Exercise 1 （4 points）
Write the following formulas with all missing parentheses，and present their respective syntax trees．
（a）$p_{0} \wedge\left(p_{1} \wedge p_{2} \wedge p_{3}\right) \wedge \neg p_{4}$
（b）$\neg\left(p_{1} \wedge p_{2}\right) \rightarrow \neg p_{1} \vee \neg p_{2}$

Exercise 2 （4 points）
Show that $(A \vee C) \wedge(B \vee \neg C) \neq \vDash(A \vee C) \wedge(B \vee \neg C) \wedge(A \vee B)$ ．

Exercise 3 （6 points）
Show that for every set of formulas Γ and any formulas A, B, C the following holds：
（a）If $\Gamma, A \vDash B$ and $\Gamma, A \vDash \neg B$ ，then $\Gamma \vDash \neg A$ ．
（b）If $\Gamma, A \vDash C$ and $\Gamma, B \vDash C$ ，then $\Gamma, A \vee B \vDash C$ ．

Exercise 4 （6 points）
We consider only \rightarrow－free formulas A ，i．e．formulas in the fragment $\{\wedge, \vee, \neg\}$ ．
We define the dual A^{*} of a formula A recursively as follows：

$$
\begin{aligned}
A^{*} & :=A \quad \text { if } A \in\left\{p_{0}, p_{1}, p_{2}, \ldots\right\} \\
(A \wedge B)^{*} & :=\left(A^{*} \vee B^{*}\right) \\
(A \vee B)^{*} & :=\left(A^{*} \wedge B^{*}\right) \\
(\neg A)^{*} & :=\neg A^{*}
\end{aligned}
$$

（a）Prove by induction that for any two formulas A and $B: A \neq B \Longleftrightarrow A^{*} \nexists ⿰ ⿰ 三 丨 ⿰ 丨 三 ~ B * ~ . ~$
（4 points）
（b）We now change the above definition of A^{*} by replacing the first clause by

$$
A^{*}:=\neg A \quad \text { if } A \in\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}
$$

Prove that $A^{*} \nexists ⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 ㇂ ㇒ 兀 一$ for every formula A ．

