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Abstract: Despite extraordinary differences between natural languages, linguists have identified 

many semantic universals – shared properties of meaning – that are yet to receive a unified 

explanation. Such universals are attested in various linguistic domains, including semantics of 

content words and function words. Recently, it has been proposed, using tools from machine 

learning, that universal properties of quantifiers can be explained by evoking the ease of 

learnability. In this paper, we show that this type of explanation can be extended to the domain of 

color terms. In all languages, color names denote very geometrically well-behaved (convex) 

regions of color space. We pursue a cognitive explanation of that fact: convexity can be explained 

by accounting for its role in the process of learning color terms.  Therefore, we argue for a unified 

explanation of semantic universals, across content (color terms) and function words (quantifiers), 

in terms of learnability: meanings satisfying attested universals are easier to learn than those that 

are not.  Thus, ease of learning can explain the presence of universals in many different linguistic 

domains. 

 

1. Introduction 

In spite of extraordinary differences between languages, linguists have identified shared properties 

of all languages at many levels of linguistic analysis, e.g., phonology (1), syntax (2–4), and 

semantics (5, 6). Linguistic universals are crucial for understanding human cognition. Because 

they are attested across different languages and communicative niches, they likely reflect general 

features of human cognitive makeup. Explaining why a universal holds requires establishing a 

connection between language and a feature of the mind. 

 

So far, the literature offers very few explanatory theories of linguistic universals. Even fewer 

existing explanations are expressed in a precise mathematical modeling framework. A notable 

exception is a recent explanation in terms of optimal communication: languages vary but the scope 
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of possible variation is constrained by two complementary forces of simplicity and 

informativeness (7, 8). However, this type of explanation suffers from a serious problem: within 

this framework, in order to explain a given universal, one needs to come up with a complexity 

measure for the conceptual domain in question. Such measures can seem arbitrary, since the 

resulting complexity hierarchies depend on choices (e.g. of primitives) made by the theorist (9, 

10). 

 

We propose a unified cognitive explanation of linguistic universals without postulating an ad hoc 

complexity measure. We suggest that linguistic universals arise because expressions satisfying 

them are easier to learn than those that do not. To operationalize the difficulty of learning, we have 

not tailor-made a computational model for our specific learning tasks. Instead, we use off-the-shelf 

computational tools: neural network architectures currently in widespread use in deep learning (11, 

12). 

 

We focus on semantic universals in two domains: quantifiers and color terms. After presenting 

existing results on the former, we present new results on the latter.  Our results show that universal 

semantic properties in both domains make meanings easier to acquire for neural networks. We 

have chosen these two extremely rich linguistic domains for a number of reasons. Historically, 

they have become a testing ground for research into the relationship between language and thought 

(13–15). Both domains involve the interaction of various aspects of language, cognition, and 

perception (16, 17). Furthermore, color terms are content words while quantifiers are function 

words.  Our explanation of semantic universals is the first to be applied to expressions from both 

of these fundamental categories. A single computational explanation of the source of the semantic 

universals in these two domains constitutes a strong argument for the main claim of the paper that 

linguistic universals are the result of learnability pressure. 

 

2. Function words: Quantifiers 

 

The study of number terms (called here and in the linguistics literature quantifiers) has been one 

of the cornerstones of natural language semantics since its inception (5, 18). Quantifiers are 

expressed by determiners -- every, some, most, the, a, three, et cetera -- as they occur in syntactic 
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configurations like [S [NP [Det D] [N N]] [VP …].  Determiners express binary relations between 

sets of objects.  For instance, the sentence Every student is happy is true if and only if each element 

in the set of students is in the set of happy things, i.e. if the former is a subset of the latter.  Thus, 

Every can be taken to express the subset relation.   

 

Only a very limited subset of all logically possible quantifiers is expressed by simple determiners 

in any natural language. Simple combinatorics tells us that there are 65,536 possible quantifiers to 

describe any situation consisting of two objects and two properties (19). Very few of those 

logically possible quantifiers are expressed in natural language. It turns out that there are strong 

regularities across languages in terms of which quantifiers are lexicalized. Thus, the domain of 

quantification provides another area of semantic universals.  We now highlight two of them, 

showing how they are exhibited by valid inference patterns. 

 

2.1 Quantity 

The first universal captures the fact that quantifiers genuinely talk about quantities.  In particular, 

whether or not a sentence of the form Det CN VP is true or not should only depend on the sizes of 

the sets denoted by the common noun and verb phrase (as well as their intersection and 

differences).  To exhibit this fact, we observe the validity of the following inference pattern. 

Many houses on Cambridge Ave are blue. 

There are exactly as many blue and non-blue houses on El Camino Real as on Cambridge 

Ave. 

Therefore, many houses on El Camino Real are blue. 

The second premise of this inference says that the number of blue houses and of non-blue houses 

is equal in the two locations; the reader can verify that this pattern is valid for all choices of 

predicates instead of blue and house on X.  This validity shows us that many is what we will call 

quantitative. 

 

QUANTITY UNIVERSAL: All simple determiners are quantitative (18–20). 

 

2.2 Monotonicity 

For the second universal, observe that the following inference pattern is valid. 
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Many scientists know the R programming language. 

Many scientists know a programming language. 

All that we have done is replaced a more specific term -- know the R programming language -- 

with a strictly more general term -- know a programming language.  The reader can verify that the 

inference pattern would be valid for any choice of expression instead of scientist and pair of 

expressions that stand in the same specific/general relation.  This validity shows that many is 

upward monotone.  The pattern reverses for few. 

Few scientists know a programming language. 

Few scientists know the R programming language. 

This shows that few is downward monotone.  We say that a determiner is monotone if it is either 

upward or downward monotone.  Of course, not every quantifier is monotone: those expressed by 

the complex determiners an even number of and at least 6 or at most 2 are not monotone. 

 

MONOTONICITY UNIVERSAL: All simple determiners are monotone (5, 18). 

 

3. Content words: Color Terms 

The study of color naming has been on the forefront of the relativism vs. nativism debate that has 

driven much of linguistics, philosophy, and cognitive science in the twentieth century. This is only 

natural: although colors have relatively simple and well-understood structure, there is at the same 

time fairly complex cross-linguistic variation when it comes to color terms. At first, the debate was 

dominated by the simple question: which colors get names (are lexicalized) across different 

languages? Using their seminal World Color Survey, Kay and Berlin have proposed the existence 

of universal constraints on cross-language color naming in the form of a partially fixed 

evolutionary progression according to which languages gain color terms over time (17, 21). These 

are strong nonlinguistic/non-cognitive constraints that can be explained by postulating that color 

categories are organized around universal focal colors (22). The relativistic approach, however, 

seems less concerned with explaining some of the most striking universal properties of color 

categorization across languages (23). Apart from which colors get lexicalized, all color terms 

denote very geometrically well-behaved regions of color space. 

 

CONVEXITY UNIVERSAL: All color terms denote convex regions of color space (24–27). 
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4. Computational Experiments and Results 

4.1 Quantifier Universals 

In (29) we trained a long short-term memory network to learn the meanings of quantifiers.  The 

input was a sequence of objects, coded to which of four regions of a Venn diagram they belong to, 

with the two sets corresponding to the common noun and verb phrase of a Det CN VP 

sentence.  For each universal, we compared one quantifier satisfying the universal with one 

quantifier not satisfying the universal.  Results can be seen in Fig. 1. 

 

  

  
Fig. 1. Learning curves for an LSTM trained to learn quantifiers.  X-axis: number of training 

mini-batches.  Y-axis: accuracy on a held-out test set.  Top row: monotonicity.  Left: upward 

monoticity, at least 4 compared to at least 6 or at most 2.  Right: downward monotonicity, at 

most 4 compared to at least 6 or at most 2. Bottom row: Quantity.  Left: at least 3 compared to 

the first 3.  Right: at least three compared to the last 3. 

 

We ran n=30 trials for each universal and measured for each quantifier and each trial the 

convergence point: the first mini-batch which is above 95% test-set accuracy and for which the 



 

6 
 

future mean is above that same threshold.  For each universal, we found a statistically significant 

difference, allowing us to conclude that the quantifier satisfying the universal converged earlier 

than the one that did not.  

 

In the next section, we present new results, extending our approach to color terms.  

 

4.2 Color Universal 

We argue that the cognitive explanation in terms of learnability that we offered for function words 

may be the right explanation for (possibly) all semantic universals by showing that it extends 

naturally to content words. Specifically, we chose color terms as our case study.  It has been argued 

that all natural language color terms denote geometrically well-behaved – specifically, convex – 

regions of color space (24–26).  We show that convexity can be indeed explained by accounting 

for its role in the process of learning color terms.   

  

4.2.1 Artificial Color Naming Systems with Varying Degrees of Convexity 

Let us start by defining convexity in precise terms: Given a vector space X, a subset Y of X is 

convex if and only if for every two points x and y in Y, every point on the line between x and y is 

also in Y (i.e. the point t*x + (1-t)*y, for every t between 0 and 1, is in Y).  Then the CONVEXITY 

UNIVERSAL says that the denotation of every color term is a convex region in the CIELab color 

space that approximates human color vision. Most importantly, the space is perceptually uniform 

with respect to human color vision, meaning that the distance in the space corresponds well with 

the visually perceived color change (25). 

 

We generated 300 artificial color-naming systems, by partitioning the CIELab color space into 

distinct categories, as in Fig 2. 
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Fig. 2 Partitioning CIE-L*a*b* Space 

 

The obtained color systems varied in the degree of convexity, measured as the average area of the 

convex hull of each color that is covered by that color. 

 

We used the following algorithm for generating artificial color naming systems: 

Parameters: temperature (t), connectedness (c), initial ball size (b) 

Inputs: a set of points X, distance measure D, number of categories N 

Step 1: generate initial labeling 

1. Unlabeled := X; Labeled_i = emptyset for i=1,…,N 

2. Choose x_1, …, x_N randomly 
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1. Assign x_i to category i (i.e. add x_i to Labeled_i and remove it from 

Unlabeled) 

2. Assign the b nearest neighbors to x_i to category i 

[if they have not already been assigned a label] 

3. While Unlabeled is not empty: 

1. Choose x from Unlabeled randomly 

1. For i=1,…,N, let D_i := 1 / (min_{x’ in Labeled_i} D(x, x’))^0.25 

2. Let Prob(i) = exp(D_i / t) / sum_j exp(D_j / t) be a softmax 

distribution 

3. Choose a label i from Prob() and assgn it to x 

Step 2: Convexify 

1. For each label i, ordered by increasing size: 

a. Let M_i be ConvexHull(Labeled_i) – Labeled_i 

b. Let R_i be the c*|M_i| closest points in M_i to Labeled_i 

c. Relabel every point in R_i to label i 

 

For the results reported in the paper, we set b=100, N=7, and used Euclidean distance.  Our set of 

points X was 1331 points in CIELab space generated by taking the unit cube, with each axis 

partitioned at steps of interval 0.1, and converting these aRGB points to CIELab.  The parameter t 

came from {5, 1, 0.1, 0.01, 0.001, 0.0005} and c from {0, 0.25, 0.5, 0.75, 1}.  We ran 10 trials for 

each pair of the t and c parameters, for a total of 300 trials. Fig. 3 shows random samples generated 

by this algorithm for various settings of the t and c parameters.  



 

9 
 

 

Fig. 3 

Sample partitions of a 50x50 two-dimensional grid according to our color partitioning algorithm, 

showing the role of the two parameters t and c. 

 

4.2.2 Computational Model 

We used a multi-layer feed-forward neural network, with three input neurons (corresponding to 

dimensions in CIELab color space), N=7 output neurons, and two hidden layers of 12 units with 

the Exponential Linear activation function.1 

                                                        
1 For more details, see the code and data available online: https://github.com/shanest/color-
learning.  
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4.2.3 Results 

As seen in Fig. 4, there exists a strong correlation between degree of convexity and accuracy, 

supporting the claim that more convex color systems are easier to learn.   

 

 
Fig. 4.  Accuracy in classification by a multi-layer perceptron of artificial color systems, plotted 

against the degree of convexity of each such system.  The dots are colored according to the c 

parameter; the border corresponds to the t parameter.  These variables appear not to correlate 

with accuracy; detailed tests reported below confirm this. 

 

In order to show that degree of convexity is the only variable that correlates with accuracy we ran 

a linear regression of accuracy against degree of convexity.  We found Pearson’s R to be 0.71 with 

p=3.1e-47. While the main effect was a correlation with degree of convexity, we also measured 

the effect of other variables.  We included the parameters t and c from the algorithm, as well as 

their interaction t*c, and a few geometric properties of the color spaces: the size of the largest 
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(max) color, of the smallest (min) color, their difference (max-min) and ratio (max/min), as well 

as the median color size. 

We did two things: first, we did a linear regression of accuracy on each of those variables 

independently.  The results are reported in the first row of Table 1: degree of convexity was the 

only one with a significantly high value for Pearson’s R^2.   

Next, we ran a multiple regression using all of the aforementioned variables.  Then, for each 

variable, we ran a multiple regression with every variable except for it.  The bottom row reports 

the difference in R^2 between those two regressions: the amount of variance explained by each 

variable when it is added last to a multiple regression.  The second row of Table 1 shows that 

adding degree of convexity to all of the other variables explains a large amount of variance, while 

none of the others make a substantial independent contribution.  These results show that degree of 

convexity does the main explanatory work in our main result. 

 
 

t c degree of convexity max min max-min max/min median  t*c 

R^2 0.193 0.002 0.504 0.004 0.018 0.001 0.001 0.006 0.064 

Delta-R^2  0.0003 0.0561 0.4407 0.0 0.0 0.0 0.0024 0.0001 0.0013 

 
Table 1.  
Statistics for color learning experiment: R^2 and Delta R^2 for several geometric variables. 
 

5. Conclusions 

It's natural to think that the languages of the world are shaped both by the cognitive makeup of 

language users and their local communicative needs, hence the nativism-relativism debate. 

Universals are more likely to be explained by cognitive makeup, since this does not vary in the 

way that communicative needs vary. We have argued that one aspect of our cognitive makeup -- 

the ease of learning -- can explain the presence of multiple semantic universals in disparate 

domains.  This explanation makes minimal theory-laden assumptions and represents the first 

explanation of semantic universals that applies both to function words and to content words. 
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