4th set of assignment Financial Econometrics

1. GMM inference

For the GMM estimator $\hat{b}_{G M M}$ resulting from

$$
\begin{equation*}
\operatorname{argmin} g_{T}(\hat{b})^{\prime} W g_{T}(\hat{b}) \tag{1}
\end{equation*}
$$

$$
\{\hat{b}\}
$$

We have $\hat{b}_{G M M} \underset{p}{\longrightarrow} b$ and
$\sqrt{T}\left(\hat{b}_{G M M}-b\right) \underset{d}{\longrightarrow} N\left(0, A \operatorname{var}\left(\hat{b}_{G M M}\right)\right)$
Where $\operatorname{Avar}\left(\hat{b}_{G M M}\right)$ denotes the asymptotic variance covariance matrix.
In a finite sample we use the approximation

$$
\begin{equation*}
\hat{b}_{G M M} \stackrel{a}{\sim} N\left(b, \frac{\operatorname{Avar}\left(\hat{b}_{G M M}\right)}{T}\right) \tag{2}
\end{equation*}
$$

to test hypotheses about b.
We have $\operatorname{Avar}\left(\hat{b}_{G M M}\right)=\left(d^{\prime} w d\right)^{-1} d^{\prime} w S w d\left(d^{\prime} w d\right)^{-1}$.

To compute $A \operatorname{var}\left(\hat{b}_{G M M}\right)$ you need to write

$$
\begin{equation*}
d=\frac{\partial g_{T}(b)}{\partial b^{\prime}} \tag{3}
\end{equation*}
$$

$g_{T}(b)$ is a vector valued function, i.e. it returns, for a given parameter vector $b=\left(b_{1}, b_{2}, \ldots, b_{k}\right)^{\prime}$, the vector of sample moments:

$$
\left(\begin{array}{c}
E_{T}\left(u_{t}^{1}(b)\right) \tag{4}\\
\vdots \\
E_{T}\left(u_{t}^{N}(b)\right)
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{T} \sum_{t=1}^{T} u_{t}^{1}(b) \\
\vdots \\
\frac{1}{T} \sum_{t=1}^{T} u_{t}^{N}(b)
\end{array}\right)
$$

$d=\frac{\partial g_{T}(b)}{\partial b^{\prime}}$ is then

$$
\left(\begin{array}{ccc}
\frac{\partial E_{t}\left(u_{t}^{1}(b)\right)}{\partial b_{1}} & \cdots & \frac{\partial E_{t}\left(u_{t}^{1}(b)\right)}{\partial b_{k}} \tag{5}\\
\vdots & \ddots & \vdots \\
\frac{\partial E_{t}\left(u_{t}^{N}(b)\right)}{\partial b_{1}} & \cdots & \frac{\partial E_{t}\left(u_{t}^{N}(b)\right)}{\partial b_{k}}
\end{array}\right) N \times K
$$

Write $d \underline{\text { in detail for the GMM estimation framework of the consumption based model where }}$

$$
\begin{equation*}
m_{t+1}=\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} \tag{6}
\end{equation*}
$$

Use two moment restrictions for two asset returns R_{t+1}^{a} and R_{t+1}^{b} :

$$
\begin{align*}
& E\left(m_{t+1} R_{t+1}^{a}-1\right)=0 \tag{7}\\
& E\left(m_{t+1} R_{t+1}^{b}-1\right)=0 \tag{8}
\end{align*}
$$

What is b ?
What is $u_{t}(b)$?
What is $E_{t}\left(u_{t}(b)\right)$ and $g_{T}(b)$?
What is $\frac{\partial g_{T}(b)}{\partial b^{\prime}}$?
Write all in greatest detail!

You have succeeded in computing a consistent estimate of $\operatorname{Avar}\left(\hat{b}_{G M M}\right)$ for your GMM application.

$$
\widehat{\operatorname{Avar}\left(\hat{b}_{G M M}\right)}=\left(\begin{array}{cc}
5 & 0.3 \tag{9}\\
0.3 & 10
\end{array}\right)
$$

You have used $T=100$ observations. Your GMM estimates are given by

$$
\begin{equation*}
\hat{\beta}_{G M M}=0.8 \quad \hat{\gamma}_{G M M}=0.1 \tag{10}
\end{equation*}
$$

Compute an estimate of $\operatorname{Var}\left(\hat{\beta}_{G M M}\right)$ and $\operatorname{Var}\left(\hat{\gamma}_{G M M}\right)$.
Test the hypotheses

$$
\begin{array}{cc}
H_{0}: \quad \beta=1 & H_{0}: \quad \gamma=0 \\
\text { versus } & \text { versus } \tag{11}\\
H_{A}: \quad \beta \neq 1 & H_{A}: \quad \gamma \neq 0
\end{array}
$$

using the t-statistics

$$
\begin{equation*}
t_{1}: \frac{\hat{\beta}_{G M M}-1}{\sqrt{\widehat{\operatorname{Var}}\left(\hat{\beta}_{G M M}\right)}} \quad t_{2}: \frac{\hat{\gamma}_{G M M}}{\sqrt{\widehat{\operatorname{Var}}\left(\hat{\gamma}_{G M M}\right)}} \tag{12}
\end{equation*}
$$

t_{1} and t_{2} are approximately $\mathrm{N}(0,1)$ under the respective Null-Hypothesis.

2. Application of the δ-method

Suppose you have obtained a GMM estimator for $b=\left[\begin{array}{c}\theta \\ \phi\end{array}\right]$ i.e. $\quad \hat{b}=\left[\begin{array}{l}\hat{\theta} \\ \hat{\phi}\end{array}\right]$.
We have

$$
\begin{equation*}
\sqrt{T}(\hat{b}-b) \underset{d}{\longrightarrow} N(0, \Sigma) \tag{13}
\end{equation*}
$$

where Σ is the asymptotic variance covariance matrix.
A consistent estimate of Σ, denoted $\widehat{\Sigma}$, is given by

$$
\widehat{\Sigma}=\left(\begin{array}{cc}
2 & 0.2 \tag{14}\\
0.2 & 3
\end{array}\right)
$$

The sample has $T=100$ observations.
Provide estimates of $\operatorname{Var}(\hat{\theta})$ and $\operatorname{Var}(\hat{\phi})$ using this information. The GMM estimates are $\hat{\theta}=0.6$ and $\hat{\phi}=0.4$

You are interested in testing whether

$$
\begin{equation*}
r=\frac{\phi}{\phi+\theta}=0.5 \tag{15}
\end{equation*}
$$

Construct a suitable test statistic (again, a t-statistic). For this purpose compute an estimate of the variance of $\hat{r}=\frac{\hat{\phi}}{\hat{\phi}+\hat{\theta}}, \operatorname{Var}(\hat{r})$, by using the δ-method.

Hints:

$$
\begin{gather*}
a(b)=\frac{\phi}{\phi+\theta}=r \tag{16}\\
\hat{r}=a(\hat{b}) \underset{p}{\longrightarrow} a(b) \tag{17}\\
\sqrt{T}(a(\hat{b})-a(b)) \underset{d}{\longrightarrow} N\left(0, A(b) \Sigma A(b)^{\prime}\right) \tag{18}
\end{gather*}
$$

where $A(b)=\frac{\partial a(b)}{\partial b^{\prime}}=\left(\frac{\partial a(b)}{\partial \phi}, \frac{\partial a(b)}{\partial \theta}\right)$
The test statistic is

$$
\begin{equation*}
t=\frac{\hat{r}-0.5}{\sqrt{\widehat{\operatorname{Var}}(\hat{r})}} \tag{19}
\end{equation*}
$$

t is approximately $\mathrm{N}(0,1)$ under the Null Hypothesis that $r=0.5$.

