
Time series properties of asset prices and time series models of heteroskedasticity
Readings:

Hamilton (1994), Chapter 21

1



In the previous sessions we have focussed on the cross sectional
properties of prices and returns

So far: cross sectional differences between assets

E(Ri)−Rf = −RfCov(m,Ri)

Time series properties of asset prices and returns.

Especially: Predictability of asset returns.

What does theory have to say about predictability?

Practice?
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Time series of asset returns are realizations of stochastic processes

n
Xt

o∞
t=−∞, a stochastic process, is a sequence of random vari-

ables indexed and ordered by time.

n a realization of the processz }| {
. . . , X0,X1, . . . ,XT| {z }

observed sample

, . . .
o

Analyze distributional properties of sample period =̂ analysis of

(multivariate) distribution of random vector.

Note: No (deterministic) chaos!
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Conditional vs unconditional distributions and moments

• joint distribution fXtXt+1
(xt, xt+1)

• marginal distribution fXt
(xt)

• conditional distribution of Xt|Xt−1 ∼?

• unconditional moments E(Xt), V ar(Xt), . . .

• conditional moments E(Xt+1|Xt,Xt−1, . . .), . . .

Undconditonal moments 6= conditional moments ⇒ predictabil-

ity?
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To study the time series properties of asset prices and returns we
review some fundamentals of time series analysis

Weak stationarity

E(Xt) = µ

V ar(Xt) = σ2

Cov(Xt,Xt−j) = γj

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
unconditional

moments are not

time dependent

serial dependence Cov(Xt,Xt−j) = γj 6= 0 for j 6= 0

⇒ predictability
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Martingale Processes

E
³
Xt+1| It

´
= Xt It : information available time t

{Xt,Xt−1 . . .} ⊂ It
{Xt} A martingale w.r.t It

E
³
Xt+1|It

´
best forecast of Xt+1 in terms of

MSE = E
h
(X∗t+1|t −Xt+1)

2
i

Using E
³
Xt+1|It

´
for X∗

t+1|t yields smallest MSE
[Proof: Hamilton (1994): Time Series Analysis, page 72f.]

For a martingale: ”best” forecast of tomorrow: observed value

of process today
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Are asset prices martingales?

E
³
Yt+1|It

´
= 0 a martingale difference process

Yt = Xt −Xt−1 E
³
Xt+1 −Xt|It

´
= 0 (Xt ∈ It)

Future changes are not forecastable using past information (do

not improve MSE)

Hypothesis:

Do asset prices follow a martingale process ⇒, i.e. price changes
unforecastable?

Theory?

Practice?
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Marginal utility weighted prices follow martingales (in the absence of 
dividends)

Et
³
mt+1 xt+1

´
= pt xt+1 = pt+1 + dt+1

pt = E
µ
β
u0(ct+1)
u0(ct)

xt+1|It
¶

compare to E
³
Xt+1|It

´
= Xt

Assume β ≈ 1 and no dividends dt+1 = 0

E
³
u0(ct+1)pt+1|It

´
= u0 (ct) pt u0 (ct) pt ≡ ept

E
³ ept+1|It´ = ept

Marginal utility weighted prices follow a martingale process
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In a risk neutral world with no dividends and no time preferences
prices follow a martingale. Predictability in the short run?

In a risk neutral world u0(ct) constant:
E
³
pt+1|It

´
= pt

Short run, high frequency ( e.g. daily)

β = 1, ct almost constant, ⇒ u0(ct) = u0(ct+1)
⇒ E

³
pt+1|It

´
= pt in short run!

no better forecast of pt+1 than pt in terms of MSE

Et
³pt+1

pt

´
= Et

³
Rt+1

´
= 1 (coin flips) E

³
Rt+1 − 1

´
= 0| {z }

net return

In practice...

technical analysis, trend lines, resistance lines, double shoulders...
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Predictability in the short run? (1)

An ARMA model for asset returns?

Rt+1 = c+φ1Rt++ . . . φpRt−p+1+θ1εt+θ2εt−1+θpεt−p+1+εt+1
where

E(εt) = 0, V ar(εt) = σ2, Cov(εtεt−j) = 0 j > 0

E
¡
εt|It−1

¢
= 0

A useful model?

E
³
Rt+1|It

´
= c+ φ1Rt+ φ2Rt−1 · ·+ θ1εt+ θ2εt−1

{Rt,Rt−1, εt, εt−1 = ··} ⊂ It

If theory correct φ1 = φ2 . . . = θ1 = θ2 = 0
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Predictability in the short run? (2)

Some specific martingale processes

Random Walk

pt = pt−1 + εt Et(εt) = 0

RW type 1

{εt} i.i.d independent, identically distributed

RW type 2

{εt} independent, but not necessarily identically distributed
RW type 3

{εt} uncorrelated (less restrictive than independence)

Tests for random walk hypothesis of asset prices (Chapter 3

in Campbell/Lo/McKinlay) Only weak evidence for short run

predictability of asset returns.

(Microstructure effects: bid/ask bounce)
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Predictability in the long run? 

From

Et
³
Ri
t+1

´
− R

f
t = −

Covt

³
mt+1,R

i
t+1

´
Et(mt+1)

using mt = β
³ct+1

ct

´−γt
and lognormal consumption growth

ct+1
ct

Et
³
Ri
t+1

´
−Rf

t ≈ γtσt(∆ ln ct+1)σt(R
i
t+1)ρt(mt+1,R

i
t+1)

12



When setting up a time series model in finance we usually use log 
returns (1)

It is useful to take ’log returns’ (continuously compounded re-

turns)

Use rt+1 = ln
³pt+1

pt

´
instead of Rt+1 =

pt+1
pt

(gross return)

rt+1 ≈
pt+1 − pt

pt
=

pt+1
pt

− 1 = Rt+1 − 1 (net return)

e.g.
pt+1 = 105 pt = 100
Rt+1 = 1.05 net return = 0.05
rt = 0.049

Continuous compounding between t and t+1
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When setting up a time series model in finance we usually use log 
returns (2)

Distributional assumption for Rt+1 =
pt+1
pt
; [0,∞)

Normal distribution? Rt+1 − 1; [−1,∞)

Assume: rt = ln
³pt+1

pt

´
∼ N(µ, σ2)

⇒ pt+1
pt

= exp(rt) ∼ lognormal defined on(0,∞)
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When setting up a time series model in finance we usually use log 
returns (3)

Multiperiod returns: k > 1

gross returns:
pt+k
pt

=
pt+1
pt

· pt+2
pt+1

· pt+3
pt+2

· . . . · pt+k

pt+k−1| {z }
multiplicative

log returns: ln
³pt+k

pt

´
= ln

Ã
pt+1
pt

!
+ ln

Ã
pt+2
pt+1

!
· · ·| {z }

additive

= ln

µ
pt+1
pt

· pt+2pt+1
· pt+3pt+2

· . . . · pt+k
pt+k−1

¶

15



When setting up a time series model in finance we usually use log 
returns (4)

(Asymptotic) distribution of sum of (normal) random variables

known.

Distribution of product of random variables more difficult, espe-

cially asymptotic distribution

LLNs and CLTs exist for sums of random variables
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Stylized facts of financial return data

• low serial correlation in (log) returns (in line with theory, if

prices are martingales)

• significant correlation in squared returns

A simple model to account for these stylized facts

rt = c+ ut

E(ut) = 0, V ar(ut) = E(u2t ) = σ2, E(utut−j) = 0 for j 6= 0

⇒ rt and ut white noise, E(rt) = c and V ar(rt) = σ2| {z }
unconditional

Cov(rt, rt−j) = 0 ∀j 6= 0
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For the AutoRegressive Conditional Heteroskedasticity (ARCH)

model Engle assumes

ut =
p
ht · εt

1. εt ∼ N(0, 1) i.i.d.

2. E(εt|It−1) = 0 exogenous identical shocks (unpredictable)

3. ht = f(r2t−1) or ht = f(|rt−1|) or longer lags of absolute or
squared returns. ARCH(1): ht = d+ a1r

2
t−1

The success of Engle‘s ARCH is due to the fact that the model can
take into account the fundamental time series properties of asset
prices (1)
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The success of Engle‘s ARCH is due to the fact that the model can
take into account the fundamental time series properties of asset
prices (2)

For the ARCH(1) specification

ht = d+ a1r
2
t−1

Et(rt) = c+
p
ht · Et(εt)

= c+
q
d+ a1r

2
t−1 · 0 = c

V art(rt) = V ar(c) + (d+ a1r
2
t−1)V art(εt)

= d+ a1r
2
t−1

= ht (conditional variance,
√
ht conditional ”volatility”)

Remark: Volatility sometimes defined as annualized (log) return standard

deviation. With σt =
√
ht the standard deviation of daily log returns we

annualize σann. = T · σt (T number of trading days)

(ML) estimated coefficient a1 significantly different from zero

(positive)!

⇒ variance of return in t+1 predictable given time t information!
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• asymmetric responses of return variance to positive or neg-
ative return shock?

• persistence of shocks (ARCH) only one lag period or longer?
→ GARCH: ht = d+

Pq
i=1αir

2
t−i+

Pp
j=1βjht−j

• Long memory, fractionally integrated GARCH

• shocks ε normally distributed?
fat tails, skewness (large negative shocks more likely)

• How to ensure non-negativity of conditional variance ht?

A plethora of conditional volatility models have been proposed
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A plethora of model variants has been proposed

• ARCH-in-Mean rt = d+ δht−1 +
√
htεt

• multivariate extensions ⇒ multivariate ARCH: Conditional

covariances of asset returns (correlations) predictable.
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Nelson’s Exponential ARCH

Standard assumptions:

rt = µ+ ut
ut =

p
htvt

where

Et(vt) = 0

Et(v
2
t ) = 1

{vt} iid, i.e. V art(rt) = ht

rt a white noise process as above.
However, log of conditional variance evolves as:

lnht = ζ + π{|vt−1| − E(|vt−1|) + ℵvt−1}

A successful model: Nelson‘s E-ARCH model (1)
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lnht = ζ + π{|vt−1| − E(|vt−1|) + ℵvt−1}

Non-negativity of ht = V art(rt) guaranteed .
Asymmetric effects positive and negative return shocks possible:

• π > 0→ deviation of absolute iid shock |vt−1| from expecta-
tion E(|vt−1|) increases volatility forecast (c.p.)

• −1 < ℵ < 0 positive return shock vt−1 > 0 increases volatility
forecast ht+1 less than negative return shock vt−1 < 0

• ℵ < −1 positive return shock vt−1 > 0 c.p. decreases volatility
forecast ht+1.

A successful model: Nelson‘s E-ARCH model (2)
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lnht = ζ + π{|vt−1| − E(|vt−1|) + ℵvt−1}

Economic explanation (heuristic) for −1 < ℵ < 0:

Leverage effect

stock prices ↓ ⇒ value of ratio value equity
corporate dept

↓ ⇒
risk of holding stocks increases.

Note: Extendable to EGARCH model (lagged lnht−j on right

hand side)

A successful model: Nelson‘s E-ARCH model (3)
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Uses of ARCH type models

• Forecast return variances and covariances for VaR models

• volatility forecast to feed in Black/Scholes formula (practi-
tioners approach)

• Estimate and forecast time varying beta

βit =
Covt(Rm

t ,R
i
t)

V art(Rm
t )

⇒ asset pricing

Modelling evolution of conditional covariance in same fash-

ion: Bivariate ARCH models

• Portfolio selection: forecast variance-covariance matrix of

assets in portfolio (multivariate ARCH models)
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