Computing the Moore-Penrose inverse in EViews 28.06.2005 - SS2005

Oliver Wuensche

Every $m \times n$ matrix A can be written as:

$$A = UWV'$$

This is called the *singular value decomposition* (SVD). Now, the Moore-Penrose inverse can be computed as:

$$A^+ = V'(W'W)^{-1}W'U$$

W is a diagonal matrix with the singular values as diagonal elements. Often, $(W'W)^{-1}$ is singular and cannot be inverted.

Define: r as the rank of the matrix A,

- W^* : the trimmed matrix W (only the rows and columns with non-zero elements remain),
- U^* : the trimmed matrix U' (only the first r rows remain)
- V^* : the trimmed matrix V' (only the first r rows remain)

Then we can write:

$$A^+ = V^{*'} (W^{*'} W^*)^{-1} W^{*'} U^*$$

Implementation in EViews:

- 1. First, assign matrix \boldsymbol{V} and vector \boldsymbol{W}
- 2. conduct a singular value decomposition with output \boldsymbol{U}
- 3. make a diagonal matrix consisting of the elements in ${\cal W}$
- 4. trim the matrices $U,\ V$ and W as described above to get $U^*,\ V^*$ and W^*
- 5. Calculate the Moore-Penrose inverse according to the formula given above

EViews commands:

```
scalar rang=@rank(varcovalpha)
```

matrix v

vector w

```
matrix u=@svd(varcovalpha,w,v)
```

```
matrix w1=@makediagonal(w)
```

```
matrix w2=@subextract(w1,1,1,rang,rang)
```

```
matrix v2=@subextract(@transpose(v),1,1,rang,10)
```

```
matrix u2=@subextract(@transpose(u),1,1,rang,10)
```

matrix mpi=@transpose(v2)*@inverse(@transpose(w2)*w2)*@transpose(w2)*u2