their dual-task strategies to maximize their overall per-
formance in response to changes in task difficulty (Janssen &
Brumby, 2015; Janssen, Brumby, Dowell, Chater, & Howes,
2011; Leonhard, Ruiz Fernández, Ulrich, &Miller, 2011), and
they even appear to shift from a more serial to a more parallel

7 The present study was developed independently of Wisniewski et al.’s
(2015) article, and their study was not designed to investigate how switch costs
are related to switching behavior. Moreover, several aspects of their experi-
mental procedure and findings make it difficult to derive any post-hoc conclu-
sions about this research question. First, only one stimulus was presented in
each trial. The different Btasks^ were different S–R mappings of the possible
stimulus categories onto response keys. Second, participants indicated which
S–Rmapping they would use in advance of stimulus onset. This allowed them
plenty of time to prepare for task switches, which is known to reduce the cost
of switching. Third, the behavioral results indicated no switch costs in task
performance—an obvious prerequisite for exploring the question of how par-
ticipants adapt their switching behavior to their switch costs.
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processing mode when the likelihood of short SOAs between
the two task stimuli increases, which can increase the overall
efficiency of task performance (Miller, Ulrich, & Rolke,
2009). Thus, it would be an interesting issue not only to di-
rectly examine the introspection of switch costs but also to see
whether (and how) this potential metacognitive ability modu-
lates adaptation to the current task environment (e.g., do peo-
ple with more accurate introspective knowledge select more
optimal switch SOA–cost trade-offs than do people with less
knowledge?).

A somewhat surprising finding from the present experi-
ments—in particular, in light of the overall matching of switch
SOA and switch costs—was that switches were distributed
over a wide range of SOAs, with many switches occurring
already at the first SOA level. Specifically, from an intuitive
point of view, we would expect to observe a more narrow
range of switch SOAs with a frequency peak at the size of
the switch costs (i.e., at the second or third SOA level). In
retrospect, it seems conceivable that switch costs might—sim-
ilar to the switch SOA—differ substantially between trials,
and that very small costs were involved in many trials. Thus,
stimulus availability might have had less opportunity to influ-
ence task choice in a consistent and systematic manner be-
cause of random variability in the size of switch costs. This
variability might result from random variations in the task-set
activations that, as we described in the introduction, appear to
influence both switch costs and task choice behavior. Another
possible explanation for the larger number of switches at short
SOAs might be that some or all stimuli are directly translated
into a response without retrieving the corresponding task set.
Thus, switch task processing might start immediately after
switch stimulus onset and proceed in parallel with repetition
task processing after onset of the repetition stimulus. As we
mentioned in the introduction, resource-sharing accounts of
dual-task interference even allow for parallel response selec-
tion processing (e.g., Mittelstädt & Miller, 2017; Navon &
Miller, 2002; Tombu & Jolicœur, 2003). Thus, tasks might
also be selected as soon as a certain processing threshold is
reached, before final task processing takes place. Without the
retrieval of task sets, it seems quite conceivable that even a
short switch stimulus head start (i.e., switch SOA) might be
sufficient for the switch task to win the race.

However, it also seems very likely that other aspects of the
task environment in our experiments influence task choice
behavior in addition to stimulus availability. One component
is worth mentioning in particular: Stimulus position and thus
task location changed randomly on a trial-by-trial basis.
Arrington andWeaver (2015) found that participants are more
likely to repeat a taskwhen the task location repeats than when
it changes and attributed this effect to so-called outsourcing
strategies that have already been proposed in a cued task-
switching paradigm (Mayr & Bryck, 2007). Indeed, our data
show the same pattern, because switch rates were lower when

the task location repeated (Exp. 1a = .36, Exp. 1b = .25) than
when it changed (Exp. 1a = .40, Exp. 1b = .34), although the
difference (i.e., Exp. 1a = .04, Exp. 1b = .09) was reliable only
in Experiment 1b (p = .031) and not in Experiment 1a (p =
.084).8 A possible post-hoc interpretation for the effect of
stimulus location on task choice behavior might be that spatial
attention is connected more strongly to the location of the
previously selected stimulus. Thus, this attentional location
bias might additionally boost the effects of stimulus availabil-
ity and thus task activation.

Furthermore, participants might also guide their behavior
partially by task sequences, to avoid actively engaging in—
probably effortful—task selection processes on each trial.
This would be in line with growing evidence that the cognitive
system is biased to avoid effortful processes (e.g., Dunn,
Lutes, & Risko, 2016; Kool & Botvinick, 2014; Kool,
McGuire, Rosen, & Botvinick, 2010). The idea that task se-
quences guide task selection behavior is also incorporated in
the chain-retrieval model, introduced by Vandierendonck,
Demanet, Liefooghe, and Verbruggen (2012) to explain task
selection behavior in VTS studies. According to this model,
task selection in VTS is guided by task sequences retrieved
from long term memory. Importantly, however, this model
also suggests that environmental factors can override the task
choice retrieved from a chunked task sequence—in line with
the findings of many VTS studies (e.g., Arrington, 2008;
Mayr & Bell, 2006), as well as the present study, that the
precise stimulus conditions can influence task choices.
Interestingly, switching tasks in sequences involves hierarchi-
cal control processes to initiate these sequences, which mod-
ulate switch costs and involve Bsequence-switching costs^
(Schneider & Logan, 2006a). Thus, the overall adaptation of
switch costs to stimulus availability in the present study might
also have involved high-level processes—that is, participants
selected task sequences that were sensitive to the costs of task
switches as well as sequence switches.

Finally, the investigation of the relation of individual
switch costs and individual switching behavior provides fur-
ther hints that task performance (in terms of switch costs) and
task selection may reflect similar aspects of cognitive control.
Specifically, we observed a correlation of switch costs and

8 We also visually inspected differences in switch rates between task location
switches and task location repetitions separately for each participant: This
difference was larger than .50 for one participant in Experiment 1a (i.e., .52
for the difference between switch rates on location switch [.58] and location
repetition trials [.06]) and for two participants in Experiment 1b (i.e., .98
[switch rates of .99 on location switch and .01 on location repetition trials]
and .96 [switch rates of .98 on location switch and .02 on location repetition
trials], respectively) suggesting that these participants consistently used task
locations to guide their task selection behavior. Note that excluding these
participants revealed similar descriptive patterns in switch rates for task loca-
tion repetitions (Exp. 1a = .37, Exp. 1b = .26) and task location switches (Exp.
1a = .39, Exp. 1b = .30), and the difference (Exp. 1a = .02, Exp. 1b = .04)
was again significant only in Experiment 1b (p = .003) but not in
Experiment 1a (p = .119).
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switch rates across participants in Experiment 1a and this cor-
relation also seemed to be—although slightly weaker and not
reliable—present in Experiment 1b. Although these correla-
tions might suggest that participants’ switching behavior is
influenced by their switch costs, it is also possible that the size
of switch costs is influenced by switching behavior. Note that
many task-switching studies with predetermined task order
have found that switch costs decrease as task-switch frequen-
cy increases (e.g., Mayr, 2006; Mayr, Kuhns, & Rieter, 2013;
Monsell & Mizon, 2006; Schneider, 2016; Schneider &
Logan, 2006b). Thus, it is not surprising to observe a correla-
tion between switch costs and switch rates across partici-
pants—at least at first glance. As we mentioned in our intro-
duction, however, previous VTS studies with the instruction
to select tasks randomly have not observed this correlation
(Arrington & Yates, 2009; Yeung, 2010). We think that the
present approach of inducing task switches by instructing par-
ticipants to select tasks in order to optimize performance,
while adaptively manipulating the availability of task stimuli
(i.e., without any global randomness instruction), provides an
interesting avenue to jointly study task selection and task per-
formance within one paradigm. Beyond this rather methodical
point of view, post hoc correlational analyses using the train-
ing block data (i.e., in which task transitions were
predetermined by using the alternating-run procedure) as a
baseline estimate of individual switch costs provides some
interesting hints about the causal nature of the observed vol-
untary switch costs-rate correlations. Specifically, we also ob-
served negative correlations between training block switch
costs and switch rates in the subsequent VTS blocks in both
Experiment 1a and 1b. This finding supports the view that
switch costs in the voluntary switching blocks are at least
partially responsible for modulating switching behavior.

It should be emphasized, however, that an investigation of
individual differences will require larger samples than the
ones used in the present study (i.e., 32 and 31 participants in
Exps. 1a and 1b, respectively)9 and that the correlation in the
voluntary switching blocks in Experiment 1b was driven
mainly by three participants with high switch costs.
Moreover, estimation of individual switch costs with the train-
ing blocks data might be subject to extra noise because par-
ticipants need time to familiarize themselves with the experi-
mental setting and the single tasks. It is also an open question
whether the Bbaseline^ measure of switch costs with the
alternating-run training procedure used here is suitable to rep-
resent switching limitations that are supposedly also present in
the voluntary task-switching blocks: Although the substantial
positive correlations between training and voluntary switch
costs indeed suggest that these limitations rely on similar

processes, it should be noted that even switch costs in proce-
dures differing only in how task order is determined (i.e.,
explicit cuing vs. alternating runs) should not be treated as
identical measures (Altmann, 2007), and many studies found
that voluntary switch costs are often smaller than switch costs
in externally controlled task switching (e.g., Arrington &
Logan, 2005; Chen & Hsieh, 2015; Demanet & Liefooghe,
2014; Orr & Weissman, 2011). Thus, all correlational data
(i.e., correlations within the voluntary switching blocks and
between training and voluntary switching blocks) must be
interpreted with caution, and future studies with larger sam-
ples are clearly needed if researchers wish to investigate indi-
vidual differences with the present paradigm. For this purpose,
we recommend using switch rates instead of median switch
SOAs to capture switching behavior. When median switch
SOAvaries only in coarse steps, as in the present experiments,
it is less suited than the continuous variable of switch rates to
this type of analysis.

Conclusion

In the present study, we presented a novel multitasking para-
digm in which switching behavior is induced by the increased
availability of switch tasks instead of additional randomness
instructions as in the classic VTS paradigm (Arrington &
Logan, 2004). Specifically, the availability of task stimuli
was dynamically adjusted on the basis of individual choices
in such a way that the stimulus for the previously selected task
was presented with an SOA that increased with additional task
repetitions. The results of two experiments with different SOA
increments suggest that participants were sensitive to the in-
creased availability of switch stimuli, and that this sensitivity
reflects adaptive task selection behavior. Furthermore, the
findings that participants tended to switch tasks when the size
of the SOA corresponded approximately to their switch costs
and that individual switch rates were related to individual
switch costs provide further hints that people might consider
their switch costs when adapting their multitasking behavior
to the environment.
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