$\underline{6 \text { th set of assignments Financial Econometrics }}$

1. Conduct a (pooled) time series regression: Regress the excess returns for each for all assets on the three Fama/French factors (a brief description of those factors is provided in the fifth set of assignments): $R^{e i}=\alpha_{i}+\beta_{i 1} f_{t 1}+\beta_{i 2} f_{t 2}+\beta_{i 3} f_{t 3}+\epsilon_{t}^{i}$.
where

$$
\begin{aligned}
f_{t 1} & =\left(R_{t}^{m}-R_{t}^{f}\right) \\
f_{t 2} & =\left(R_{t}^{H}-R_{t}^{L}\right) \\
f_{t 3} & =\left(R_{t}^{S}-R_{t}^{B}\right)
\end{aligned}
$$

Test the hypothesis that all parameters α_{i} are jointly equal to zero $\left(H_{0}: \alpha_{1}=\alpha_{2}=\right.$ $\ldots=\alpha_{N}=0$). The asymptotic test statistic is the following:

$$
T\left[1+\left(E_{T}\left(f_{t}\right)^{\prime} \hat{\Omega}^{-1} E_{T}\left(f_{t}\right)\right)\right]^{-1} \hat{\alpha}^{\prime} \hat{\Sigma}^{-1} \hat{\alpha} \sim \chi_{N}^{2}
$$

where

$$
\begin{aligned}
f_{t} & =\left(f_{t 1}, f_{t 2}, f_{t 3}\right)^{\prime} \\
\hat{\alpha} & =\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right)^{\prime} \\
\hat{\Omega} & =\frac{1}{T} \sum_{t=1}^{T}\left[f_{t}-E_{T}\left(f_{t}\right)\right]\left[f_{t}-E_{T}\left(f_{t}\right)\right]^{\prime} \\
\hat{\Sigma} & =\frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t}^{\prime} \\
\hat{\varepsilon}_{t} & =\left(\varepsilon_{t}^{1}, \cdots, \varepsilon_{t}^{N}\right) \text { with } \varepsilon_{t}^{i}=R^{e i}-\hat{\alpha}_{i}-\beta^{\prime} f_{t}
\end{aligned}
$$

- Use the data set cochranes_deciles_from_lecture.wf1 provided on the home page of the course
- For R^{m}, optionally, the series avvwret or avewret can be chosen
- R^{f} is the series avustret
- The returns R are collected in the series decile1 to decile10. To compute excess returns, subtract avustret from the return of each decile.
- f_{1} can be constructed from R^{m} (optionally, the series avvwret or avewret can be chosen) and R^{f} (avustret) as above for the CAPM
- f_{2} is provided directly in HML_r (IMPORTANT: substract 1 from the series to obtain excess returns instead of gross returns)
- f_{3} is provided directly in SMB_r (IMPORTANT: substract 1 from the series to obtain excess returns instead of gross returns)
- Hints for the application in EViews:
- Create a new Pool object and name it (e.g. assets).
- Next, you are asked to provide 'cross section identifiers'. Write 1-10 in that window.
- Now, you can estimate the regressions by specifying as the dependent variable decile? where ? is used as a wildcard for the cross section identifiers. As explanatory variables, specify the three factors and a c as intercept (deactivate the default intercept). Note, that all $\beta_{i j}$ are asset specific.
- Save the residuals via Proc - Make Residuals in a group and name the group (e.g. residuals)
- Create a group with the three factors
- Calculate the mean vector and the VC-matrix of the factors and the VCmatrix of the residuals and store them in vectors, respectively matrices (use the functions $@ m e a n()$ and $@ \operatorname{cov}())$
- Store the number of observations (use scalar $\mathrm{t}=$ assets.@regobs) and the α_{i} in a scalar, respectively vector (if the α_{i} are the first ten elements in the coefficient vector then write vector alpha=@subextract(assets.@coefs,1,1,10,1))
- Now, compute the test statistic given above (though the result is a scalar, assign the test as a matrix since matrix operations have to be conducted (@transpose and @inverse)). Further, specify the 1 in the test statistic as a 1×1-matrix.
- Calculate the p-value of the test as in the fifth set of assignments

