First set of assignments

1. Cochrane Ch. 1: Read!

2. Show that the two period model where

$$\max_{\{\xi\}} \quad u(c_t, c_{t+1}) = u(c_t) + \beta \mathbb{E}[u(c_{t+1})]$$

s.t. $c_t = e_t - \xi p_t$
 $c_{t+1} = e_{t+1} + \xi x_{t+1} \quad (x_{t+1} = p_{t+1} + d_{t+1})$

and the multiperiod model where the investor maximises

$$\mathbb{E}_{t} \sum_{j=0}^{\infty} \beta^{j} u(c_{t+j})$$

s.t. $c_{t} = e_{t} - \xi p_{t}$
 $c_{t+1} = e_{t+1} + \xi d_{t+1}$
 $c_{t+2} = e_{t+2} + \xi d_{t+2}$
 \vdots

i.e. the investor can buy a dividend stream $\{d_{t+j}\}$ at price p_t yield the same basic pricing equation

$$p_t = \mathbb{E}_t \left(\beta \frac{u'(c_{t+1})}{u'(c_t)} x_{t+1} \right)$$

Cochrane (2005) p. 24 only sketches the derivation you need to fill the gaps!

- 3. Solve problem 1b in Cochrane (2005) p. 31!
- 4. Take the two period problem under uncertainty

$$u(c_t, c_{t+1}) = u(c_t) + \beta \mathbb{E}(u(c_{t+1}))$$

assume $u(c_t) = \frac{1}{1-\gamma} c_t^{1-\gamma}$

In t + 1 the economy can take only three states. The "recession" state occurs with probability p_1 , the "normal" state with probability p_2 and the "boom" state with probability p_3 .

In the recession state $c_{t+1} = c_1$ and the payoff of an asset is $x_{t+1} = x_1$. In the normal state we have $c_{t+1} = c_2$ and $x_{t+1} = x_2$ and in the boom state we have $c_{t+1} = c_3$ and $x_{t+1} = x_3$.

Derive the fundamental pricing equation in this special case:

$$p_t = \sum_{i=1}^{3} \beta \left(\frac{c_i}{c_t}\right)^{-\gamma} x_i \cdot p_i$$

5.

State	Probability	Payoff x_{t+1}	$\frac{c_{t+1}}{c_t}$
1	0.1	100	1.02
2	0.3	200	0.97
3	0.2	300	1.03
4	0.3	10	0.92
5	0.1	600	1.05

Assume the basic two period model and

$$u(c) = \frac{1}{1-\gamma} c^{1-\gamma}$$

and $\beta=0.95$ and $\gamma=0.8$

- 5a) Compute the value of the (shadow) risk free rate R_{t+1}^f
- 5b) Compute the expected payoff of the asset $\mathbb{E}(x_{t+1})$
- 5c) Compute the price of the asset p_t
- 5d) Compute the expected return of the asset $\mathbb{E}(R_{t+1})$