Choose one of the following alternatives to estimate an asset pricing model where the stochastic discount factor is a linear function of consumption growth:

$$
m_{t+1}=b_{0}+b_{1} \cdot \Delta c_{t+1}
$$

- as a dependent variable, use the excess return of our ten test assets (substract avustret from each of the ten asset returns decile1 to decile10)
- for each of the alternatives, use the variable cnsqdifferenz as a factor

1. Alternative 1: Use standard GMM techniques in an EViews System environment to estimate the model. Write down the classical moment conditions according to the basic pricing equation

$$
E\left(m R^{e i}\right)=0
$$

Proceed as in the 5 th assignment sheet!
2. Alternative 2: Use the two stage regression approach discussed in Cochrane, chapter 12.2. Therefore, you have to conduct time series regression first to estimate the β_{i} (see assignment sheet 6 for details). Then, compute the average excess return of your test assets $E_{T}\left(R^{e i}\right)$ and regress them on the estimated β_{i} in order to get an OLS estimate for λ. Compute the standard error for $\hat{\lambda}$ as follows:

$$
\operatorname{Var}(\hat{\lambda})=\frac{1}{T}\left[\left(\hat{\beta}^{\prime} \hat{\beta}\right)^{-1} \hat{\beta}^{\prime} \hat{\Sigma} \hat{\beta}\left(\hat{\beta}^{\prime} \hat{\beta}\right)^{-1}\left(1+\hat{\lambda}^{\prime} \hat{\Sigma}_{f}^{-1} \hat{\lambda}\right)+\hat{\Sigma}_{f}\right]
$$

where

$$
\begin{aligned}
\hat{\beta}= & \left(\hat{\beta}_{1}, \cdots, \hat{\beta}_{N}\right)^{\prime} \\
\hat{\lambda}= & \left(\hat{\lambda}_{1}, \cdots, \hat{\lambda}_{K}\right)^{\prime} \\
\hat{\Sigma}= & \text { VC-matrix of the first stage regression residuals } \\
& \text { (Note: differs slightly from the lecture) } \\
\hat{\Sigma}_{f}= & \text { VC-matrix of the factors }
\end{aligned}
$$

Hints, how to proceed: First, conduct a time series regression in a Pool object. Save your $\hat{\beta}_{i}$ coefficients in a vector. Collect the average excess return of each asset i in a vector. Estimate λ by computing the OLS estimator in matrix notation:

$$
\hat{\lambda}=\left(\hat{\beta}^{\prime} \hat{\beta}\right)^{-1} \hat{\beta}^{\prime} E_{T}\left(R^{e}\right)
$$

Having saved the residuals of the first stage time series regression and computed their VC-matrix as well as the VC-matrix of the factors (here, in the one factor case this is just a variance) you have all the ingredients to calculate the variance of $\hat{\lambda}$. In order to test if all the pricing errors $\hat{\alpha}$ are zero, compute the test statistic

$$
\hat{\alpha}^{\prime} \operatorname{cov}(\hat{\alpha})^{-1} \hat{\alpha} \sim \chi_{N-1}^{2}
$$

where

$$
\operatorname{cov}(\hat{\alpha})=\frac{1}{T}\left(I_{N}-\hat{\beta}\left(\hat{\beta}^{\prime} \hat{\beta}\right)^{-1} \hat{\beta}^{\prime}\right) \hat{\Sigma}\left(I_{N}-\hat{\beta}\left(\hat{\beta}^{\prime} \hat{\beta}\right)^{-1} \hat{\beta}^{\prime}\right) \times\left(1+\hat{\lambda}^{\prime} \hat{\Sigma}_{f}^{-1} \hat{\lambda}\right)
$$

and

$$
\hat{\alpha}=\left(\hat{\alpha}_{1}, \cdots, \hat{\alpha}_{N}\right) \text { with } \hat{\alpha}_{i}=R^{e i}-\hat{\beta}_{i} \hat{\lambda}
$$

3. Alternative 3: Estimate simultaneously all the β_{i} and λ in a GMM framework using the System object and formulating the moment conditions as follows:

$$
g_{T}(\beta, \lambda)=\left[\begin{array}{c}
E_{T}\left[R^{e 1}-a-\beta_{1} f_{t}\right] \\
E_{T}\left[\left(R^{e 1}-a-\beta_{1} f_{t}\right) f_{t}\right] \\
\vdots \\
E_{T}\left[R^{e N}-a-\beta_{N} f_{t}\right] \\
E_{T}\left[\left(R^{e N}-a-\beta_{N} f_{t}\right) f_{t}\right] \\
E_{T}\left[R^{e 1}-\lambda \beta_{1}\right] \\
\vdots \\
E_{T}\left[R^{e N}-\lambda \beta_{N}\right]
\end{array}\right]
$$

Now, in order to test if λ is equal to zero you can refer to the usual GMM test statistics delivered by EViews. The same is true for testing if the model is correctly specified. A usual J-test is applicable here.

