
Scale Robust Multi View Stereo

Christian Bailer, Manuel Finckh, and Hendrik P. A. Lensch

Computer Graphics, Tübingen University
72076 Tübingen, Germany

Fig. 1. Reconstructed 3D model of the Ulm Minster (German: Ulmer Münster) dataset
with very large resolution differences, created by our method. Note the huge scale
difference from the left most image (about 160m hight) to the right most image (about
3cm).

Abstract. We present a Multi View Stereo approach for huge unstruc-
tured image datasets that can deal with large variations in surface sam-
pling rate of single images. Our method reconstructs surface parts always
in the best available resolution. It considers scaling not only for large
scale differences, but also between arbitrary small ones for a weighted
merging of the best partial reconstructions. We create depth maps with
our GPU based depth map algorithm, that also performs normal opti-
mization. It matches several images that are found with a heuristic image
selection method, to a reference image. We remove outliers by comparing
depth maps against each other with a fast but reliable GPU approach.
Then, we merge the different reconstructions from depth maps in 3D
space by selecting the best points and optimizing them with not selected
points. Finally, we create the surface by using a Delaunay graph cut.

1 Introduction

Thanks to fast camera calibration methods [1,2] today, it is possible to automati-
cally calibrate thousands of images in space, i.e., to determine relative capturing
position and camera pose for each image. An interesting application for such
calibrated datasets is dense 3D reconstruction as this allows for automatically

2 Christian Bailer, Manuel Finckh, Hendrik P. A. Lensch

creating accurate 3D models of large objects or even whole city parts out of
common photographs. For famouse locations, these photographs can even sim-
ply be taken from image portals like Flickr. However, there are still very few
methods that can deal with such datasets, even if there are over 50 different
Multi View Stereo approaches today. For example, this can be seen in the sub-
mission list of the Middlebury evaluation portal [3]. Many methods, which are
based on voxels [4,5,6] or visual hulls [7,8,9] are not flexible enough to recon-
struct big open datasets. Others, mainly those based on multiple depth maps
or patches [10,11,12,13] are more flexible, but they usually use simple heuristics
to find compatible images for depth map or patch creation and ignore the fact
that images can show objects in strongly differing resolutions. Thus, they are
primarily suited for structured datasets, where e.g. neighboring images in the
image stream are also neighbors in space. To be able to reconstruct more general
datasets, where image views can be arbitrarily scattered in space, an approach
additionally needs some kind of image selection method that determines which
images are worthwhile to compare because they show the same objects. Good
image selection is important for accuracy but not trivial, because it depends on
the surface distance (Figure 3(a)) and not the most similar images are the best
choice. Furthermore, an algorithm should also consider if there are scale differ-
ences in the dataset, i.e., if objects can be seen in different images from different
distances in different scales. Otherwise this usually leads to loss of reconstruction
detail. Our approach provides solutions for both problems. For image selection
we extend the image selection approach of Goesele et al. [14]. Scale robustness
is achieved by considering scale in all stages of this work. These are besides im-
age selection, multi depth map filtering, point selection, point optimization and
meshing. Multi depth map filtering is an efficient, GPU parallelizable way to
remove outliers by comparing depth map against each other and point selection
and optimization selects the assumed best points in space and optimizes them
in position with worse not selected points. This is only possible if we carefully
consider their assumed accuracy.

2 Related Work

One of the most constrained methods to reconstruct huge datasets is recon-
struction from street level video. Pollefeys et al. [15] demonstrated that this can
even be done in realtime. Frahm et al. [16] developed an algorithm which is
able to deal with millions of images. However, their method seems to be primar-
ily interesting for image preselection and calibration and not for massive stereo
reconstruction, as they demonstrated this only locally for single objects.

Jancosek et al. [17] proposed a scalable patch based method which can deal
with huge unstructured image datasets, but it is not scale robust and has only
a simple image selection heuristic. Goesele et al. [14] were probably the first
that proposed a robust image selection method for huge unstructured datasets,
with large scale differences. This allowed them to create good depth maps for
such datasets. However, they didn’t consider point accuracy for meshing. Thus,

Scale Robust Multi View Stereo 3

the overall method is not scale robust. They addressed this problem in re-
cent publications where they presented scale robust meshing methods for depth
maps [18,19]. Furukawa et al. [20] clustered huge unstructured datasets into
clusters of similar visibility and scale. These clusters can then be independently
processed by simple Multi View Stereo algorithms without image selection, like
their previous work [12]. Afterwards, they refine the point clouds of different clus-
ters by comparing them against each other. Thereby, they also consider point
accuracies and remove points from clusters if a surface part is represented by
another cluster in clearly higher resolution. However, they don’t demonstrate
meshing for their point clouds.

3 Overview

Fig. 2. The pipeline of our approach.

This section gives an overview over the proposed pipeline. Before our ap-
proach can work with raw image datasets, these must be calibrated in space at
first. We use the publicly available Bundler software [1] for this task. Bundler
delivers rotation matrices, translation vectors, distortion coefficients and focal
lengths for all images, that could successfully be calibrated and a sparse set of
surface points. This data is the input to our pipeline which is outlined in Fig-
ure 2. We create depth maps out of the perspective of each image, by matching it
to other images that are selected as described in Section 4. The selection process
prefers images with similar scale, large view angles and a big overlap in field of
vision to the reference image. Additionally, we demand that overlaps and view
angles are not too similar in different selected images. Our depth map algorithm
which is described in Section 5 is GPU based and can perform normal optimiza-
tion similar to region growing based approaches. It further filters out outliers.
After creating and independently filtering all depth maps, they are compared
against each other and points in depth maps that have not enough support by
other depth maps or have too many visibility conflicts are filtered out by the ap-
proach in Section 6. Successively, points are transformed into the 3 dimensional
space and ordered into a kd-tree. Because depth maps often have redundancy to
one another the point cloud is very dense in some regions. Thus, the best points
are selected and the rest of the points are only used to optimize the selected
points in position as described in Section 7. Thereby, the redundancy can be

4 Christian Bailer, Manuel Finckh, Hendrik P. A. Lensch

used to remove surface noise. Selected local outliers are also removed in the op-
timization process by pulling them onto the surface. Finally, the mesh is created
by a Delaunay graph cut described in Section 8.

visibility

scale

angle

(a) (b)

Fig. 3. a) Good image selection depends on the surface distance. Green indicates a
good image distance. b) Our angular weighting scheme reduces the influence of close-
by views, here demonstrated on the Ulm Minster data set.

4 Image Selection

In this section we present an image selection heuristic that considers scale and
robust stereo reconstruction. To find suitable images for stereo matching with
diversity, Goesele et al. [14] demand view angles above 10 degrees between all
images including the reference image to which the other images are matched
for depth map creation, if possible. However, works like [21] showed that 10
degrees are by far not enough for accurate stereo matching. Thus, we extend their
approach by demanding especially big view angles between the reference and the
other images. Furthermore, our approach prioritizes images, where regions of
the reference image are visible that are hardly or not visible in already selected
images.

To find suitable images Is for stereo matching with a reference image R we use
sparse Structure From Motion feature points f , delivered by Bundler [1]. These
points have already visibility information and are necessary, because knowledge
of the surface distance is essential for a good selection (Figure 3(a)). To rate
an image, we use similar to Goesele et al. a weighted sum of all feature points
visible in R and the tested image:1

gR(I) =
∑

f∈FR∩FI

wa(f)ws(f)wc(f) (1)

where I is an image, wa is the angle weighting, ws the scale weighting, wc the
covering weighting and FX the set of feature points visible in image X. Our angle

1 Please consult [14] for a detailed motivation for using a weighted sum.

Scale Robust Multi View Stereo 5

weighting scheme differs from the reference and the already selected images:

wa(f) = min

(
∠I,R(f)

αmax
, 1

)x ∏
J|J∈Is∩f∈F (J)

min

(
∠I,J(f)

βmax
, 1

)y

, (2)

where∠X,Y (f) is the view angle difference at point f for rays from the center of
projection of image X and Y and Is the set of already selected images. As Is
increases over time all images must be rerated after each selection of the best
image. We used mostly αmax = 35◦, βmax = 14◦, x = 1.5 and y = 1. Our
coverage weighting, which favors feature points that are only sparsely covered
by already selected images is given by:

wc(f) =
r∗I (f)

r∗I (f) +
∑

J|J∈Is∩p∈P (J) r
∗
J(f)

. (3)

A simple choice for r∗X that ignores scale would be r∗X = 1. However, we don’t
want images with good scales be covered by images with bad scales, so we set it
to r∗X(f) = min

(
sR(f)2/sX(f)2, 1

)
. This can be especially important at depth

discontinuities. There, it might not be possible to select images with good scale
on both sides of the discontinuity. We also changed the scale weighting of Goesele
et al. to be more strict, as we don’t want big angles with bad scale to be better
rated than small angles with good scale. If sX(f) is the scale at f in an image
and r = sR(f)/sI(f) our scale weighting is calculated as:

ws(f) =

0 r > 1.8
r2 1 < r ≤ 1.8
1 1/1.6 < r ≤ 1(

1.6
r

)2
else

. (4)

As Figure 3(b) shows the provided angles are often smaller than 35◦. Any-
way, for x = 1.5 we get more than twice as much large angles than Goesele et
al. Furthermore, our approach also performs better for the accuracy weighting
∠max(1, 1/r). Overall we get better view angles not at the cost of worse scaling.

5 Depth Map Creation

After having selected images, we now can compute depth maps and filter them
on the GPU. In contrast to common GPU based methods our algorithm can
perform normal optimization like region growing based approaches [14,12] to get
high quality depth maps. Our method is based on the stochastic PatchMatch
algorithm [22] for texture synthesis. Our depth map estimation pipeline is illus-
trated in Figure 4.

First, we initialize the depth map by inserting feature points provided by
bundler as depth values. Then, we propagate depths into neighboring pixels if
there is no depth value or the matching error of the existing depth is bigger than
the matching error of the propagated depth. The original algorithm propagates

6 Christian Bailer, Manuel Finckh, Hendrik P. A. Lensch

Fig. 4. The depth map creation pipeline

Fig. 5. Ways to propagate depth values through the depth map.

values for each pixel from the left and from the top like in Figure 5(c), i.e.,
(x − 1, y) → (x, y) and (x, y − 1) → (x, y). If pixels are processed in the order
of Figure 5(a), good values can propagate arbitrary far to the right and to the
bottom in only one pass. We found out, that this approach can directly be
parallelized by processing the blue lines in Figure 5(b) in parallel, which leads to
similar results as Figure 5(a). However, the parallelism depends on the position.
Thus, we use horizontal processing lines and the three propagation directions of
Figure 5(d). We call this downward propagation. Additionally, we perform upward
propagation at the same time. Up and downward propagation is performed in
all uneven propagation steps. Left and rightward propagation in all even steps.

Fig. 6. Difference to ground truth. Left: No Normal Tuning Right: Tuning with random
normals. Artifacts disappear nearly completely after the second propagation step.

After propagation, depth values are randomly shifted in depth and the new
depth is kept if the matching error of the shifted depth is smaller. We perform
three shifts with uniform distributions with 16 d

f , 8 d
f and 4 d

f maximum shift
distance, where d is the depth value and f the focal length of the image. Depth
values have initially no normals, hence, we assign normals with uniform random
direction and surface angle to them if the matching error decreases:

nx = sin(β) · tan(α), ny = cos(β) · tan(α) , (5)

where nx and ny are the gradients of the tangent plane in x and y direction. As
Figure 6 shows, random normals are sufficient as the good ones get distributed

Scale Robust Multi View Stereo 7

over the depth map in the next propagation step. Allover, we perform 3 propa-
gation steps as this usually almost leads to convergence. Even with two steps we
mostly retrieved good results. Important for fast convergence of sloped surfaces
is the usage of normal information to propagate into tangent direction in prop-
agation step 2 and 3. Finally, we optimize the depth values and normals with a
gradient descent similar to region growing based approaches. As matching error
E over all selected images IS to the reference image R we use a self weighted
average over all 1 minus Normalized Cross Correlation (1−NCC) scores:

E =

∑
I∈IS 1−NCCR,I

1
1−NCCR,I∑

I∈IS
1

1−NCCR,I

=
IS∑

I∈IS
1

1−NCCR,I

. (6)

The error function was occlusion robust in our tests, as it strongly prefers small
errors. It performed even at non occluded surface parts better than a common
weighting.2 For details about matching with normals please consult [12].

Depth Map Filtering To filter erroneous values in the depth map, we discard
all depth values that have a (1−NCC) matching error above a threshold in at
least n images:

n = max(c,min(3, Iv/2)) , (7)

where Iv is the number of images that can see the point if there is no occlusion,
i.e., the point lies not outside of the image area if it is projected into the image.
We use c = 2 in most of our tests and c = 1 for sparse datasets.

Fig. 7. Left: Points don’t resemble a surface. Right: Segmentation of our filter.

Additionally, we filter outliers if they don’t resemble a surface (see Figure 7).
This is done by segmenting the images by depth discontinuities. If there is a
way from one point in the depth map to another point without crossing a depth
discontinuity above a threshold, both are in the same region. Thereafter, we
delete all regions which have less than 15 points. The depth threshold is set to
2 d
f , where d is the current depth and f the focal length of the image.

6 Multi Depth Map Filtering

In this section we describe how outliers and other inconsistent points are re-
moved in a fast GPU parallelizable but very reliable way that works for arbitrary

2 For tests in this section we used the datasets of [23] with ground truth depth maps
of [24]. See: http://cvlab.epfl.ch/alumni/tola/daisy.html.

http://cvlab.epfl.ch/alumni/tola/daisy.html.

8 Christian Bailer, Manuel Finckh, Hendrik P. A. Lensch

A B
C

Reference
 Camera

(a) (b)

Fig. 8. a) Depth maps can be consistent (B), inconsistent (A,C) or show different non
conflicting surfaces (not shown). b) Difficult scene for MVS, because of textureless and
transparent objects and bad camera calibrations. Left: Even the Delaunay Graph cut
cannot correct the unfiltered depth maps. Right: With our additional multi depth map
filtering we can recover a lot of surface parts.

datasets. The idea is to compare depth maps against each other as proposed by
Merrell et al. [25] and to filter out points in depth maps that are inconsistent to
other depth maps. To determine which depth maps should be compared to a ref-
erence depth map, that we want to filter, we use our image selection algorithm.
Especially image selection makes the approach powerful because the depth maps
it finds show not only the same surface parts as the reference depth map, but
are also very unlikely to have the same outliers, as they differ in view angle and
thus in the set of images they were created from.

Figure 8(a) shows the different cases that can occur when corresponding
points in two depth maps are compared to each other. In order to compare them,
we assign a support value to each depth value. A depth value gains support for
similarity (case B in Figure 8(a)) and looses support for visibility conflicts (case
A and C). Hereby, we take only the difference of case A and C conflicts as
negative support into account like in [25], because a point can not be too near
and too far at the same time. The support for a depth value is defined as:

SR(x, y) =
∑

D∈Ds

BR,D(x, y)rb −

∣∣∣∣∣ ∑
D∈Ds

AR,D(x, y)−
∑

D∈Ds

CR,D(x, y)

∣∣∣∣∣ , (8)

where AR,D,BR,D and CR,D are booleans that determine the case, A, B, or C
between the reference depth map R and depth map D. rb is a constant, which is
set to 2 in this work, because we think case A and C are despite the difference
still stronger affected by outliers in other depth maps than case B. After all
depth maps were processed and points which meet the condition SR(x, y) < 1
are filtered out.

We test for conflicts similar to [25], but when we render a depth map for case
C into the view of the reference depth map, we render each depth value into
the 4 closest pixels3 instead of only one to avoid gaps (see Figure 9) that can

3 Depth values can only be overwritten by smaller ones.

Scale Robust Multi View Stereo 9

otherwise strongly occur for large view angles and scale differences. There is a
conflict if a depth value of the rendered depth map is significantly smaller than
the value of the reference depth map.

Case B could also be decided like case C. However, we handle it like case
A because we think this is more accurate. This is done by transforming points
of the reference depth map into the view of another depth map and comparing
depth values there on the rays of the other view. Thereby, direct comparisons are
possible without rendering. For the acceptance threshold we consider for case B
only the accuracy of the referenced depth map. For conflicts we take the worse
of both accuracies:

TA = TC = c ·max(dR(X), dDi(X)), TB =
c

2
· dR(X) , (9)

where c is a constant we set to 1.6, X is the 3D representation of the tested
point in the reference depth map, R the reference depth map, Di another depth
map, and d the sampling distance of a depth map at a point, i.e., the depth the
point would have in that depth map over the focal length of the depth map. We
do not test for conflicts if 1.6 · dDi

(X) > dR(X) to avoid border effects at depth
discontinuities, because of inaccurate borders in low resolution depth maps. After
multi depth map filtering, we again filter depth maps with the segmentation filter
of Figure 7 to remove single surviving outliers.

The approach can also be used to filter depth values in small scale depth
maps. Therefore, the selection algorithm can be modified to prefer depth maps
with 1.6 times or higher sampling rates as the reference depth map and depth
values are filtered out if such a depth map is found for a pixel position. This
is not necessary for scale robustness, but speeds up the rest of our approach.
Practically, we use the filter but don’t select extra high resolution depth maps.

Fig. 9. When rendering a depth map into another view some pixels are covered multiple
times, others never. This can be avoided by rendering points into 4 pixels at once.

7 Point Selection and Optimization

After all depth maps are filtered the remaining depth values are transformed
into the 3 dimensional space. We transform only one depth value per 2x2 pixel
window, as depth maps from stereo usually have no pixel accuracy. Alternatively,
only half sized depth maps could be created. Anyway, we created full depth maps
and used a small bilateral filter on the depth map to keep the extra information.
In 3D space, each point gets, besides position and color, a normal, that is already
delivered by some depth map algorithms and a scale value and influence radius

10 Christian Bailer, Manuel Finckh, Hendrik P. A. Lensch

that we assume as equal for the moment: I = S = 2z
f , where z is the depth value

in the depth map, f the focal length of the depth map and the factor of 2 is
set because we used only one value per 2x2 pixel window. Then, all points are
defined as primary points that have no primary points with smaller I in their
own influence radius. This is done by testing the points with the smallest I first.
Neighbors of a point in the same depth map can slightly lie inside the influence
radius and are ignored to keep the regular depth map structure. Primary points
then represent the surface approximately in the resolution of the best depth
map and are most likely the most accurate points. Nevertheless, they can still
be improved in position by using other points with similar scale to remove surface
noise. We use a modified minimum least square algorithm [26] for this:

p∗i+1 =

∑
q∈Pi

w(||pi − q||)(Sp/Sq)2q∑
q∈Pi

w(||pi − q||)(Sp/Sq)2
(10)

ni+1 =

∑
q∈Pi

w(||pi − q||)(Sp/Sq)2nq∑
q∈Pi

w(||pi − q||nq||)(Sp/Sq)2
(11)

pi+1 = pi + ni
(
(p∗i+1 − pi)ni

)
(12)

p0 = p is an unoptimized primary point, Pi contains all unmodified points that

(a) (b)

Fig. 10. (a): Local outlier avoidance with iteration (b) Left: Unoptimized primary
points. Right: Optimized primary points

are in the radius of 2Ipi
and have a scale that is smaller than 1.6 times the scale

of p. According to our simulations, (Sp/Sq)2 is the optimal weighting function
for all medium free noise functions. Of course, this is not fulfilled between depth
maps of different scales, because rough depth maps can not have information
about fine details. That is why we don’t include inaccurate points to Pi. ni is
the local normal. pi is only allowed to move along the normal and not along
the tangent direction for pi+1. pi is optimized to pi+1 until the process fails or
converges. If it fails because it does not terminate after 20 iterations, |Pi| < 3,
or the point moves out of its original influence radius the point is discarded. The
process converges if:

||pn − pn+1|| < min(ε, ||pn − pn−1||) , (13)

Scale Robust Multi View Stereo 11

with a small ε > 0. As weighting function we use

w(x) =
1

|c(x/Ip)3|+ 1
. (14)

We use this function to improve the effect in Figure 10(a) to pull local outlier
points onto the surface. The often used Gauss function falls outwards too fast to
take much advantage of this effect. To speed up the optimization process we start
two iterations for a point. One with c = 5 and one with c = 30. Local outliers
can slide between other points on the surface, so, we discard primary points if
there are better primary points in 0.8x their influence radius after optimization.
Finally, we use Formula 10 with the color cq instead of q to improve the color
of an optimized point. In Figure 10(b) the difference between unoptimized and
optimized primary points can be seen. Details are kept while noise is removed.

However, noise removal is only possible if there are enough samples with
similar scale in the influence radius. Otherwise, we must increase I before point
selection and decouple it from S to avoid noisy surfaces. We estimate the noise
N as

1/N =
∑
q∈Pi

w(||pi − q||)(Ip/Iq)2 . (15)

I is increased as long as 1/N < Z ∩ I < 3S. We set Z to 2 and c in w to 10.
Practically, it depends on the quality of the depth maps and, hence, the datasets.

8 Meshing

For meshing of our optimized primary points we use the Delaunay graph cut of
Labatut et al. [27], because it is robust to changes in point density and considers
visibility, which helps to reconstruct difficult surface parts. In their work they
also showed that their approach is very robust against outliers. We got similar
results with random noise and dense surface point clouds. However, as can be
seen in Figure 8(b) outlier avoidance in real datasets can be more difficult.

For their visibility constraint we consider not only the reference image, from
which that point was created, but we also add the reference image of each sec-
ondary point to the nearest optimized primary point. Additionally, we bind their
σ constant to the scale of the primary point, to handle ray accuracy depending
on the point accuracy and not the ray length:

σp = σconstSp . (16)

9 Results

We tested our approach on several datasets. Results can be seen in Figure 1, 11
and 12. Our memory peak in the Ulm Minster dataset was mainly because of the

12 Christian Bailer, Manuel Finckh, Hendrik P. A. Lensch

(a) (b)

Fig. 11. a) The upper row shows reconstruction from a Ladybug video dataset.
Through short Ladybug videos it is possible to reconstruct huge scenes with our ap-
proach. The lower row shows our sofa and garden dataset. Thanks to point optimiza-
tion, the sofa dataset is very smooth but anyhow accurate at locations where many
depth maps overlap. b) Ulm Minster surface.

Delaunay graph cut 12.8 GB for about 18 Million triangles and 55 Million points
for point selection and optimization. Point processing took single core about 20
minutes and meshing 1 hour. Compared to [18,19] our approach is clearly faster
and needs clearly less memory, as far as it is comparable on different datasets.
Furthermore, it is probably also more accurate as we perform careful continuous
optimizations instead of just using voxels of different scales. Depth map creation
took in average 35 seconds, out of 9 images, for the 333 1863x1236 pixel depth
maps of the Ulm Minster dataset. This is also very fast compared to run times
of region growing based approaches in [3]. Multi depth map filtering took 192
seconds, altogether. Most time was needed for loading depth maps from the
harddisk. We got 6.8% more 3D points and 5.3% more mesh points with our
covering weighting on the garden dataset, than without. On the Ulm Minster
dataset with less occlusions it were 3.4/1.8%. Figure 12(a) shows some differences
because of the weighting.

10 Conclusion

We presented a scale robust Multi View Stereo approach that can process ar-
bitrary image datasets. Our core contribution for scale robustness is surely the
point selection and optimization method that delivers refined point clouds that
can easily be processed by Delaunay based meshing methods. Nevertheless, our
image selection method is also important for high quality depth maps and, thanks
to image selection, the depth map based outlier filter is a powerful and fast
method to remove outliers.

Scale Robust Multi View Stereo 13

(a) (b) (c) (d) (e)

Fig. 12. a) Some differences with (bottom) and without (top) covering weighting on
the garden dataset. b) Columns. The right most reconstruction was strongly reduced
to demonstrate the high resolution. c) Some parts of the chapel were photographed in
especially high resolution compared to the other parts. Thus, there is a strong resolution
discontinuity at the border of the close reconstruction, that is clearly visible in the left
image. The left image was like the column in (b) size reduced. The full reconstruction
can be seen on the right. d) and e) Further results for the Ulm Minster dataset. The
left column in d) has only pixel size in Figure 11 b).

Acknowledgments

This work has been partially funded by the DFG Emmy Noether fellowship (Le
1341/1-1) and by an NVIDIA Professor Partnership Award.

References

1. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections
in 3d. In: SIGGRAPH Conference Proceedings, New York, NY, USA, ACM Press
(2006) 835–846 http://phototour.cs.washington.edu/bundler/.

2. Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building rome in a day.
In: Computer Vision, 2009 IEEE 12th International Conference on, Ieee (2009)
72–79

3. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and
evaluation of multi-view stereo reconstruction algorithms. In: Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference on. Volume 1.,
IEEE (2006) 519–528 http://vision.middlebury.edu/mview/.

4. Pons, J., Keriven, R., Faugeras, O.: Multi-view stereo reconstruction and scene
flow estimation with a global image-based matching score. International Journal
of Computer Vision 72 (2007) 179–193

5. Vogiatzis, G., Hernández Esteban, C., Torr, P.H.S., Cipolla, R.: Multiview stereo
via volumetric graph-cuts and occlusion robust photo-consistency. IEEE Trans.
Pattern Anal. Mach. Intell. 29 (2007) 2241–2246

6. Kolev, K., Pock, T., Cremers, D.: Anisotropic minimal surfaces integrating photo-
consistency and normal information for multiview stereo. Computer Vision–ECCV
2010 (2010) 538–551

7. Sinha, S., Pollefeys, M.: Multi-view reconstruction using photo-consistency and
exact silhouette constraints: A maximum-flow formulation. (2005)

8. Furukawa, Y., Ponce, J.: Carved visual hulls for image-based modeling. Computer
Vision–ECCV 2006 (2006) 564–577

http://phototour.cs.washington.edu/bundler/
http://vision.middlebury.edu/mview/

14 Christian Bailer, Manuel Finckh, Hendrik P. A. Lensch

9. Song, P., Wu, X., Wang, M.: Volumetric stereo and silhouette fusion for image-
based modeling. The Visual Computer 26 (2010) 1435–1450

10. Gallup, D., Frahm, J., Mordohai, P., Yang, Q., Pollefeys, M.: Real-time plane-
sweeping stereo with multiple sweeping directions. In: 2007 IEEE Conference on
Computer Vision and Pattern Recognition, IEEE (2007) 1–8

11. Campbell, N., Vogiatzis, G., Hernández, C., Cipolla, R.: Using multiple hypotheses
to improve depth-maps for multiview stereo. ECCV08 (2008) 766–779

12. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE
transactions on pattern analysis and machine intelligence (2009) 1362–1376

13. Hiep, V., Keriven, R., Labatut, P., Pons, J.: Towards high-resolution large-scale
multi-view stereo. In: Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, IEEE (2009) 1430–1437

14. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.: Multi-view stereo for
community photo collections. In: Proc. ICCV, Citeseer (2007) 1–8

15. Pollefeys, M., Nistér, D., Frahm, J., Akbarzadeh, A., Mordohai, P., Clipp, B.,
Engels, C., Gallup, D., Kim, S., Merrell, P., et al.: Detailed real-time urban 3d
reconstruction from video. International Journal of Computer Vision 78 (2008)
143–167

16. Frahm, J., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen,
Y., Dunn, E., Clipp, B., Lazebnik, S., et al.: Building rome on a cloudless day.
Computer Vision–ECCV 2010 (2010) 368–381

17. Jancosek, M., Shekhovtsov, A., Pajdla, T.: Scalable multi-view stereo. In: Com-
puter Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Con-
ference on, IEEE (2009) 1526–1533

18. Mücke, P., Klowsky, R., Goesele, M.: Surface reconstruction from multi-resolution
sample points. In: Proceedings of Vision, Modeling, and Visualization. (2011)
105–112

19. Fuhrmann, S., Goesele, M.: Fusion of depth maps with multiple scales. In: ACM
Transactions on Graphics (TOG). Volume 30., ACM (2011) 148

20. Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Towards internet-scale multi-view
stereo. In: CVPR 2010, IEEE (2010) 1434–1441

21. Rumpler, M., Irschara, A., Bischof, H.: Multi-view stereo: Redundancy benefits
for 3d reconstruction. In: Proceedings of 35th AAPR/OAGM 2011. (2011)

22. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: A random-
ized correspondence algorithm for structural image editing. In: ACM Transactions
on Graphics (TOG). Volume 28., ACM (2009) 24

23. Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On bench-
marking camera calibration and multi-view stereo for high resolution imagery.
(2008) http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html.

24. Tola, E., Lepetit, V., Fua, P.: Daisy: An efficient dense descriptor applied to wide-
baseline stereo. IEEE transactions on pattern analysis and machine intelligence
(2009) 815–830

25. Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J., Yang, R., Nistér,
D., Pollefeys, M.: Real-time visibility-based fusion of depth maps. In: Computer
Vision, 2007. ICCV 2007. IEEE 11th Int. Conf. on, IEEE (2007) 1–8

26. Cuccuru, G., Gobbetti, E., Marton, F., Pajarola, R., Pintus, R.: Fast low-memory
streaming mls reconstruction of point-sampled surfaces. In: Proceedings of Graph-
ics Interface 2009, Canadian Information Processing Society (2009) 15–22

27. Labatut, P., Pons, J., Keriven, R.: Robust and efficient surface reconstruction from
range data. In: Computer Graphics Forum. Volume 28., Wiley Online Library
(2009) 2275–2290

http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html

	Scale Robust Multi View Stereo
	Introduction
	Related Work
	Overview
	Image Selection
	Depth Map Creation
	Depth Map Filtering

	Multi Depth Map Filtering
	Point Selection and Optimization
	Meshing
	Results
	Conclusion

