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Abstract

Although many researchers have suggested that compositional concepts should
be sensorimotor grounded, how this may be accomplished remains unclear. This
paper introduces a second-order neural network with parametric biases (sNNPB)
that learns role-argument structures of the concepts based on sensorimotor time
series data. The data was produced by a simulated robot that executes distinct
object interactions (move-to and orient-toward). We show that various sNNPB
setups can compositionally imitate object-interactions, which were not necessarily
trained. We furthermore show that these imitation capabilities are accomplished by
a compositional task representation in the PB values, by the generation of suitable
task-oriented, Braitenberg-like sensory encodings in hidden sensory layers, and by
the PB-dependent, interaction-specific, selective activation of these sensory encod-
ings. These internal representations structure themselves rather independently of
the utilized sensory input and motor output codes. Thus, we hypothesize that sec-
ond order connections may be essential to drive the learning of both sensorimotor-
grounded compositional structures and Braitenberg-like, behavior-oriented “pro-
presentations”. From a cognitive perspective, we show how sensorimotor time se-
ries may be processed to generate the signals necessary to ground a compositional
system of concepts.
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1 Introduction
Compositionality and similarity are often assumed to involve different cognitive pro-
cesses. Similarity is considered to be sensory- and possibly motor-grounded. It may
lead to the formation of perceptual feature-based categorizations. Compositionality, on
the other hand, refers to the more abstract, “cognitive” capability of handling symbols,
for which proper role-argument structures need to be available. The role-argument
structures specify how symbols are related systematically based on their semantic roles
to form whole complex concepts. Barsalou (1999) proposed that symbols may be
grounded in perceptions by means of simulators and simulations. The representation of
the role-argument structure was represented in the notion of frames. How these frame
may be learned by an organism, however, remains an open question.

In contrast to this position, this study explores a continuous developmental path
from similarity to compositionality by means of an example-based concept formation
approach. We trained a simulated robot equipped with a second-order neural network
with parametric biases (sNNPB) on analog sensorimotor time series data. In partic-
ular, the robot was taught to either move to or orient itself toward a colored object,
where the orienting behavior could be further modified by a directional offset. Teaching
proceeded by demonstrating particular interactions, indicating their distinctness from
other interactions. The resulting sensorimotor patterns were used to train an sNNPB
by means of standard back-propagation. It is shown that the network develops com-
positional interaction concepts solely due to the training setup, the modular sNNPB
architecture, and the sensory- and motor-capabilities of the simulated robot. In more
detail, we show that the visually-driven side of the network yields behavior-oriented
goal encodings that essentially provide distributed Braitenberg-like signals (Braiten-
berg, 1984). The activity in the PB neurons then selectively combines those signals
that generate the desired interaction pattern. These observations suggest that the setup
fosters the generation of goal-oriented, anticipatory behavioral encodings, which are
known to be highly beneficial for cognitive agents (Butz and Pezzulo, 2008).

In conclusion, we propose that the sNNPB network generates encodings that may
be found in the dorsal and ventral processing pathways of the brain. The dorsal pathway
provides robot-relative, goal-oriented interaction signals (Holmes and Spence, 2004)
leading to goal-oriented motor encodings (Graziano, 2006) – it is mimicked by our
sensory-to-motor pathway in the sNNPB. The ventral pathway, on the other hand, pro-
vides object identities (Riesenhuber and Poggio, 2000) and leads to the selection of cur-
rently desired environmental interactions given currently available object affordances
in the sense of Gibson (1979). While we do not implement the object identification
part, the PB-to-motor pathway in the sNNPB mimics the selection of a currently de-
sired object interaction.

We now first give background on the challenge to gain semantic compositionality
based on similarity measures alone. Next, we introduce the simulated robot architec-
ture, the neural network architecture, and the different settings evaluated. After that,
we provide a detailed performance and sNNPB structural analysis verifying emergent
semantic compositionality and emergent Braitenberg codes. Finally, we conclude the
paper with a general discussion.



Emerging Compositional Braitenberg Codes 4

2 Similarity and Compositionality
One of the most severe difficulties in constructivist accounts of concept formation is
the origin of the compositional role-argument structure of concepts (cf. Markman and
Dietrich, 1999). The origin of compositionality should be attributed to the interaction
between cognitive processes and sensorimotor experiences – unlike nativist models,
which assume innate compositional representations (cf. e.g. Fodor and Lepore, 2002).
For example, the representational rewriting (RR) theory proposed by Karmiloff-Smith
(1992) suggests that compositional concepts are acquired through the “re-writing” of
pre-acquired holistic sensorimotor concepts. First, a young infant may conceptualize
his or her sensorimotor experiences by rote, which cannot be related to other concepts.
At this level, no skill transfer is possible due to the lack of connections amongst the
concepts. Later, these holistic concepts may be translated into compositional concepts.
How this may be accomplished, however, has not been clarified, yet. This study in-
vestigates how holistic concepts may be related to each other to yield compositional
concept structures. The most important modification of the original idea is that holistic
concepts are related to each other by innate similarity measures. Thus, we address the
questions of (1) how similarity may be implemented innately; and (2) how this innate
similarity may be transformed into compositionality.

We hypothesize that similarity may be implemented innately by the embodiment of
the agent with its continuous sensorimotor dynamics, including the involved learning
mechanisms. Consider a simple case about color similarity. The similarity of colors
can be defined in a behavior-oriented manner without referring to analytical features
of colors such as HSV value, RGB value, or wavelength. It is plausible to consider,
for example, that an animal perceives 560nm stimuli as being similar to 550nm stimuli
when the animal generates a reaction associated with 550nm stimuli in the context of
previously unseen 560nm stimuli. In this way, similarity of colors may be defined
based on observed equivalences in performance transfer rather than solely based on
analytical features. The more complex perceptions and behavioral interactions are, the
more relevant similarity measures based on such behavioral transfer are expected to
become. For example, similarities between motor skills may be defined in terms of
how much the training of one skill improves another skill. In our study, similarity
measures depend on the predefined sNNPB architecture, the format of its input and
output, and the learning conditions.

Two counter-intuitive aspects of such transfer-based similarity should be noted.
First, symmetry of the transfer-based similarity is not guaranteed, namely, B is not
always “similar” to A even if A is similar to B. This possible asymmetry is actually ob-
served in cognitive preferences (Tversky, 1984). For example, we prefer “A scanner is
like a copy machine” to “A copy machine is like a scanner.” Second, transfer-based sim-
ilarity can vary depending on given training constraints. This is similar to a peak shift
of a generalization curve, which is, for example, observed in perceptual generalizations
(Hanson, 1959). Note also that transfer-based similarity is possibly multidimensional
although dimensions are not defined explicitly. For example, green can be similar to
both yellowish-green and dark green in terms of a proper transfer-based similarity as
well as an analytical similarity based on predefined multidimensional representation
such as RGB value.
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The “structural alignment” hypothesis proposed by Gentner and Markman (1997)
considers how innate similarity may be transformed into compositionality. They con-
sider similarity and analogy to be two extremes on a continuum and suggest that the
comprehension of surface similarity may facilitate the understanding of concept struc-
tures, which is essential for analogical transfer. Base on these idea, Gentner and Mark-
man (1997) proposed a computational mechanism called “structural alignment,” which
is commonly used to explain similarity-based and analogical transfer. Analogical trans-
fer usually refers to the knowledge transfer across problems of different domains such
as between fluid dynamics and electromagnetics. Their discussion, however, is also
applicable for compositionality, which refers to knowledge transfer across smaller do-
mains. However, the computational model of Gentner and Markman (1997) relies
on predefined compositional representations, essentially adopting analytical similarity
to compare two problems. For example, two interactions may be considered similar
based on their common representational constituents, which are predefined. In this
work, structural alignment will be reconsidered from a constructivist view, replacing
analytical similarity with transfer-based similarity, which is grounded in behavioral
performance emitted by the learning agent.

3 Robot System Setup
Our robot setup is based on a psychological experiment conducted by Meltzoff (1988b),
who examined the conceptualization ability of pre-linguistic infants. The original study
reported that 9-month-old infants could imitate previously unseen object-manipulating
actions for 24 hours after the presentation of the actions. This indicates that pre-
linguistic infants memorize the presented actions in an abstracted representation, which
provides a foundation of later language acquisition (Meltzoff, 1988a).

In our experiment, the setup is modified in order to focus on the emerging process
of concept formation. Actions are presented by steering a robotic subject by means
of a teaching program. The robot perceives its own visual input and motor output
during the presentation of the teaching examples. Thus, the necessary translation be-
tween allocentric and egocentric views is omitted. On the other hand, the time scale of
the experiment is expanded, including the acquisition of the structured representation
since the robot needs to develop role-argument frames for representing the encountered
interactions by examples.

3.1 Robot and Environment
We now give details on the robot-environment setup in the experiments as well as on
how the sensorimotor time series data was generated. The simulated robot consisted of
a simple two-wheeled robot platform that was equipped with visual surround sensors.
The body of the robot was a cylinder of 24cm diameter and 14cm height. The visual
sensors were located at the center of the body (in simulation) and partitioned the cov-
ered 120◦ view into nine uniform areas for which the sensors reported the dominant
color and the color-covered size.
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Figure 1: The robot starts with a fixed starting position. A target and an optional
dummy colored object are placed randomly within the shaded area (W120cm ×
D134cm) shown in (a). The robot takes a vision input shown in (b) in this environ-
mental situation.

In each trial of an interaction, the robot interacts with one of six colored cylinders
(blue, cyan, green, yellow, orange, and magenta) of 13cm diameter and 25cm
height in the environment where one or two objects, one of which is the target, are
randomly placed, as shown in Fig. 1. The interactions are classified into 36 categories:
either of two types of object interactions are executed: moveto (move to) or orientto
(orient toward) one of the six targets. In the moveto interactions, the robot moves to-
ward the target and stops just before touching it. In the orientto interaction, the robot
must orient itself toward the target by rotating its body. The orientto interaction ad-
ditionally takes one of five modifiers, which designate an angular offset of the final
orientation with respect to the target: (-30, -18, 0, +18, and +30). A negative angle
indicates an offset to the left. In the following, the interaction is denoted as a concate-
nation of labels of one of the types, one of the targets, and, optionally, one of the offset
angles; for example, orientto-blue+18. In some situations, orientto with one of
the offsets, e.g orientto+18, is regarded as a particular interaction type. It should
be noted that the labels are used for convenience only – the robot never perceives any
explicit information about the semantic structure of the interactions.

Six independent blocks of learning experiments were conducted with supervised
data of different sparseness, each of which contained 1, 1, 4, 4, 7 and 21 out of the
36 sorts of possible interactions, as shown in Fig. 2, respectively. We present these
six supervised blocks to illustrate the robot’s conceptualization capabilities, includ-
ing similarity and compositionality biases. Each experimental epoch consists of three
phases: creation of training data, learning, and evaluating the imitation performance on
all possible interaction types.

3.2 Generation of Training Data
To gather sensorimotor time series data, the robot was controlled by a training program.
For each goal-oriented behavioral interaction, 120 training sequences were generated
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Figure 2: Distribution of trained sets of interactions for each experimental block
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in different environmental settings. In 20 out of the 120 cases, only a target object was
placed in the environment, and in the remaining 100 cases, a dummy object was placed
in addition to the target object. The dummy object was chosen from among five objects
other than the target, and 20 examples were recorded for each object.

Representing the distance r[cm] and the direction θ[rad] of the target object, the
program generates motor commands that are appropriate for executing a particular in-
teraction. The motor command specifies the velocities of two wheels (vL[cm/step],
vR[cm/step]). In particular, the program instructs moveto interactions by moving the
robot to a distance of 35.0cm from the target object as follows:

vR = max(−1.0,min(vθ + vr, 1.0)) (1)
vL = max(−1.0,min(−vθ + vr, 1.0)) (2)

vθ =
{

0.25θ if r ≥ 36.0,
0.75θ otherwise, (3)

vr =

{
0.0045r + 0.158 if r ≥ 36.0,
0.0045(r − 35.0) otherwise. (4)

Similarly, a program instructing orientto interactions calculates motor commands
with a given offset angle φ as following:

vR = max(−1.0,min(0.5(θ − φ), 1.0)), (5)
vL = −vR. (6)

While the teaching program thus had precise information about the target object and
task, the sNNPB architecture received only simulated visual information, as specified
above.

3.3 Evaluating Imitation Capability
After the learning, the robot is tested to what extent it can imitate each of the 36 possible
interactions including unfamiliar ones. At the beginning of each examination epoch,
the sNNPB is fed with 12 examples of a certain interaction to set the PB activity. Next,
the network is required to imitate these interactions in 280 different test environments.
The success rates of all interactions are recorded for later analysis. The successful
imitation is judged in terms of the final relative distance and direction to a given target.
The robot is required to keep the designated conditions for 100 consecutive time steps
within 250 time steps. In order to accomplish the moveto interactions, the robot had to
stay within 40.0 cm from the target without touching it. For the orientto interactions,
the robot was required to orient itself toward the designated direction within an error
of ±6◦.

4 Second-Order Neural Network with Parametric Bi-
ases

We report experiments with three sNNPB setups. We now first specify the network
architecture that was common to all three setups and then specify the distinctions be-
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tween the different setups.

4.1 Network Architecture
The architecture of the implemented sNNPB is shown in Fig. 3. The network consists
of two interacting sub-networks: a feed-forward sensor-to-motor network (stm-net),
whose connectivity is modified by a meta-level network (meta-net).

The stm-net is depicted on the left-hand side of the figure. It takes as input the
visual information at vision input (VI) layer from the simulated camera. Next, it trans-
forms this information via two hidden layers – the hidden layer (H) and the resulting
processed visual representation layer (VR) in the following way:

VRi(t) = fVR

 NH∑
j=0

wVR(i)←H( j) · H j(t)

 , Hi(t) = fH

 NVI∑
j=0

wH(i)←VI( j) · VI j(t)

 , (7)

where we denote the activity of a node by Xi (X ∈ {MO,VR,H,VI}), the connection
weights between two nodes by wXi←Y j , the time step by t, and the non-linear transfor-
mation function by fX (a hyperbolic tangent).

Finally, the information contained in VR is transferred to the motor output layer
(MO), which generates the velocities of the two wheels of the robot by:

MOi(t) =
NVR∑
j=0

sCi, j · VR j(t), (8)

where sCi, j specifies the weights generated in the second order connections as specified
below. The stm-net is thus a conventional layered feed-forward neural network, except
for that it has second-order connections (Pollack, 1990) between the VR and MO lay-
ers, meaning that the weights between VR and MO are flexibly set to particular values.
This enables the stm-net to generate different sensorimotor interactions, dependent on
the currently activated weights from VR to MO.

The weights of the second-order connections are determined by the meta-net shown
on the right side of Fig. 3. The meta-net itself is also a conventional feed-forward neural
network. It takes as input a concept vector of parametric biases (PB) and generates the
weights of the second-order connections by means of the activity in the second-order
connectivity (sC) layer.

sCi, j = fsC

NPB∑
k=0

wsC(i, j)←PB(k) · PBk

 , (9)

where sCi j is the output of a node in the sC layer, which corresponds to a connectivity
from the j-th VR node to the i-th MO node.

The generation of action outputs works as follows. First, a concept vector ui needs
to be available, which is used to set the PB node activities. This vector then deter-
mines the values of the sC connections according to (9). These connections are set
once at the beginning of an interaction episode and are kept fixed while a particular
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Figure 3: The sNNPB architecture: A rectangle represents a layer, which contains
multiple nodes. The number of nodes and the utilized output function are indicated in
each rectangle. The meta-net, which consists of the gray layers, controls the connec-
tivity from the VR to the MO layer.

interaction unfolds. To generate actual motor outputs, sensory activities are then trans-
ferred into motor output activities according to (7 and 8). Note that the time scale
of the meta-net is thus different from the stm-net. The ‘normal’ connection weights
W = {wH←VI,wVR←H,wsC←PB} capture the common characteristics among all of the
provided interactions I′, whereas each concept vector ui determines particular second
order connections sC to realize particular object interactions i ∈ I′.

4.2 Learning
Unlike a standard layered neural network, not only connection weights W but also the
interaction-respective concept vectors ui (i ∈ I′) are optimized in the sNNPB, where
the vectors are stored in U = {ui | i ∈ I′}. Both sets of parameters are optimized
simultaneously by means of the conventional steepest descent method with respect to
the output error defined as follows:

E(WT ,UT ) =
∑
i∈I′

Ei(WT ,uT
i ) (10)

Ei(WT ,uT
i ) =

Ni∑
j=0

li j∑
t=0

Ei j(t; WT ,uT
i ) (11)

Ei j(t; WT ,uT
i ) = ‖M̂Oi, j(t) − MO(t; WT ,uT

i )‖2, (12)

where T denotes the current learning iteration, WT the current connection weights, UT

the set of interaction concept vectors, uT
i (∈ U) a particular interaction concept vector

to be optimized, Ni(= 120) the number of pre-recorded training examples of the i-th
interaction concept, li j the length of the j-th time series example of the i-th interaction,
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M̂Oi, j(t) the desired motor activity of the time series with respect to its corresponding
visual input V̂ Ii, j(t), and MO(t; WT ,uT

i ) the actual output of the network at that time.
The learning procedure is implemented by using the conventional back-propagation

algorithm. At the beginning, all the connection weight values W0 are initialized with
uniformly distributed random values ∈ [−0.1, 0.1], and all entries in each u0

i ∈ U0 are
set to zero. Each learning example indicates its particular interaction concept corre-
spondence i, which leads to the re-application of the corresponding current concept
vector uT

i and the according adjustment of that vector. Thus, learning errors are back-
propagated to their corresponding concept vectors ui. In all the reported experiments
below, we conducted 30, 000 learning iterations. Alg. 1 specifies the learning procedure
precisely.

Algorithm 1 Learning procedure in sNNPB.
for all interaction i in I′ do

Load the stored uT
i to the PB layer.

for all pre-recorded examples j of the interaction i do
Calculate the delta errors of connection weights −∂Ei j/∂W and of PB vector
−∂Ei j/∂ui by using the back-propagation algorithm

end for
Sum up the delta errors over all time steps t of all time-series (i, j) to obtain δuT+1

i .(
∵ δuT+1

i = − ∂E
∂ui

(WT ,UT ) = −∂Ei

∂ui
(WT ,uT

i )
)
.

Update ui as follows:

∆uT+1
i = (1 − ηu) · ∆uT

i + ηu · δuT+1
i , (13)

uT+1
i = uT

i + αu · ∆uT+1
i , (14)

where αu and ηu are learning coefficient and momentum, respectively.
end for
Sum up the delta errors of W for all time steps t of all the time-series j of all trained
interaction i ∈ I′ to obtain δWT+1.(

∵ δWT+1 = − ∂E
∂W

(WT ,UT )
)
.

Update W as follows

∆WT+1 = (1 − ηw) · ∆WT + ηw · δWT+1, (15)

WT+1 = WT + αw · ∆WT+1, (16)

where αw and ηw are the learning coefficient and momentum, respectively.
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4.3 Recognition and Imitation
The goal of the sNNPB is to re-produce – or imitate – particular object interactions
including unfamiliar ones. To test this capability, we simulate a recognition and an
imitation process for all the 36 possible interactions i ∈ calI. In the recognition pro-
cess, the sNNPB is presented with 12 examples of particular sensorimotor interaction i,
which are conceptualized into a concept vector ui by means of error back-propagation,
as used during learning (Alg. 1). The error is back-propagated to the PB neurons, where
the averaged error determines the recognition vector. Connections weights W are not
updated making this process computationally more effective. Essentially this method
induces the re-usage of existing repertoires rather than the modification of them. The
recognition vector ui is then applied in other robot-object scenarios and tested for its
general capability to imitate specific object interactions i.

4.4 Three Network Training Setups

cosH

sinH

H

Orange

Yellow
Green

Cyan

Blue

Magenta

Figure 4: Colors of the objects

We examine three different variations of the sNNPB. For the basic network, the
visual input is encoded in a 27-dimensional vector. The visual field is vertically seg-
mented into nine regions. Each region is represented by the fraction of the region
covered by colored patches and the dominant hue of the patches in the region. The
hue H is encoded by the position (cos H, sin H) in the color circle shown in Fig. 4.
Motor output is encoded as a 2-dimensional vector representing velocity of left and
right wheels, each of which is a real value ranging from -1.0 to 1.0. A negative value
indicates reverse rotation.

The two networks other than the basic one have a modified VI layer and MO layer,
respectively. The VI-modified network has 36 VI nodes since the dominant color of
each visual region is provided in the RGB format. The MO-modified network has 10
MO nodes, where the velocity of each wheel is encoded by a 5-dimensional vector.
The vector represents the velocity v in the form of:

G(v) = [ f (−0.6; v), f (−0.3; v), f (0.0; v), f (0.3; v), f (0.6; v)],
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where f (x; v) is a Gaussian distribution N(x; µ = v, σ2 = 0.32). In either cases, the
sensorimotor encoding is different from the basic case but local similarity is preserved.
Motor similarity defined by the Gaussian and linear encodings are locally identical
since Euclidean distance between Gaussian-encoded velocities ‖G(v2) − G(v1)‖ is al-
most proportional to ‖v1 − v2‖ if ‖v1 − v2‖ is sufficiently small. For the same reason,
sensory similarity defined by Hue and RGB encodings are locally identical, too.

5 Behavioral Generalizations
This section presents results regarding the obtained behavioral imitation performance.
First, we focus on the generalized imitation capabilities achieved depending on the
distribution of trained interactions (cf. Fig. 2) and given sensory and motor encodings
(see Sec.4.4). Next, we analyse the generated behavioral mappings over the possible
sensory input ranges.

5.1 Skill Generalization and Recombination
In the following, we progressively increase the number of trained interactions and ana-
lyze the compositionality of the behavioral generalizations achieved. For each trained
interaction block (cf. Fig. 2), three sNNPBs were trained with different network con-
nectivity initializations. Next, untrained interactions were tested by first deriving a
maximally suitable PB activity by means of back-propagation (see Sec.4.3) and then
testing that PB activity on 280 other object setups, as detailed in Sec.3.3.

5.1.1 Learning from one Interaction Only

In block 1, the robot was only trained on orientto-cyan+0 interaction examples.
Figure 5 shows that the acquired skill is transferred across offsets and targets to some
extent for all three setups. No transfer across interaction types (that is, from orientto
to moveto) is realized, however. The closer color of target and offset of the interaction
are, the higher the imitation success rate. The strength of the transfer, however, depends
on the given setup. In the RGB-based color encoding case, the transfer across targets
is slightly weaker but it extends slightly further to other color encodings, somewhat re-
flecting the neighborhood relations of the RGB color space (Fig. 5(a) versus Fig. 5(b)).
Similarly, transfer across offsets is more limited in the Gaussian motor encoding case
(Fig. 5(a) versus Fig. 5(c)). The non-linearity induced by the Gaussian motor encod-
ing makes it difficult to find common skills, such as convergent dynamics, among the
orientto interactions with different offsets.

In block 2, the moveto-cyan interaction was trained. In the linear motor encoding
cases shown in Figs. 6(a) and (b), transfer across types of interactions, from moveto to
orientto, is observed, as well as additional offset transfer and color transfer. Thus,
convergent dynamics that are acquired by learning moveto-cyan are reused to gener-
ate orientto-cyan. However, the successful transfer depends on the chosen motor
encoding, as hardly any transfer is observable in the Gaussian motor encoding case (c.f.
Fig. 6(c)). This shows that while the Gaussian encoding does not diminish learning
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Figure 5: Imitation performance obtained in block 1: Local offset and color gen-
eralizations within the orientto interaction space. Success rates of imitation are co-
encoded by number and color. Instructed interactions are surrounded by a black frame.

success, skill-transfer across types is disrupted because the transfer requires non-local,
color-sensitive generalizations and prevents the direct linear combination of rotation
and forward movement signals.
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Figure 6: Imitation performance obtained in block 2: Generalizations from moveto
to orientto interactions.

We like to emphasize the observed asymmetric skill-transfer from moveto-cyan
to orientto-cyan but not vice versa. This is the case due to the behavioral asym-
metry between moveto and orientto interactions: moveto requires additional ap-
proaching skills that are not necessary for orientto. Both, however, require a kind-
of pivoting skill, which is blend into the approaching skill in moveto interactions.
Back-propagation apparently identifies the PB components that control the approach-
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ing behavior and thus can inhibit those selectively to realize the untrained orientto
behaviors. From a cognitive perspective, this result replicates empirical asymmetry
of similarity comparisons (Tversky, 1984) without providing explicit, innate composi-
tional representations.

5.1.2 Compositionality when Learning From Multiple Interactions

Albeit combinatorial skill-transfer is still restricted when training four different orientto
interactions (cf. Fig. 7), color-respective as well as offset-respective sensorimotor gen-
eralizations are clearly observable. Results of RGB-based color encoding cases are
omitted from now on, because all tests yielded generally comparable results to the
Hue-based color encoding.

Recombinations of interactions are obtained clearly in block 4, where four interac-
tions are instructed in a systematic manner (cf. Fig. 8). The robot could imitate two
unfamiliar interactions moveto-blue and moveto-green at a much higher success
rate than in block 2, where only transfer across the target contributed. Thus, while the
orientto skill cannot produce the moveto skill itself, its color-sensitive orientation
component can be diverted into the moveto skill – effectively increasing the success
rate for the two neighboring moveto interactions. This skill transfer can only be ex-
plained by a recombination of interactions. It suggests that a sub-symbolic equivalence
of the following symbolic compositional system was acquired:

〈Interaction〉 ::= ⊕(〈Type〉, 〈Target〉), (17)
〈Type〉 ::= moveto | orientto, (18)
〈Target〉 ::= blue | cyan | green, (19)

where 〈Interaction〉 is a set of concepts representing generable interactions, and 〈Type〉
and 〈Target〉 are a set of elemental concepts representing types of interactions and
targets, respectively. A composition rule, which combines a type and a target into a
whole interaction, is denoted as ⊕.
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Figure 7: Imitation performance obtained in block 3: Generalizations over color
and offset concepts within the orientto interaction space.

An even stronger compositional recombination can be observed in block 5 (Fig. 9(a)).
The skills acquired by learning the moveto-blue interaction transferred to the five
other moveto interactions. This transfer was not obtained in the Gaussian motor en-
coding case (Fig. 9(b)). If, however, the full orientto interaction space was trained



Emerging Compositional Braitenberg Codes 16

 blue cyan green yellow orange magenta
moveto

orient+0

orient-18

orient+18

orient-30

orient+30

93 3008018393

22 1806091613

49 2710173812

91 2116328889

45 1110325656

36 1010173745

 blue cyan green yellow orange magenta
moveto

orient+0

orient-18

orient+18

orient-30

orient+30

72 0700036991

03 0807080609

01 0701040110

91 1206068691

04 0506031613

03 0707072118

(a) Hue + Linear (b) Hue + Gaussian

Figure 8: Imitation performance obtained in block 4: Local, color-respective gener-
alizations from orientto to moveto interactions.

and, for example, the moveto-blue interaction, then color-respective transfer also oc-
curs in the Gaussian motor encoding case (not shown). Thus, broadly reusable skills
can be organized even if predefined (motor) surface similarity is highly non-linear.
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Figure 9: Imitation performance obtained in block 5: Color-respective generaliza-
tions from orientto to moveto interactions.

5.1.3 Acquisition of All Interaction Skills

Finally, the robot could imitate all the possible interactions well when it learned 21
out of the 36 interactions, as shown in Fig. 10. For this result, the robot apparently
developed the following fully compositional system of concepts:

〈Interaction〉 ::= ⊕1(moveto, 〈Target〉)
| ⊕2 (orientto, 〈Target〉, 〈O f f set〉),

〈Target〉 ::= blue | cyan | green | yellow | orange | magenta, (20)
〈O f f set〉 ::= −30 | −18 | 0 | +18 | +30,

where 〈Interaction〉 is a set of concepts representing the available interactions, and
〈Target〉 and 〈O f f set〉 are a set of elemental concepts representing a target and an
offset, respectively. Composition rules for the two types of interactions, moveto and
orientto, are denoted as ⊕1 and ⊕2. The sub-symbolic implementation of this concept
system will be analyzed in detail in the subsequent sections.

5.2 Generalized Behavioral Patterns
While the previous section showed that the network is able to generalize its interaction
skills in a functionally compositional way, we now focus on how the necessary interac-
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Figure 10: Imitation performance obtained in block 6: Both encodings yield a gen-
eralization performance above 73%.

tion behavior is generated and generalized to untrained interactions. We are interested
in the extent to which the sNNPB generalizes the sensorimotor mappings beyond the
cases it was trained on and thus focus on the replication of and generalization over the
object interactions generated by the training program (cf. (1 – 6)). The presented data
in this sections were generated in block 6 by using an sNNPB in the Hue-based, linear
encoding setup.
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Figure 11: Task-specific direction and distance to velocity mappings.

Figures 11(a,b) show the acquired mappings between the relative direction and
distance of a target object and the velocity of the right wheel for moveto-cyan and
orientto-cyan, respectively. The motor output is determined in environments where
only one cyan object was located. The figures show that the robot can reconstruct
the position-velocity mapping for both the moveto-cyan and the orientto-cyan
interactions. An interesting generalization can be observed for the moveto-cyan case
when the robot is located close to the object (r = 35). In this case, the robot was only
trained on cases where the object was within 15◦ relative directional range due to the
environmental setup (see Fig. 1). While the desired output is well-approximated within
that range, outside of that range the system extrapolates to the cases where the object
is further distant. The actual velocity then follows a line labeled “extrapolation” in
Fig. 11(a), which is obtained by applying r = 35 to the equations for r ≥ 36 (cf. (3 and
4)).
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Besides this generalization to visual input ranges that were not learned, Fig. 12
shows that sNNPB actually also learned to avoid currently undesirable objects. Fig-
ure 12(a) shows the hue dependency of motor output vR for the orientto-cyan in-
teraction concept1. The output was recorded by presenting 40 different colored objects
at 19 different positions 90cm distant from the robot. At the hue corresponding to the
cyan object (hue ≈ 180◦), it can be seen that the robot’s right wheel rotates forward
when a cyan object is located to the right of the robot but backwards when the object
is located to the left, thus replicating the trained sensorimotor interactions. However, if
a different colored object is observed given the orientto-cyan instruction, this pat-
tern is increasingly reversed, thus increasingly avoiding other objects the stronger their
color differs from cyan. Thus, the robot generalized over the color space.
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Figure 12: Hue-direction to velocity mappings for specific orientto interactions.

Similar patterns can also be observed for other target colors (figures 12(b,c)). It
should be noted, however, that orientto-blue was never instructed during the learn-
ing phase. Further analyses revealed that all six orientto-τ interactions share a
highly similar mapping with different displacements corresponding to the color of
the target object τ. This indicates that some common internal mechanisms are reused
among all the orientto-τ interactions and are modified based on the currently desired
target τ, as specified in the PB layer.

Another repetitive motor pattern should be found with respect to the directional
offset φ, which modified the object-respective turning behavior according to (5, 6). In
Fig. 13, the five lines show the velocity profiles computed from (5) with the trained

1The motor output vL was generally mirrored to the one of vR in this case (not shown).
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offsets. The actual direction-velocity mappings for orientto-cyan with offsets con-
firm the existence of the common mechanism. The mappings are obtained under the
condition that the cyan object is placed at 90cm away from the robot. Note that the
two interaction concepts orientto-cyan-30 and orientto-cyan+18 were never in-
structed during the learning phase. Each of the mappings follows its desired profile.
Also, systematic error patterns can be observed from the profiles – again suggesting
common mechanisms that realize the offset-respective mappings.
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Figure 13: Direction-velocity map for different offset angles

In sum, we were able to show (a) behavioral generalizations with respect to hue
space, (b) emergent avoidance behavior that has only been trained indirectly, and (c)
behavioral generalizations in terms of offset value inter and extrapolations.

6 Network Structure Analysis
While the behavioral analyses in the last section confirmed that there is an inherent
pressure to structure the sensorimotor interaction skills in a compositional way, it re-
mains unclear how the network encodes this compositionality and how it generates
the sensorimotor interaction patterns. Thus, we now analyze the sNNPB encodings
in more detail. First, we analyze the structure of the PB layer and show that a sub-
symbolic equivalence of compositional role-argument structures emerged. Next, we
reveal how these compositional structures in the PB layer realize the invocation of the
sensory-to-motor mappings that are necessary to realize a particular interaction. Fi-
nally, we analyze the behavior-oriented structures in the VR layer (cf. Fig. 3).
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6.1 Functional Compositionality in Concept Space
Seeing that the sNNPB can yield behavioral recombination, we now first turn to the PB
layer and investigate how the interactions are represented in a “compositional” manner.
Thus, we structurally analyze the PB space, as defined by the interaction-respective
concept vectors ui for all the 36 possible interactions i ∈ I. The presented structures
in this sections were generated by an sNNPB in the Hue-based, linear encoding setup.
Comparable structures were obtained by using the other encoding setups.
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Figure 14: Concept structure obtained in block 1: Mainly sensorimotor similarities
are observable.

Figure 14 shows concept structures obtained in block 1. The shown 15 concept
vectors represent orientto interactions toward either of blue, cyan, or green ob-
jects with five the different possible offsets. The vectors are projected into a surface
spanned by the first and second principal components of the 30 concept vectors for the
orientto-τ-φ interactions. The six moveto-τ concept vectors were removed from
this principal component analysis, since they took aberrant values. The accumulated
contribution rate of the two principal components was 0.77. With regard to the pre-
sented 15 interactions, similar interactions are arranged nearby in the concept space.
Moreover, a rudimentary continuum of interactions by offset is observed in a horseshoe
shape. However, no regular sub-arrangements are observed, suggesting that the infor-
mation of target color and offset angle was not clearly separated by the sNNPB. This
implies that every orientto interaction with different offsets employs its proprietary
target representation. This is consistent with the observed behavioral performance in
the last section: no recombination of interactions was observed.

In block 6, in contrast, a systematic geometric arrangement self-organized among
all the 36 concept vectors, as shown in Fig. 15. The top four principal components of
all 36 concept vectors are presented in the figure, re-arranged by means of an affine
transformation for visualization convenience. The accumulated contribution rate of
the first four principle components was 0.78. The arrangement consists of three sub-
arrangements, which correspond to the three roles constituting the interactions: 〈Type〉,
〈Target〉, and 〈O f f set〉 (cf. Equation 20). In Fig. 15(a), the interactions are clustered
with respect to its type, moveto or orientto along y-axis. In the orientto cluster,
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Figure 15: Concept structure obtained in block 6: Full semantic compositionality is
observable.

five sub-clusters are found for each of the offsets although they overlap to some ex-
tent. These five sub-clusters constitute a linear continuum of orientto interactions
by offset along the x-axis. In Fig. 15(b), six clusters correspond to each of the target
colors. Furthermore, the clusters are arranged in a circle comparable to the continuum
of color by hue (see Fig. 4). Note that the three role-relevant sub-spaces are orthog-
onal to each other. Due to the orthogonality, elemental concepts are reusable in all
the possible combinations. Thus, we discover an underlying analog mechanism of the
role-argument structure estimated in Sec.5.1.3 and specified in (20) by considering the
following correspondences:

1. The roles 〈Type〉, 〈Target〉, and 〈O f f set〉 correspond to the sub-spaces, respec-
tively;

2. The elemental concepts for each role, for example, orientto, blue, and -30,
are vectors pointing to the center of gravity of the corresponding clusters;

3. The argument structure, which combine the elemental concepts, is implemented
by the disjoint union of the corresponding vectors.

Further analyses have shown that intermediate arrangements can be found in other
blocks. Thus, a continuous process underlying the transition from similarity to compo-
sitionality can be conceived in terms of the geometric arrangements among the concept
vectors.

6.2 Selecting and Modifying Sensorimotor Mappings
So far, we have shown that the PB space expresses compositional interaction concepts
by representing 〈Type〉, 〈Target〉, and 〈O f f set〉 in role-specific subspaces. Since the
interaction concept vector determines the mapping from VR to MO (cf. Fig. 3), we now
investigate how these compositional vectors may activate the appropriate sensorimotor
mapping. Thus, the crucial questions are: (a) how can the connection weights sCi, j
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suitably select the appropriate sensory-to-motor mappings and (b) how is the sensory
information transformed in layer VR to enable the weight-driven selection mechanism.
We answer these questions in this and the following subsections, respectively.

Our results essentially suggest that the connection weights sCi, j realize the tar-
get selectivity by a sinusoidal distribution pattern over the color space with respect
to particular 〈Type〉 and 〈O f f set〉 interactions. To be more precise, we denote par-
ticular interaction concept weights by sCµτφ

i, j with µτφ ∈ I and interaction type µ ∈
{orientto, moveto}, target τ ∈ {orange, yellow, green, cyan, blue, magenta},
and offset φ ∈ {−30,−18, 0, 18, 30}. Considering the color-respective hue values as
input, we approximate the six color-specific weight values along the hue axis with a
sinusoidal equation, that is, given a particular interaction type µ, we approximate the
weight values sCµτφ

i, j by the following function:

ai j · sin(ψτ − bi j) + ci j with ci j = Ai jφ + Bi j, (21)

where ψτ denotes the corresponding hue of the respective targets τ. Amplitude ai j

and phase offset bi j determine how one full sinusoidal period is positioned over the
hue input space. The fitting curves are obtained by using the conventional Levenberg-
Marquardt method.

Figure 16 shows the fitted amplitudes ai j, phase offsets bi j, and function offsets ci j

respective the six action-modified interaction concepts for all 12 nodes ( j = {0, 1, · · · , 11})
of the VR layer connecting to the right-wheel neuron (i = 1) of the MO layer. Figure 17
additionally shows exemplar sinusoidal mappings as well as the node-respective multi-
ple correlation values of the respective mappings. The suffixes of the fitted parameters
are omitted from now on.

Several observations can be made. First, nodes #1 and #8 show low correlation
values and consistently very low amplitude values. Thus, these two nodes do not fit into
the proposed scheme. We show below that these nodes indeed provide nearly color-
independent object distance signals. Additionally, nodes #3 and #7 also show rather
low correlation values and low amplitudes, which however strongly differ with respect
to the different offsets. Thus, we consider those nodes intermediate nodes, which are
somewhat color-sensitive but also yield distance-sensitivity. However, the other eight
out of twelve nodes exhibit high amplitudes and correlation values. Moreover, the
phase offset values b are very similar in these nodes over all five modifications of the
orientto action.

Also the moveto actions employ somewhat similar sinusoidal patterns. The phase
offsets b are generally similar to the ones for the orientto interactions, suggesting
a similar approach to combining VR activities for the motor output generation. The
amplitude values are generally smaller than the ones for the orientto interactions.
This seems to be highly plausible, since less rotation is necessary in the moveto action
but additional forward movement needs to be superimposed. Only node #3 shows a
higher amplitude, suggesting a special relevance for that object interaction. Finally,
the function offsets indicate (Fig. 16(c)) the strong general relevance of nodes #1, #3,
and #8 for the moveto interactions, compared to the orientto interactions. Note also
that only for these three nodes, the offset is similar for the mapping to the right wheel
and the left wheel, corroborating evidence that these three nodes control the forward
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Figure 16: Amplitude (a), phase offset (b), and function offset (c) of each VR nodes
for the six interaction concepts (five orientto interactions and the moveto interac-
tion): Fitted parameters for the connections to a right-wheel neuron and both right- and
left-wheel neurons are presented for the five orientto and the moveto interactions,
respectively. Target-relevant nodes are highlighted in (a) and (b). Offset-relevant nodes
are highlighted in (c).
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Figure 17: (a) Connectivity from VR nodes to the motor output nodes that gener-
ates the velocity of the right wheel; (b) multiple correlation values between actual
and approximated connectivity:

movement.
At the same time, the VR nodes are categorized differently in terms of the relevance

to the determination of final angular offsets. Strong correlation is observed between the
above-mentioned fitting parameter c and a given offset angles φ for six VR nodes. Fig-
ures 18(a – c) show linear regression results of c in terms of the fitting function Aφ+ B
where A and B are fitting parameters defined in (21). Examples of fitting curves are
presented in Fig. 18(a) for two offset-relevant nodes #2 and #9 and an offset-irrelevant
node #10. The categorization is obtained in terms of the proportional constant A and
multiple correlation values, as shown in Figs. 18(b) and (c), respectively. The five
strongly offset-relevant nodes are fitted with proportional constant (|A| > 0.002) and
with multiple correlation values higher than 0.98. Also the offset values of the sinu-
soidal equation illustrate this correlation (cf. Fig. 16(c)). It may come as a surprise
that the gradients of nodes #2 and #7 are positive while the gradients of nodes #6, #9,
and #11 are negative, however. This suggests that inverted visual information should
be contained in the respective VR nodes.

6.3 Reusable Components of Sensorimotor Mappings
The above analysis has shown that the sNNPB utilizes a sinusoidal selection mecha-
nism that determines the relevance of particular VR nodes for particular color-object
interactions. An additional value offsets the sinusoidal curves to scale their mapping
influence offset-specific. What remains to be shown is how these selective weight in-
fluences lead to the realization of the observed behavior. The question thus is, which
information is actually encoded in the VR nodes to control the unrolling of the desired
sensorimotor interaction patterns? Originally, we expected that this layer would pro-
vide visually-processed factual information about the surrounding environment, such
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Figure 18: Correlation between c and offset angle

as “orange-object at 45◦ and blue-object at −30◦.” However, it turns out that this layer
actually provides behavior-oriented information about the surrounding objects in the
form of Braitenberg-like goal-oriented sensory encodings that is properly combined by
means of the sCi, j weights to yield the appropriate interaction patterns.

We first analyze nodes #1 and #8, which were identified as moveto-relevant nodes
in the PB-dependent connectivity analysis. The activation level of #1 decreases gradu-
ally as any object comes closer, as shown in Fig. 19. Meanwhile, the activation of #8
changes suddenly when any object comes just in front of the robot as shown in Fig. 20.
This confirms that these two nodes provide suitable distance codes that can be recruited
by the moveto interactions. The more negative the activity in these two nodes is, the
lower the speed of the two wheels. Due to the strong non-linear sensitivity of node #8
around 35cm with a switch from positive to negative values, the sNNPB realizes the
stopping-behavior. Essentially, the nodes encode Braitenberg-like distance information
enabling the mapping from object distance to wheel speeds.

When combining the VR activities of the remaining ten nodes, we receive the fol-
lowing patterns: sensorimotor mappings of orientto interactions are composed of
three components, a common component, which is shared by all the orientto in-
teractions with any offset angle, a target-relevant component, and an offset-relevant
component. The common component is obtained based on the term B of the sinusoidal
function (21). Figure 21(a) shows a sensorimotor mapping that consists of the ten
VR nodes with an activity ratio of each node given by Bs. This component is almost
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Figure 19: Activation of VR node #1: Sensitivity of VR node #1 to the distance to an
object is shown as differences of two outputs for the object placed at 90cm and 120cm,
60cm and 90cm away from the robot.
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Figure 20: Activation of VR node #8: the output of VR node #8 is recorded when an
object are placed at 35cm and 40cm away from the robot.

insensitive to hue, but contributes slightly to convergence to any object with no offset.
The target-relevant component is obtained as a combination of the eight hue-relevant

VR nodes (#0, #2, #4, #5, #6, #9, #10, #11) with the ratio given by averaged a and b
values over all offset angles. This component produces a suitable linear gradient from
positive to negative values. Figures 21(c1 – c3) show that the zero activity hits the
spot at the zero offset nearly perfectly for the respective target objects. Moreover, the
pattern increasingly reverses for colors that increasingly differ from the target color.
Thus, the above-mentioned shifting of the sensorimotor mappings (cf. Fig. 12) is ex-
plained in terms of this component: the processed visual information provides the suit-
able gradients. The encoding can be regarded as the provision of perfectly task-suited,
color-sensitive Braitenberg sensors: for each target color there are two sensors whose
activity is maximal given the target color and decreases toward negative values with
increasingly different hue-encoded colors. Positioning these sensors with a sufficient
perceptual radius to the front-left and -right of the robot, the difference yields approxi-
mately exactly the gradient map as shown in Figs. 21(c1 – c3).

Finally, the offset-relevant component is obtained as a combination of the offset-
relevant VR nodes (#2, #6, #7, #9, and #11) with the ratio given by Aφ. This component
is almost flat and contributes to changing the convergent direction by levelling the
velocity uniformly as shown in Fig. 21(b). Thus, for each offset-value, the sensorimotor
mapping is uniformly shifted to the position where the transfer from positive to negative
wheel speeds and vice versa should take place. This encoding actually suggests the
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(c1) Target Component (blue)
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(c2) Target Component (green)
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Figure 21: Reusable Components of sensor-motor maps for orientto interac-
tions: A common component shared by all orientto interactions (a), an offset-
relevant component (b), and a target-relevant component (c1, c2, c3) are pre-
sented.

invention of a necessary constant offset value, which can produce constant offsets over
the whole sensory space2.

To see how the visual information is combined to achieve these mappings, we show
the output patterns of the other ten nodes of the VR layer in Fig. 22. The output of the
VR nodes was recorded by presenting 40 different colored objects at 19 different po-
sitions 90cm distant from the robot. Further analysis reveals that the activation of all
ten nodes is approximated as a sinusoidal function of hue of a presented object H for
particular directions (that is, sinusoidal patterns along x-Axis for particular directions).
These sinusoidal patterns were observed irrespective of color encodings of the visual
input nodes: either using (sin H, cos H) (cf. Fig. 22) or (r, g, b) (not shown). Thus, the
offset-respective sinusoidal patterns of VR nodes along the hue axis, in conjunction
with sinusoidal patterns generated in the sCi, j connections (cf. Sec.6.2), enable the
color selectivity and the observed behavioral generalization over the color space. The
linear gradient comes into being by the PB-controlled combinations of local, color-
offset specific linear gradients. These can be observed for given color encodings along
the y-Axis in the nodes of Fig. 22, where the observable single non-linearities (switch
from positive to negative gradient or vice versa) are blended into each other to gen-
erate an approximate linear wheel-speed mapping (cf. Figs. 21(c1-c3)). Thus, the
color-relevant VR nodes provide a mixture of color- and direction-sensitive sensors
that do not encode object locations explicitly, but rather encode object directions color-
respectively.

2Surprisingly, experiments with bias nodes in the VR layer showed that back-propagation fails to recruit
those nodes for the offset control but still “invents” its own offset encoding as explained above.
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Figure 22: Activation patterns of VR nodes

7 Discussion

7.1 Relational View of Functional Compositionality
Previous works have attempted to bridge the gap between analog sensorimotor ex-
periences and a compositional system of discrete concepts. Karmiloff-Smith (1992)
proposed intermediate level-I representations. A level-I representation is character-
ized as an implicit procedural knowledge that is acquired by rote-learning a particular
sensorimotor event. The level-I representation is thus analogous to the sensorimotor
experience. On the other hand, it does not provide any essential mechanisms to rewrite
itself into compositional concepts, since it is completely unstructured.

In contrast, image schemas, which were proposed by Johnson (1987) and Lakoff
(1987), are easily connected to compositional concepts because they consist of mu-
tually related parts. In this way, they can capture recurring structural patterns of our
sensorimotor experiences. However, the sensorimotor mechanisms that underlie the
formation of such image schemas are still controversial. It is essentially puzzling how
image schemas may be derived from sensorimotor experience but meanwhile may be
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a prerequisite for organizing experiences, as pointed out by Clausner (2005). Thus,
at least a principle to organize sensorimotor experiences may be required, if a com-
positional system should be acquired based on sensorimotor experiences (cf. Mandler,
1992).

As an alternative, our study shows that structural alignment can take place in a
sensorimotor-grounded, analog concept space. By associating individual (initially un-
structured) concept vectors with particular interactions during learning, the learning
algorithm forms progressively more compositional representations, which enable the
combinatorial transfer of skills. Thus, functional compositionality is realized due to
the sensorimotor-grounded, relational structures among the concepts. This relational
view makes it possible to transform similarity into (functional) compositionality, as
was shown in the structural transformations from the ones in Fig. 14 to the ones in
Fig. 15.

In addition, the natural interdependency among semantic roles is preserved in-
evitably in the learning approach where interactions are conceptualized without explicit
decomposition. Note that each semantic role cannot exist by itself. For example, con-
sider the concept ⊕(moveto, blue), which consists of two concepts that play the roles
of an interaction type and a target, respectively. Both depend on each other since the
target is something that the robot interacts with and the interaction type is a way to han-
dle the target. Thus, it is impossible to conceptualize blue as a target without referring
to any interaction types. An analogy may be the fact that it is impossible to define the
function of a pawn meaningfully without referring to other chess pieces (de Saussure,
1986). Consistently with this property, both semantic roles need to emerge simultane-
ously in the concept space.

Fig. 23 shows an idealized concept structure that was approximately emerging in
block 6 of our experiments. Both target and offset subspaces are presented. As ex-
plained above, the roles are realized in terms of geometric regularity. A sub-symbolic
equivalence of the target role are the alignment of five aligned circles (or hexagons),
which are congruent and parallel to each other. Similarly, the offset role is shown as
six aligned solid lines. We like to stress that both congruences accompany each other
inherently since it is impossible to generate aligned substructures in one subspace with-
out generating any aligned substructures in the other space. It is also important that the
argument structure emerges as the orthogonal nature between the two subspaces at the
same time. This explanation can be extended to the full concept space that was ac-
quired in the experimental block 6, where target, type, and offset roles depended on
each other in a similar manner (cf. Fig. 15).

7.2 Distinctness for Functional Compositionality
Sub-symbolic models that acquire embodied compositional concepts are also proposed
by Cangelosi and Riga (2006) and Tuci, Ferrauto, Massera and Nolfi (2010). Instead
of the PB layer, both models employ symbolic input layers, which specify interaction
concepts that are to be acquired or generated. Each symbolic node corresponds to a
particular predefined elemental concept. The actual interaction concept is specified by
the combination of two or more active nodes. Thus, their models find internal config-
urations that plug sensorimotor experiences of a robotic agent into predefined concept
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Figure 23: An idealized concept space: Four out of three dimensions of concept
structure acquired in block 6 are illustrated.

structures. In contrast, our model acquires emergent compositional concept structures
solely by the provision of distinctness indicators for the trained interactions. Thus,
this learning constraint does not restrict the obtainable concept structures to predefined
ones.

Our previous model (Sugita and Tani, 2005) utilized linguistic structure as a compo-
sitional pressure on behavioral conceptualization in a different manner from the above-
mentioned two models. A recurrent neural network with parametric biases (Tani, Ito
and Sugita, 2004) was employed to learn multiple different interactions. The provided
linguistic pressure introduced geometric regularities into the behavioral concept space,
which made the holistic interaction concepts accessible from the linguistic side. Thus,
no behavioral skill transfer was observed. Note that this result is very different from
the presented study although they looks similar in term of the acquired concept space.

In the current sNNPB architecture, compositional goal-oriented interaction encod-
ings are fostered because the correlations between target positions and motor outputs
form interaction-specific equivalence classes. However, the sensorimotor similarity
alone would not bootstrap the categorization of the interactions because sNNPB has
no innate mechanisms for focusing on the target. In other words, the predefined vision
encoding provides behavior-irrelevant similarity, which depends on positions of both
target and dummy objects equally. Neither does the categorization emerge due to the
motor time series data alone because the motor data strongly vary within a particu-
lar interaction dependent on the presented object constellations. Thus, the provided
distinctness information about the trained interactions enabled the network to learn
to focus on the target, using a sinusoidal encoding approach. Vision encodings are
re-organized in a behavior-relevant manner by means of the Braitenberg-like, color-
separating sensory encodings (cf. Fig. 22), which provides the reusable components of
sensorimotor mappings (cf. Fig. 21).

8 Summary and Conclusion
In this paper we have shown that a second-order neural network with parametric bi-
ases (sNNPB) can learn sensorimotor-grounded, semantic compositional structures.
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This was achieved by the very general back-propagation learning algorithm plus the
provided distinctness (but not compositional) information for each distinct interaction
trained. Selectively activated, the compositional structures could produce particular
object interactions on demand. The compositional structures were realized by two in-
terdependent modules: the meta-net produced compositional second-order connection
weights while the stm-net produced processed sensory information again with a com-
positional, task-oriented structure. The latter encoding can be regarded as a composi-
tional Braitenberg code, because it allows the compositional activation of those sensory
information sources that are task-relevant and that can be linearly mapped onto motor
codes. The fact that neural activity in the VR layer did not linearly correlate with
object locations, furthermore suggests that the setup induced pro-motor sensory en-
codings, rather than compression-oriented representational encodings. Thus, we can
conclude that the sNNPB network architecture produced an encoding that transferred
motor and sensory similarity into effective compositional structures.

Further analyses showed that compositionality was realized by a representation that
is based on a sub-symbolic geometric arrangement. This regular geometric arrange-
ment interactively self-organizes interdependent semantic roles in separate principal
component axes. The experimental results suggest that a whole concept does not need
to be decomposed into its assumed constituents explicitly. In fact, we believe that an
explicit decomposition may prevent the acquisition of situated compositional systems
because the enforced abstraction restricts the compositionality and thus may prevent the
formation of further reaching similarities within the enforced compositional structures.
In contrast, the situatedness of the compositional elements in our model is assured by
learning the most suitable compositional, geometric structure that is able to selectively
activate distinct sensory-to-motor interaction mappings. Thus, we refrained from an
enforced symbolization, but succeeded in grounding compositionality in sensorimotor
codes alone.

While our achievements suggest that semantic compositionality can be generated
by means of second-order connections plus distinctness information about the trained
interactions alone, future work will need to refine the current approach in several re-
spects. First, it is somewhat unsatisfactory that the distinctness information is provided
by the teacher. We believe that distinctness information may come either from internal
motivation and reward signals or from linguistic signals. In a previous study, two of the
authors (Sugita and Tani, 2005) had succeeded in associating the PB structure of the be-
havioral control module with another PB structure in a linguistic module. We intend to
pursue this research further – however, now with the sNNPB introduced here. If prop-
erly linked, then the self-organizing behavioral PB structure works as a pre-linguistic
concept structure, which facilitates later syntax acquisition (cf. Dominey, 2006).

Second, the model should be extended to acquire recursively structured interaction
concepts. The recursive structure can be represented as a fractal geometric arrange-
ment in principle, as shown in Nishimoto and Tani (2004); Sugita and Butz (2010).
A learning model in which the fractal structure self-organizes through the learning of
sensorimotor time series involving behaviors of an agent may be investigated in this
respect.

Finally, to foster the scalability of the system to more diverse and complex inter-
actions, we believe it will be necessary to further modularize the learning architecture



Emerging Compositional Braitenberg Codes 32

and to introduce more explicit mechanisms of focus and attention. As was shown, the
system learned to focus on a particular target interaction by employing sinusoidal, goal-
oriented encodings. While this encoding was an unexpected, rather innovative inven-
tion of the sNNPB, to be able to separate sensory information further and to temporary
focus on the interaction-relevant one, more explicit sensory filtering mechanisms will
most likely be necessary. For example, Gaussian Mixture Models have been employed
to identify the crucial interaction constraints in particular robot arm object interactions
(Calinon and Billard, 2009). Similar approaches may be useful to enable the more ex-
plicit selective activation of goal-oriented interaction foci. However, to achieve this,
the further modularization of sensory and motor encodings is expected to be necessary.
Only redundant, sensory, motor, and sensorimotor encoding structures are expected to
enable the selective identification of those pieces of information that are crucial for the
realization of particular interactions. Thus, clearly the grand challenge for future re-
search is to learn compositional encodings in more general environmental setups with
a more capable robotic interaction system. The insights gained by the current work
suggest that the second-order control of mappings from suitably processed, pro-motor
encoded sensory information to motor control codes may play a crucial role in achiev-
ing this endeavour.
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