# Computing the Moore-Penrose inverse in 

## EViews

### 28.06.2005 - SS2005

Oliver Wuensche

Every $m \times n$ matrix $A$ can be written as:

$$
A=U W V^{\prime}
$$

This is called the singular value decomposition (SVD). Now, the MoorePenrose inverse can be computed as:

$$
A^{+}=V^{\prime}\left(W^{\prime} W\right)^{-1} W^{\prime} U
$$

$W$ is a diagonal matrix with the singular values as diagonal elements. Often, $\left(W^{\prime} W\right)^{-1}$ is singular and cannot be inverted.

Define: $r$ as the rank of the matrix $A$,

- $W^{*}$ : the trimmed matrix $W$ (only the rows and columns with non-zero elements remain),
- $U^{*}$ : the trimmed matrix $U^{\prime}$ (only the first $r$ rows remain)
- $V^{*}$ : the trimmed matrix $V^{\prime}$ (only the first $r$ rows remain)

Then we can write:

$$
A^{+}=V^{* \prime}\left(W^{* \prime} W^{*}\right)^{-1} W^{* \prime} U^{*}
$$

## Implementation in EViews:

1. First, assign matrix $V$ and vector $W$
2. conduct a singular value decomposition with output $U$
3. make a diagonal matrix consisting of the elements in $W$
4. trim the matrices $U, V$ and $W$ as described above to get $U^{*}, V^{*}$ and $W^{*}$
5. Calculate the Moore-Penrose inverse according to the formula given above

EViews commands:

```
scalar rang=@rank(varcovalpha)
```

matrix v
vector w
matrix $u=@ s v d(v a r c o v a l p h a, w, v)$
matrix w1=@makediagonal(w)
matrix w2=@subextract(w1,1,1,rang,rang)
matrix $\mathrm{v} 2=@$ subextract (@transpose(v), 1, 1, rang, 10)
matrix u2=@subextract(@transpose(u), 1,1,rang,10)
matrix mpi=@transpose(v2)*@inverse(@transpose(w2)*w2)*@transpose(w2)*u2

