1. In the linear regression model

$$
Y_{t}=\alpha+\beta X_{t}+\varepsilon_{t}
$$

with X_{t} a scalar random variable we assume

$$
\begin{gathered}
E\left(\varepsilon_{t}\right)=0 \\
E\left(X_{t} \varepsilon_{t}\right)=0
\end{gathered}
$$

Show that the moment estimator that results from the unconditional moment restrictions is identical to the least squares estimator obtained by
$\underset{\{\hat{\alpha} \hat{\beta}\}}{\operatorname{argmin}} \Sigma_{t=1}^{T}\left(Y_{t}-\alpha-\beta X_{t}\right)^{2}$
$\{\hat{\alpha}, \hat{\beta}\}$
2. In the linear regression model

$$
\begin{aligned}
Y_{t}=\beta_{1} X_{t 1}+\beta_{2} X_{t 2}+\cdots \beta X_{t K}+\varepsilon_{t} & =\underline{\beta}^{\prime} \underline{X}_{t}+\varepsilon_{t} \\
\underline{\beta} & =\left(\beta_{1}, \beta_{2}, \cdot \cdot, \beta_{K}\right)^{\prime} \\
\underline{X}_{t} & =\left(X_{t 1}, X_{t 2}, \cdot \cdot, X_{t K}\right)^{\prime}
\end{aligned}
$$

with endogenous regressors
i.e

$$
E\left(\varepsilon_{t} X_{t 1}\right) \neq 0
$$

$$
E\left(\varepsilon_{t} X_{t 2}\right) \neq 0
$$

$$
E\left(\varepsilon_{t} X_{t K}\right) \neq 0
$$

we have found K instruments $\underline{Z}_{t}=\left(Z_{t 1}, \cdot \cdot, Z_{t K}\right)^{\prime}$ for which

$$
\begin{aligned}
& E\left(\varepsilon_{t} Z_{t 1}\right)=0 \\
& E\left(\varepsilon_{t} Z_{t 2}\right)=0 \\
& \cdot \\
& \cdot \\
& E\left(\varepsilon_{t} Z_{t K}\right)=0 \\
& \text { or } \quad E\left(\varepsilon_{t} \underline{Z}_{t}\right)=\underline{0}
\end{aligned}
$$

Show that in this case the moment estimator (here: IV-estimator) is given by

$$
\hat{\beta}_{I V}=\left[\frac{1}{T} \Sigma_{t=1}^{T} \underline{Z}_{t} \underline{X}_{t}^{\prime}\right]^{-1} \frac{1}{T} \Sigma_{t=1}^{T} \underline{Z}_{t} Y_{t}
$$

Hint: Proceed as in the OLS case with orthogonal regressors (see lecture) by defining matrices and vectors $\underline{Y}, \underline{e}$ and \underline{X} (and \underline{Z})
so that you can write $g_{T}(\hat{b})=\underline{0}$ as $\underline{Z}^{\prime} \underline{e}=0 \quad$ or $\underline{Z}^{\prime}(\underline{Y}-\underline{X} \hat{\beta})=\underline{0}$
Recall: In the lecture we used

$$
\begin{aligned}
\underline{X}^{\prime} \underline{e} & =0 \\
\underline{X}^{\prime}(\underline{Y}-\underline{X} \hat{\beta}) & =0
\end{aligned}
$$

3. The CAPM assumes $m_{t+1}=a+\tilde{b} R_{t+1}^{m}$

Write for this case $E\left(u_{t}\left(b, \underline{X}_{t}\right)\right)=0$
What is b ? What is \underline{X}_{t} ? What is $u_{t}\left(b, \underline{X}_{t}\right)$?
Derive a moment estimator for a and \tilde{b}. Use two asset returns R_{t+1}^{a} and R_{t+1}^{b} for which we have

$$
\begin{aligned}
& E_{t}\left(\left(a+\tilde{b} R_{t+1}^{m}\right) R_{t+1}^{a}\right)=1 \\
& E_{t}\left(\left(a+\tilde{b} R_{t+1}^{m}\right) R_{t+1}^{b}\right)=1
\end{aligned}
$$

and proceed as described in the lecture to derive the moment estimator

