Theoretical Foundations of Logic Programming		SS 2018
Exercise sheet 1	due 27.4.	T. Piecha

Exercise 1 (4 points)

Write the following formulas with all missing parentheses, and present their respective syntax trees.

(a)	$p_0 \wedge (p_1 \wedge p_2 \wedge p_3) \wedge \neg p_4$	(2 points)
(b)	$\neg(p_1 \land p_2) \rightarrow \neg p_1 \lor \neg p_2$	(2 points)

Exercise 2 (4 points) Show that $(A \lor C) \land (B \lor \neg C) \dashv \vDash (A \lor C) \land (B \lor \neg C) \land (A \lor B)$.

Exercise 3 (6 points)

Show that for every set of formulas Γ and any formulas A, B, C the following holds:

(a) If $\Gamma, A \vDash B$ and $\Gamma, A \vDash \neg B$, then $\Gamma \vDash \neg A$. (3 points)

(b) If $\Gamma, A \vDash C$ and $\Gamma, B \vDash C$, then $\Gamma, A \lor B \vDash C$. (3 points)

Exercise 4 (6 points)

We consider only \rightarrow -free formulas *A*, i.e. formulas in the fragment $\{\land, \lor, \neg\}$. We define the *dual* A^* of a formula *A* recursively as follows:

$$A^* \coloneqq A \quad \text{if } A \in \{p_0, p_1, p_2, \ldots\}$$
$$(A \land B)^* \coloneqq (A^* \lor B^*)$$
$$(A \lor B)^* \coloneqq (A^* \land B^*)$$
$$(\neg A)^* \coloneqq \neg A^*$$

(a) Prove by induction that for any two formulas A and B: $A \rightrightarrows \vDash B \iff A^* \dashv \vDash B^*$. (4 points)

(b) We now change the above definition of A^* by replacing the first clause by

$$A^* \coloneqq \neg A \quad \text{if } A \in \{p_0, p_1, p_2, \ldots\}$$

Prove that $A^* \dashv \models \neg A$ for every formula *A*.

(2 points)