1. GMM inference

$$
\begin{aligned}
& \frac{\partial g_{T}(b)}{\partial b^{\prime}}=\left[\begin{array}{ll}
\frac{1}{T} \sum\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} R_{t+1}^{a} & \frac{1}{T} \sum-\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} \ln \left(\frac{c_{t+1}}{c_{t}}\right) R_{t+1}^{a} \\
\frac{1}{T} \sum\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} R_{t+1}^{b} & \frac{1}{T} \sum-\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} \ln \left(\frac{c_{t+1}}{c_{t}}\right) R_{t+1}^{b}
\end{array}\right] \\
& \operatorname{Var}\left(\hat{\beta}_{G M M}\right)=0.05 \\
& \operatorname{Var}\left(\hat{\gamma}_{G M M}\right)=0.1 \\
& \text { critical value: } \left.\quad \begin{array}{rl}
z=1.96 \quad \text { with } \quad z & \sim N(0,1) \\
& P(-1.96 \leq z \leq 1.96)
\end{array}\right)=0.9759 \\
& t_{1}:-0.8944 \\
& \rightarrow \text { we can not reject the null hypothesis: } \beta=1 \\
& t_{2}: 0.3162 \\
& \rightarrow \text { we can not reject the null hypothesis: } \quad \gamma=0
\end{aligned}
$$

2. Application of the δ-method

$$
\begin{aligned}
\operatorname{Var}(\hat{\theta}) & =0.02 \\
\operatorname{Var}(\hat{\phi}) & =0.03 \\
\hat{r} & =0.4 \\
\frac{\partial a(b)}{\partial \phi} & =\frac{\theta}{(\phi+\theta)^{2}} \\
\frac{\partial a(b)}{\partial \theta} & =-\frac{\phi}{(\phi+\theta)^{2}} \\
A(\hat{b}) & =\left(\frac{\hat{\theta}}{(\hat{\phi}+\hat{\theta})^{2}},-\frac{\hat{\phi}}{(\hat{\phi}+\hat{\theta})^{2}}\right)=(0.6,-0.4) \\
A(\hat{b})\left(\frac{1}{100} \widehat{\Sigma}\right) A(\hat{b})^{\prime} & 0.0110 \\
t & =-0.9517 \\
\rightarrow & \text { we can not reject the null hypothesis: } \quad r=0.5
\end{aligned}
$$

