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UNIQUENESS, DEFINABILITY AND INTERPOLATION 

KOSTA DOSEN AND PETER SCHROEDER-HEISTER1 

This paper is meant to be a comment on Beth's definability theorem. In it we shall 
make the following points. 

Implicit definability as mentioned in Beth's theorem for first-order logic is a 
special case of a more general notion of uniqueness. If a is a nonlogical constant, 
Tat a set of sentences, cx* an additional constant of the same syntactical category as 
a and T7t* a copy of Tat with cx* instead of a, then for implicit definability of a in Ta, 
one has, in the case of predicate constants, to derive cx(x1,.. ., x,) *-* oc*(x1,.. ., x,) 
from T, u T1*, and similarly for constants of other syntactical categories. For 
uniqueness one considers sets of schemata S, and derivability from instances of 
Sat u Sac* in the language with both a and a*, thus allowing mixing of a and aX* not 
only in logical axioms and rules, but also in nonlogical assumptions. In the first 
case, but not necessarily in the second one, explicit definability follows. It is crucial 
for Beth's theorem that mixing of a and x* is allowed only inside logic, not outside. 
This topic will be treated in ?1. 

Let the structural part of logic be understood roughly in the sense of Gentzen- 
style proof theory, i.e. as comprising only those rules which do not specifically 
involve logical constants. If we restrict mixing of a and x* to the structural part of 
logic which we shall specify precisely, we obtain a different notion of implicit 
definability for which we can demonstrate a general definability theorem, where a is 
not confined to the syntactical categories of nonlogical expressions of first-order 
logic. This definability theorem is a consequence of an equally general interpolation 
theorem. This topic will be treated in ??2, 3, and 4. 

Finally, in ?5 we shall show that under certain conditions, which in particular 
obtain in the case of implicit definability in the usual first-order case, the mixing of a 

and x* in logic can be reduced to their mixing in the structural part of logic, which 
makes Beth's definability theorem a consequence of our general definability 
theorem. 
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?1. Implicit definability and uniqueness. Let La be the set of formulae of a first- 
order language including a nonlogical constant a; let La* differ from La by having 
instead of a the nonlogical constant cx* of the same syntactical category as a; and let 
Laa* be the set of formulae of the first-order language with both a and a *. By PC(La) 
we shall denote the axioms and rules of the first-order predicate calculus in the 
language of La, and similarly for PC(La*) and PC(Laa*). Let Tl be a set of sentences of 
La, and let T,* be obtained from T. by uniformly substituting a * for a. Furthermore, 
let A(ax) be a formula of La in which a may occur, and let Ac(a*) be obtained from A(a) 
by uniformly substituting a* for a. Then we introduce the following definitions: 

DEFINITION 1. The constant ac is implicitly definable in T. iff for every A(a), from 
PC(Laa*) u T, u T1* we can prove A(a) * A(ac*). 

DEFINITION 2. The constant cx is explicitly definable in T. iff for every A(ax) there is a 
formula B in La without ac such that from PC(La) u T. we can prove A(a) +-* B. 

Beth's definability theorem states that these two notions of definability are 
equivalent, i.e., a is implicitly definable in T, if a is explicitly definable in T.. That 
explicit definability implies implicit definability is rather trivial. The proof of the 
converse usually proceeds via Craig's interpolation lemma, which implies the 
following: If from PC(Laa*) we can prove A -* B* for A in La and B* in La*, then there 
is a C in La r) La* such that from PC(Laa*) we can prove A -* C and C -* B*. 

In Definition 1 we could have written only Ac(a) -* A(ac*) instead of Ac(a) *- A(x*). 
It is clear that if we have Ac(a) -+ A(cx*) we have also its converse. Furthermore, since 
we have standard theorems for replacement of equivalents and identicals at our 
disposal, we might have restricted A(a) above to 

xI = aX if a is an individual constant, 

Xk = a(x1,. . .,xk 1) if a is a functional constant, 

CX if a is a sentence constant, 

a(x1,... ,Xk) if a is a predicate constant, 

where x1,. . . , Xk are individual variables. Next, we might have assumed that B has no 
individual variables foreign to A(a). For suppose that the individual variables 
y"1, ,yn foreign to A(a) occur in B. Then from A(cx) -*B we easily obtain 
A(a) *Y1* *y 3y.B. 

What we have called implicit definability seems to correspond closely to 
uniqueness: Intuitively, a constant cx is unique iff any constant cx* formally char- 
acterized as a is synonymous with a. We shall now give a more precise definition 
of uniqueness. 

Let Sa be a set of axioms or axiom-schemata without free individual variables 
in La, and let Sa* be obtained from Sa by uniformly substituting ac* for cx. Then we 
have: 

DEFINITION 3. The constant a is unique in Sa iff for every A(a), from 
PC(Laa*) u Sa u Sa* we can prove A(a) +-+ A(cx*). 

This definition should be taken in the following sense: if in Sa there are axiom- 
schemata, then these axiom-schemata can be instantiated by formulae in Laa*. That 
is, an instance of an element of Sa or Sa* may contain both a and ac*. Implicit 
definability is just a particular case of uniqueness when Sa is a set of sentences T. 
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If S, is a set of axioms or axiom-schemata, let T1(Sa) be all the sentences in La 
which are instances of S.. It is not difficult to show that if a is implicitly definable, i.e. 
unique, in T,(Sa), then it is unique in S.. But not necessarily the other way round, as 
the following example shows. This example makes clear that in the proof of 
uniqueness we might need to instantiate the schemata of S. in L.... 

Let L + be the set of formulae of the language of first-order formal arithmetic with 
0, s (successor) and +. Let S+ consist of: 

(PI) -i x(sx = 0), 
(P2) VxVy(sx= sy x = y), 
(I) (B(O) A Vy(B(y) B(sy))) -* VxB(x), 
(+ 1) Vx(x + O = x), 

(+2) VxVy(x + sy = s(x + y)). 
In S+ we have four axioms ((P1), (P2), (+ 1) and (+ 2)) which are sentences, and 

one axiom-schema (I). In S+. we shall have (Pt), (P2), (I), (+*1) and (+*2), the last 
two axioms being obtained from (+ 1) and (+ 2) by substituting uniformly +* for 
+. In S++* we shall have (Pt), (P2), (I), (+ 1), (+2), (+*1) and (+*2). Then we can 
show the following: 

PROPOSITION 1. The constant + is unique in S+. 
PROOF. Let B(y) be Vx(x + y = x +* y). Then using (+ 1) and (+*1) it is easy to 

prove B(O), and using (+ 2) and (+*2) it is easy to prove Vy(B(y) -* B(sy)). Hence, by 
(I) we obtain VxVy(x + y = x +* y), from which it follows that from PC(L++*) 
u S+ u S+. for every A(+) we can prove A(+) +-* A(+*). D 

PROPOSITION 2. The constant + is not unique in T+(S+). 
PROOF. Let M = <D, 0, s, + > be a nonstandard model of arithmetic. The domain 

D of M has an initial segment Ho isomorphic to the natural numbers, and after Ho 
we have the blocks of nonstandard numbers: ..., H1,..., Hj,..., where i, j,... are 
indices of these blocks. Let M* = KD, 0,s, +* >, where +* is defined as follows: 

if a,beHothena +*b = a + b; 

if a e Ho and b e H, then a +* b =a + b and b +* a = b + a; 

if aeHiandbe Hthena +*b =(a + b)-sO. 

Let f: M -* M* be defined as follows: 

if a e Ho, then f (a) = a; 

if a e Hi, then f (a) = a + sO. 

It is not difficult to check that f is an isomorphism. Hence for every sentence A( +) of 
L+ we have M # A( +) iff M* # A( +*). Since M is a model of T+(S+), we have that 
M* is a model of T+*(S+*). So <D, 0, s, +, +*> is a model of T+(S+) u T+*(S+*). But 
in this last model for a e Hi and b e Hj we have a + b 0 a +* b. Hence x + y 
- z -* X +* y = z is not provable from PC(L++*) u T+(S+) u T+*(S+*). D 

In second-order logic the schema (I) can be replaced by the sentence 

VP((P(0) A Vy(P(y) -* P(sy))) -* VXP(X)). 

Let S+ be the result of replacing (I) in S+ by this sentence. Then, after extending 
Definitions 1-3 to second-order logic, we would obtain that the uniqueness of + in 
S+ amounts to implicit definability. 
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What we can conclude from our example with + is that uniqueness in Sat and 

T(S,) need not coincide because in the first case, but not in the second, we can 
instantiate S, in the mixed language L,, Roughly speaking, with implicit 
definability the "mixing" of at and Acs is confined to logic (where we may use 

PC(L...), not only PC(L.) u PC(L..)), whereas with uniqueness in general it might 
extend to the nonlogical assumptions (i.e., we may use T,,,(S. u S..), not only 

T7(SI) u T7*(Sa*)). Beth's definability theorem shows that uniqueness implies explicit 
definability if we confine this mixing to logic in the proof of uniqueness. 

Our purpose in the sequel is to make this talk of mixing a and ac* in logic more 
articulate, and to show how Beth's theorem depends on mixing being confined to 
logic. More precisely, we shall consider restricting the mixing of a and aX* in the 
axioms and rules governing the logical constants, whereas mixing in the structural 
part of logic will always remain unrestricted. This will permit us to carry over the 
notions of definability and uniqueness to constants of other syntactical categories, 
in particular to logical constants. 

Take, for example, Gentzen's sequent-calculus for intuitionistic logic, and add to 
this calculus rules for A* and v*, formally analogous to rules for conjunction (A) 

and disjunction (v). Then we have the following derivations: 

A A A 
Thinning A BF BThinning 

Al-A A,AB-A A,BF-B 

AAB A A -AA Cut 
BIB A A BBFA A*BPermutation 

A A BFB BA A B-A A*BC t 
A A B, A AB A A* B Contraction 

A AB -A A* B 

and 

A k A B - B 
Al~A v*B B-A v*B 

A v BF-A v*B. 

So, both A and v may be called unique in Gentzen's calculus. But note that we have 
derived AA B -A A* B without mixing A and A*in the rules governing A and A*: 

they were mixed only in applications of Cut, Permutation and Contraction. On the 
other hand, v and v* are mixed in the application of the rule for introducing v on 
the left, by which we have obtained A v B F- A v * B, and this mixing seems to be 
unavoidable. So, we might conclude that A is implicitly definable in intuitionistic 
logic, whereas v is not. This is reflected by the fact that A is explicitly definable, in 
the sense that A A B is equivalent to the sequence A, B on the left of the turnstile, 
whereas for v no such sequence exists. This is in accordance with a general form of 
the interpolation and definability theorems which we are going to prove. The 
structural part of logic will be captured by a certain consequence relation, closely 
related to notions introduced by Tarski. 

The idea that deductive systems specify consequence relations or consequence op- 
erations, and that one can study these systems abstractly by considering axiomatic 
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theories for these relations or operations, stems from [2] (III-V). Our work here 
might be conceived as such an abstract study of definability and interpolation 
(?? 3 and 4), and the application of the results obtained to first-order deductive 
systems (?5). 

?2. Consequence relations. In Tarski's [2] one can find axiom systems for a con- 
sequence operation Cn. Our approach differs from Tarski's conception in at least 
two respects. First, we consider not only compact but also noncompact consequence 
relations. This gives our approach a greater generality which proves useful when 
applying our notions to certain logical constants (cf. the example of the universal 
quantifier in co-arithmetic at the end of ?3). Second, we deal with consequence 
relations between formulae and not only between sentences. This is essential if we 
want to interpret Craig's interpolation lemma, which is formulated by explicit 
reference to free variables, in a framework based on consequence relations. 

Let L be a set of formulae of an arbitrary language, and let X, Y, Z, U, V, W, 
X' 1... be subsets of L, and A, B, C, D, ..., A', ... members of L. Then we introduce 
the following definitions: 

DEFINITION 4. A consequence relation over L is any relation F- between subsets of 
L on the left and members of L on the right (i.e., any subset of 2L x L) which 
satisfies: 

(F-1) {A} F- A, 
(+2) X A =-Xu YF--A, 
(+3) ((VA E Y)XF A & Y u VB)= X u VF--B. 
DEFINITION 5. X IF Y ̀ >df (VA E Y)X F- A. 
DEFINITION 6. Cn(X) =df {A I X F- A}. 
It is easy to show that F- satisfies: 

WFi) XFEX, 
(F-2) X F-Z=X u Y F-Z, 

(F-3) ((VA E Y)X J{A} & Y u V F Z) =- X u V F Z. 
and that Cn satisfies: 

(Cnl) X c-Cn(X), 

(Cn2) X c Y => Cn(X) c Cn(Y), 
(Cn3) Cn(Cn(X)) c Cn(X). 
If we start from IF as a primitive relation satisfying ( F1)-( j-3) and define F and 

Cn as follows: 

X F- A df X I {A }, Cn(X) =df {AI X F {A }}, 

we obtain ( 1)-(F- 3) and (Cnl)-(Cn3). (Note that (Jf3) can be replaced by 

(X F-Y & Y u V F-Z) =X u V F-Z, 

(VA e Y)X F-{A} =X F- Y. 

but not by the first principle alone.) 
If we start from Cn as a primitive operation satisfying (Cnl)-(Cn3) and define + 

and F- as follows: 

X + A df A e Cn(X), XI| Y < %df Y _ Cn(X), 

we obtain (F1)-(F3) and (IH1)-(1F3). 
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For further applications it is useful to remember the following properties of IF: 
Y ' X => X IVY, 
X IYk 4VZ, Y)XIFZ, 

(VOXI i Cx X IFUi Yi. 
Let Xfin, Yfin,... be finite subsets of L. Then we introduce the following definition: 
DEFINITION 7. A consequence relation is compact iff it satisfies 
([-4) X F- A => (]Xfin c X)Xfin F- A. 
If we define IF and Cn in terms of a compact consequence relation F-, then we 

obtain: 
(I[-4) X IF Yfin =(Xfin c X)Xfin IF Yfin, 
(Cn4) Cn(X) c Uxffl xCn(Xfin), 

and as before we could start with a primitive IF or Cn satisfying (ft-4) or (Cn4) and 
obtain ([-4). Note that in the presence of ([-4), we can replace ([-3) by 

([-3.1) (X A&{A}I VFB) =Xu VF-B 
or by 

(F-3.2)(XFA & {A} u XFB) => XF- B). 
If instead of (Cn4) we assume Cn(X) = UXff c x Cn(Xfin), as in [2, pp. 31, 64], then 
(Cn2) becomes derivable. 

Let L1 and L2 be two sets of formulae which are subsets of L, and let L1 n L2 
Lo. We shall use X1, Y1, Z1, U1, V1, W1,. .., X 1,... for subsets of L1, and A1, B1, 

C1, Dl. . .,A1, ... for elements of L1; and we use analogous notation with 2 and 0 
instead of 1. If (X)i =df X r- Li, it is easy to check that (X1), = X1, (X2)2 = X2, 

(X12 = (X1)0 and (X2)1 = (X2)0. 
Let now [-1 be a consequence relation over L1, and -2 a consequence relation over 

L2. We define IK-, I2, Cn1, and Cn2 as before. An extension of [-1 over L is any 
relation R C 2L x L such that X1 F1- A1 => X1RA1. We proceed analogously to 
define extensions of F-2. There are always consequence relations which extend both 
[-1 and [-2, since the trivial relation which holds between any X and any A is a 
consequence relation, which is evidently compact. Let Fi be a consequence relation 
over L which is an extension of both F1- and [-2, and let X F-c A .df (Vi)X Fi A. Then 
we can easily check the following lemma: 

LEMMA 1.1. The relation F-c is the minimal consequence relation over L which is an 
extension of the consequence relations [-1 and F-2. E 

If [-1 and -2 are compact, and F-i is a compact consequence relation over L which 
is an extension of both F1- and [-2, then 

X F-cc A "df (3Xfin C X)(Vj)Xfin F-i A. 

It is again easy to check the following lemma: 
LEMMA 1.2. The relation F-c is the minimal compact consequence relation over L 

which is an extension of the compact consequence relations [-1 and -2. 

The relationship between the axioms for compact consequence relations and the 
structural rules in Gentzen-style proof theory is obvious. If one takes the left-hand 
side of a sequent to be a set rather than a sequence of formulae, the structural rules in 
the standard sequent calculi are just the axioms A F- A, Thinning and Cut, which 
obviously correspond to (F-I), (F-2) and (F-3.1) if X, Y and V are finite. Thus 
compact consequent relations are a slight generalization of this idea, allowing for 
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infinite sets on the left of the turnstile, as in the standard semantic first-order 
consequence relation (which is compact). Arbitrary consequence relations (which 
are not necessarily compact) are a further generalization which may be useful, e.g., in 
the consideration of infinitary systems. 

What at the end of ?1 was loosely called "the structural part of logic", we shall 
from now on identify with F-c and F-cc. As a matter of fact, F-c and F-cc could more 
appropriately be called "the minimal (compact) structural logic extending two given 
consequence relations"; so, when we say "the structural part of logic", this should be 
understood in a specific way. 

?3. Interpolation and definability. First we introduce the following definitions: 
DEFINITION 8. A relation R C 2x X L satisfies the set-interpolation property with 

respect to F-1 and 2 iff 

X1 RA2 =3 Y0(X1 IF1 Y0 & Y0 2 A2), 

X2RA1 =:> YO(X2 IF2 YO & Yo -1 A1). 

If Y0 is finite, we have the finite set-interpolation property, and if Y0 is a singleton, we 
have the formula-interpolation property with respect to F- and F-2. 

DEFINITION 9. A relation R C 2L X L is conservative with respect to F1 (or 2) iff 

X1RA, => X1 F1- A1 (or X2RA2 = X2 K A2). 
Our aim in this section is to show that if we assume for F-1 and F-2 that 

(0) X0F~-j AO XOFX2AO, 

i.e., that F-1 and K agree on Lo, then F-c satisfies the set-interpolation property and is 
conservative with respect to F-1 and F-2. For compact consequence relations F-1 and 
2 we shall show that F-cc satisfies the finite set-interpolation property and that it is 
conservative with respect to F-1 and F-2. With some additional assumptions we shall 
show that F-cc also satisfies the formula-interpolation property. 

Our proof proceeds as follows. First we introduce two auxiliary relations ', F" 
C L x L by use of certain set operations P1 and P2. The relation F-' is defined in 
such a way that it is easy to show that F-' satisfies the set-interpolation property 
and is conservative with respect to F-1 and 2 (Lemma 3.1), and furthermore that 
F-' is a consequence relation over L (Lemma 4.1). It can then be proved that F-' is an 
extension of F-1 and F-2, provided (0) holds (Lemma 5.1). This immediately yields the 
desired result for F-c (Theorem 1.1), since F-, as the minimal consequence relation 
over L which extends F-1 and F-2 (cf. Lemma 1.1), a fortiori satisfies the set- 
interpolation and conservativeness properties obtained for F-'. The proof for Fcc 
starting from F-" proceeds parallel to the one for F-c. 

The auxiliary notions P1, P2, F-' and F-" mentioned above are defined as follows: 

P1(X) =df{ Y1 I Y1 l[1 (X)1 & (Cnl(Y1))o I[2 (X)2}, 

P2(X) =df {Y2| Y2 IF2(X)2 & (Cn2(Y2))O F1(X)1}, 

X F-' A -df (P1(X) C P1({A}) & P2(X) p2({A})) 

X F-" A .df (3Xfin X)Xfin F- A. 

Intuitively, the set operation P1 may be viewed as defining a relation between sets Y1 
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and X such that some kind of conservativeness with respect to {1A holds when X is 
restricted to L1 and some kind of set-interpolation property holds when X is 
restricted to L2, and analogously for P2 with the indices "1" and "2" interchanged. 
The definition of F-' is then chosen in a way that makes both of these relations 
hereditary in some sense with respect to A-'. This kind of heredity is used in particular 
when we prove transitivity, i.e., property (F- 3), for F-' (see Lemma 4.1 below). 

Next we prove the following easy lemma: 
LEMMA 2. For any X1 and X2 we have XA1 E P1(X1) and X2 e P2(X2). 

PROOF. Since (X1) = X1, we have XA1 I-1 (X1)I. And since X1 c Cn1 (X1), we have 
(X1)0 (Cn1(X1))0. Using (X1)0 = (X1)2, and properties of 1F, we obtain 
(Cnl (Xl ))O IF2 (X1)2 We proceed similarly with 2. LI 

Then we can show the following: 
LEMMA 3.1. The relation F-' satisfies the set-interpolation property and is 

conservative with respect to the consequence relations F-1 and F-2. 
PROOF. Suppose X1 F-'A2. This means that P1(X,) c P1({A2}). Using Lemma 2 

we obtain X1 E P1({A2}), which implies (Cn1(X1))0 1-2 {A2}. It follows from the 
properties of IF that X1 1[1 (Cn1(X1))O. Proceeding analogously with X2 -' A1 we 
obtain set-interpolation. Now suppose X1 F-' A1. Again, by Lemma 2, XA1 E P1 ({A1 }), 
which yields XAT1-1 I{A }. Proceeding analogously with X2 -' A2 we obtain 
conservativeness. LI 

Quite analogously we can prove the following lemma: 
LEMMA 3.2. The relation F-" satisfies the finite set-interpolation property and is 

conservative with respect to the compact consequence relations F-1 and F-2. 
PROOF. Suppose X1 F-" A2. Then Xfn F-' A2 for Xfin c X1. Thus by Lemma 3.1 

there is a Y0 such that Xfin [1I Y0 and Y0 F-2 A2. By (I[2), Xfin can be replaced by X1, 
and since -2 is compact, Y0 can be chosen finite. Arguing similarly for X2 F-" Al, we 
obtain finite set-interpolation. Suppose X1 F-" A,. Then Xfi- 'Aj for Xfin c Xi; 
thus, by Lemma 3.1, Xfin F-1 A1. Therefore, by ([F2), X1 F-1 Al. Arguing similarly for 
X2 F-" A2, we obtain conservativeness. LI 

Next we prove the following lemmata: 
LEMMA 4.1. The relation F-' is a consequence relation over L. 
PROOF. For (F-i) we have P1({A}) - P1({A}) & P2({A}) - P2({A}). For (F-2), 

suppose X -' A, i.e., P1 (X) _ P1 ({A }) and P2(X) c P2({A }). Then it is easy to check 
that P1(X u Y) c P1(X) and P2(X u Y) _ P2(X), which immediately yields 
X u Y F-'A. 

For (F- 3), suppose (VA E Y)X F-'A and Y u V F-'B, i.e., 

(1) (VA E Y)(P1(X) _ P1({A}) & P2(X) _P2(jA)), 
(2) P1(Y u V) c P1({B}) & P2(Y V) cP2({B}) 

Then we can easily check the following properties of P1: 

(i) n P1({A }) = P (Y) 
Ae Y 
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Then, using (i), from (1) we obtain P1(X) c P1(Y), which by (ii) yields P1(X U V) 
P1 ( Y u V). Proceeding similarly for P2, and using (2), we obtain X U V -' B. DU 
LEMMA 4.2. The relation F-" is a compact consequence relation over L. 
PROOF. To show that F-" satisfies (F- 1), ([-2) and ([ 4) is quite easy. We shall only 

demonstrate that it satisfies also ([-3.1), which as we have said above can replace 
([-3) in the presence of (F- 4). So suppose X F-" A and {A} u V F-" B, i.e., 

(3) ( _Xfin c X)(Pl(Xfin) c P1({A}) & P2(Xfin) c P2({A})), 
(4) (ZfinC {A} J u V)(Pl(Zfin) c P1({B}) & P2(Zfin) c P2(JBj# 

Let Vfin =df Zfin r V. Since Zfin C {A } u V, we easily obtain that Zf in- {A } u Vfin. 
Using the fact that for any Y and W we have P1(Y u W) c P1(Y), we obtain 

(5) P1({A} u vKin) c Pl(Zfin) 

Next, from (3) we have P1(Xfin) c P1({A}), which together with (ii) of the previous 
proof yields 

(6) P,(Xfin K Vin) (- Pj(JAj Vfin). 

Now, (4), (5) and (6) give P1(Xf in Vfin) c P1({B}). Proceeding similarly with P2, 
and using the fact that Xf in U Vfinc X U V, we obtain X u V F-" B. D- 

LEMMA 5.1. The relation -' is an extension of the consequence relations [-1 and -2 

provided [-1 and [-2 satisfy (0). 
PROOF. Suppose X1 F-1 A1. Next suppose Z1 e P1(X1). It follows immediately that 

Z1 IF1 X1, which together with X1 [-1 A1 using ([-3) gives Z1 F1- A1, i.e. 

(7) Z1 IF1 ({A1 })1. 

This means that A1 e Cn1(Zj), i.e. {A1} c Cn1(Zj), which yields that ({A1})0 ' 
(Cn1(Z1))O. Then (Cn1(Z1))O I[-2({A1})2, which together with (7) implies Z1 e 
P1 ({A1 }). 

Now suppose Z2 e P2(X1). It follows immediately that (Cn2(Z2))0 IF, X1, which 
together with X1 F1- A1 using ([-3) gives (Cn2(Z2))0 [-1 A1, i.e. 

(8) (Cn2(Z2))0 11 ({A1 })1 

If A1 e Lo, using the assumption (0) XO [-1 Ao XO [-2 Ao, we obtain 

(9) (Cn2(Z2))0 F2 ({A1 })2. 

If A1 0 Lo, then ({A1 })2 is empty and (9) is trivially satisfied. Since Z2 1F2 (Cn2(Z2))0, 

with (9) using (I[-3) we obtain Z2 [F2 ({A1 })2 . This together with (8) implies that Z2 
e P2(JA1)- 

Hence, from X1 F-1 A1 it follows that P1(X1 ) c P1({A1 }) and P2(X1) c P2({Al}), i.e 
X1 -' A1. We proceed analogously with X2 [-2 A2.- [ 

LEMMA 5.2. The relation F-" is an extension of the compact consequence relations [-1 

and [-2, provided F1- and [-2 satisfy (0). 
PROOF. If X1 [-1 A1, then Xfin F- A1 for some Xfin _ X1 since [-1 is compact. Then 

Xfin -' A1 by Lemma 5.1, which means that X1 F-" A1. We proceed analogously with 
X2F-2A2. D2 

Now we can prove the main results of this section. 
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THEOREM 1. 1. The consequence relation Fc satisfies the set-interpolation property 
and is conservative with respect to the consequence relations F1 and F-2, provided F-1 
and F-2 satisfy (0). 

PROOF. By Lemmata 1.1, 4.1 and 5.1, we have that X F-C A => X F-'A, and then it 
suffices to apply Lemma 3.1. E1 

THEOREM 1.2. The compact consequence relation F-cc satisfies the finite set- 
interpolation property and is conservative with respect to the compact consequence 
relations F-1 and F-2, provided F-1 and F-2 satisfy (0). 

PROOF. By Lemmata 1.2,4.2. and 5.2, we have that X Fcc A => X F-" A, and then it 
suffices to apply Lemma 3.2. E1 

The consequence relations F-' and F-" are not identical with F-c and , 
respectively, as one might perhaps suppose. For example, X F-' A and X F-" A hold 
for arbitrary X if L1 u L2 # L and A 0 L, u L2, whereas 0 Kc A and 0 -cc A do 
not necessarily hold. But even if A E L1 u L2, the following counterexample can be 
constructed: Assume L = {p,q,r}, L1 = {p,q) and L2= {r}; thus Lo = 0. Let F-1 
and F-2 be given by {p}F-1p, {q}F-1q, {p,q}F-1p, {pq}F-1q and {r}F-2r. Then 
(Cn1 ({ p, q}))0 = (Cn2({r}))0 = 0; thus P1 ({ p, r}) = P2({p,r}) = 0, and therefore 
{ p, r} -' q and {p, r} F-" q. However, we do not have { p, r} F-c q and { p, r} Fcc q, since 
K- (which equals F-cc) can be given by X1 H1 A1 X1 u X2 F-c A1 and X2 -2 A2 
=> Xi u X2 f-c A2, and neither { p} -i q nor {r} -i q holds for i = 1 or 2. 

Now suppose that in Lo we have a conjunction connective A and a sentence 
constant T for which it holds that 

{AO,Bo}1-1A OABO, {AO ABO}FI-AO, {Ao ABo}1-1Bo, 0F1T 

and analogously with F-2. Then as a corollary of Theorem 1.2 we have the following: 
THEOREM 1.3. If in Lo we have A and T, then f-cc satisfies the formula-interpolation 

property and is conservative with respect to the compact consequence relations F-1 and 
F-2, provided F-1 and -2 satisfy (0). D 

Now let L1 differ from L2 only in having a constant a, of an arbitrary syntactical 
category, where L2 has a constant a* of the same syntactical category as a, and vice 
versa. Let F-1 and -2 be consequence relations over L1 and L2, respectively, which 
upon uniform substitution of a for a*, and vice versa, become identical. Then we can 
prove the following theorem: 

THEOREM 2 (DEFINABILITY THEOREM). If A(a) E L1, then 

{A(a)} Ic A(a *) if 3 Yo({A(a)} IiK YO & YO F-1 A((a)). 

If F-1 and F-2 are compact, then the same holds for FC-C and finite YO. If moreover Lo 
contains A and T as above, YO can be chosen as a singleton. 

PROOF. Assume {A(a)} Kc A(a*). It is easy to check that F-1 and K2 satisfy the 
assumption (0). So we can use Theorem 1.1 to obtain 

3YO({A(a)} Kf1 YO & YO F2 A(A*)), 

from which the right-hand side follows. If now we assume the right-hand side, we 
obtain that there is a YO such that {A(a)} Kf1 YO and Yo f-2A(a*). Then using 
Lemma 1.1 we obtain {A(a)} JKc YO and YO F-c A(a*), and apply (F-3). The results for 
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compact F-1 and F-2 follow analogously by use of Theorem 1.2 and Lemma 1.2, 
and for a singleton Y0 from Theorem 1.3. i 

It is clear that under the assumptions of this theorem, we could have written on 
the left-hand side {A(c)} F-c A(oc*) & {A(o*)} Kc A(oc): if we have one of these 
conjuncts we also have the other, because a and o* are exactly parallel. 

Our definability theorem is an analogue of Beth's definability theorem which 
makes fewer assumptions about logic, and leaves the syntactical category of o quite 
undetermined. In particular, it captures the case of logical constants which are now 
considered explicitly definable by sets of formulae, provided they are implicitly 
definable. For example, the universal quantifier A in arithmetic with the w-rule is 
explicitly definable by 

{A B(x) 1 {B(1), B(2), B(3),.. .} & {B(1), B(2), B(3),... .} F A B(x), 

where [-j denotes derivability in this theory. 
Logic represented by F-c or F-cc in our definability theorem is reduced to its 

structural part. So the notion of implicit definability of a in F-1 as {A(a)} F-c A(a*) or 
{A(a)} -cc A(a*) for every A(a) is stronger than the one used in Beth's Theorem for 
first-order logic, where "mixing" of a and o* in proofs of implicit definability is 
allowed in any rule of logic. Therefore, our definability theorem is not simply a 
generalization of Beth's theorem in the sense that the latter is a trivial corollary of 
the former. It can however be shown that under certain conditions Beth's theorem 
follows from our definability theorem, since the mixing of a and ax* in the 
"operational" part of logic involving the logical constants can in many cases be 
dispensed with, as we shall try to show in the last section. 

First, however, we show that much more information about -cc is available if the 
language under consideration contains at least an implication connective obeying 
certain standard principles. 

?4. Explicit characterization of F~c in the presence of implication. In ?2 we 
characterized F-c [F-c] as the minimal [compact] consequence relation over L which 
is an extension of the [compact] consequence relations F-1 and F-2 (cf. Lemmata 1.1 
and 1.2). In the case of -cc, an explicit characterization can be given, provided a 
connective of implication is at one's disposal. It can be motivated as follows. By 
Theorem 1.2 we know already that if X1 F-cc A2, then (Cn1(X))o F-2 A2, i.e., what is 
essentially needed of Xl to obtain A2 as a F-cc-consequence of X1 are the F1- 
consequences of X1 in Lo (and then it suffices to continue with -2 alone). Lemma 6 
below then says that this also holds if additional assumptions from L2 are present, 
i.e., if X2 u X1 Fcc A2 then X2 u (Cnl(X))o F-2 A2, and similarly for A1. Since by 
Lemma 6 also the converse holds, one obtains a characterization of . 

Let F-1 and -2 be compact consequence relations which fulfill condition (0). Let 
them contain an implication connective -* in the sense that for i = 1, 2, Ai -+ Bi is in 

Li for every Ai and Bi, and the following principles hold: 
(MP) {Aj, Ai -Bs} i 1Bi, 
(DT) Xi u A i Ii Bi >Xi W A iBi 

For -cc we can now give the following characterization: 
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LEMMA 6. If A eL1 u L2, then XF A iff 

(*) (X)1 tu (Cn2((X)2))0 1F1 ({A})1 & (X)2 tu (Cnl((X)1))O [-2 ({A})2. 

We shall prove this lemma in steps. First we demonstrate the following auxiliary 
lemma: 

LEMMA 6.1. The following statements are equivalent: 
(1) X1 u Wo u (Cn2(Y2 UWO))O F- B1, 
(2) X1 u (Cn2(Y2 U W0))0 F1 B1, 
(3) X1 u Wo u (Cn2(Y2))0 F1 B1. 
PROOF. The equivalence of (1) and (2) follows from the fact that W0 ' 

(Cn2(Y2 U W0))0. Now suppose (1). If W0 = 0, we immediately have. (3). If W0 
# 0, then using (F-4) there is a nonempty Kf. c: W0 and a nonempty Zfin 

2 (Y2 U W0))0 such that X1 U Wfin U ZfinFn B1. If Zfjn = {DoDo,.,Do} 
then for all i, 1 < i < m, Y2 u WO -2 D'; hence, by (F4) and (F-2), Y2 Ku Win F-2 D' 
for some W, c: W0. Let Wf = W u -u Wf. Then, by- (F-2), 

X1 tJ Wfi ZfinlF- B1 and Y2 Du W 'iF2Do for all i, 1 < i < m. If W* = 
{AAg. . .,kA},let V0 =df {Ak (A, *(Ak-?Do)") 1 < i < m}. It is easy 
to show using (DT) that V0 c (Cn2(Y2))0. It is also easy to show using (MP) that 
W* V0 K 1 which together with X1 tJ Wj Zfn F- B1 by (F-3) gives 

XI U Wf*in U V0 F- B1. From this last statement we obtain (3) by (F-2), since W~fin 
c W0 and V0 ' (Cn2(Y2))0. Now suppose (3). Since (Cn2(Y2))0 ' (Cn2(Y2 WO, 
we obtain (1) by using (F-2). D2 

Quite analogously to Lemma 6.1 we can prove the following lemma: 
LEMMA 6.2. The following statements are equivalent: 
(1) X2 u W0 u (Cn,(Y, u Wo))o -2 B2, 
(2) X2 u (Cn1(Y1 ,u W0))0 K B2, 
(3) X2 u W0 u (Cn1(Y1))0 F-2B2 D 
Let XRA be an abbreviation for (*). Then we prove the following lemmata: 
LEMMA 6.3. The relation R is an extension over L of the compact consequence 

relations F-1 and F-2. 
PROOF. Suppose X1 F-1 A1. Then the first conjunct of X1 RA1 follows by using (F- 2). 

The second conjunct either is trivial if A1 ? L2, or A1 e (Cn1((XI)1))0, and we obtain 
this conjunct again by using (F-2). We proceed analogously with X2 F-2 A2. D 

LEMMA 6.4. The relation R is a compact consequence relation over L. 
PROOF. It is quite easy to show that R satisfies (F-) and (F-2). For (F-4) assume 

that XRA. Using (F-4) for F-1, we obtain that for some Yfin C (X)1 and Zfin 
c (Cn2((X)2))0 the following holds: Yfin U Zfin 1 ({A})A . By (F-4) for F-2, for 
some Vfin c (X)2 we have that Zfin ' (Cn2((Vf'n)2))0. Therefore 

Yf'in u (Cn2((Vf'in)2))O 1F1 ({A%.) 

Proceeding analogously with F-2, we obtain, for some Y~fin ' (X)2 and Vf'jn c MI, 

Yfin 'U (Cnl (( Vfin)l ))O hF(JAD}2- 

Taking Xfjn to be Y'in U V'in U Yfn U Vf' which is a subset of X, we obtain 
XfinRA. 
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It remains only to demonstrate that R satisfies (1-3.2), i.e., (XRA & X u {A}RB) 
= XRB, which as we have remarked can replace (F-3) in the presence of (F-2) and 
(F-4). So suppose XRA, i.e. 

(i) (X), u (Cn2((X)2))O 1F1 ({A }), 

(ii) (X)2 u (Cn l((X) ))0 VF2(JAD}2, 

and suppose {A} u XRB, i.e. 

(iii) (JAI), u (X), u (Cn2((X)2 U (JADA2)0 1j (JBI)j, 

(iv) (JAD2 U (X)2 u (Cn,((X), u ({A})j))o VF2({B})2 

If A e Lo, from (iii) and (iv) by applying Lemmata 6.1 and 6.2 we obtain 

(JAI)., U (X), u (Cn2((X)2))O V, (JBI)j, 

({A}).2 tJ (X)2 uJ (Cnl ((X)1 ))o VA (B})2, 

which together with (i) and (ii) by two applications of (1-3) yields XRB. If A 0 Lo 
and A e L,, then 

(v) (X)1 u (Cn2((X)2)0 1-1 ({B})1 

follows from (i) and (iii) by (1-3) (note that ({A})2 0). On the other hand, from (i) 
we have 

(X), u (JAI), ' Cn,((X), u (Cn2((X)2))0), 

Cnl((X) u (JA%),=' Cn,(Cn,((X) u (Cn2((X)2))O)), 

Cn,((X), u (JA%)1) C Cn,((X), u (Cn2((X)2))O), 

(Cn,((X), u ({Aj)j))o c (Cnl((X), u (Cn2((X)2))0))0, 

which together with (iv) and (1-2), since ({A})2= 0, gives 

(X)2 u (Cn,((X), u (Cn2((X)2))0))0 lV2 (JB}2 

From this last statement by Lemma 6.2 we obtain 

(X)2 u (Cn2((X)2)0 ju (Cnj((X)j))O VF2({B})2 

Since (X)2 IF2 (Cn2((X)2))0, by (1-3) we obtain (X)2 u (Cn1((X)1))O IF2 ({B})2, which 
together with (v) gives XRB. 

We proceed analogously in the case A 0 Lo and A e L2. O 
From Lemmata 1.2, 6.3 and 6.4 it follows immediately that X F-cc A => XRA. To 

show the converse, suppose XRA. Since F-cc is an extension of Fl- and 1-2, and since 

(X), lFcc(Cnj((X)j))O and (X)2 IFcc(Cn2((X)2)), we easily obtain (X), u (X)2 
Kcc({A})1 and (X)M U (X)2 IFcc({A})2, from which (X) U (X)2 [c- A follows 

because of A e L1 u L2. X Fcc A is obtained by use of (1- 2), if necessary. Hence, 
XRA => X -cc A, which proves Lemma 6. D2 

From Lemma 6 we obtain the following characterization of X F-cc AO: 
LEMMA 7. X H-cc AO (Cn1((X)1))0 u (Cn2((X)2)0 F-1 AO 0 

PROOF. Suppose X F-cc AO. By Lemma 6, we have that (X)1 u (Cn2((X)2)0 Fl- AO, 
which implies (Cn1((X)I u (Cn2((X)2))0))0 Fl- A0. Then using (0) and Lemma 6.2 we 
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obtain the right-hand side. For the converse we use (0), (X), 1 1 (Cnl((X)1))O, (X)2 

F2 (Cn2((X)2))0, and Lemma 6. D 
We know from ?3 that Theorem 1.2 holds for F-c. But with the help of the 

characterization of Lemma 6 this can be proved independently and rather more 
directly. For interpolation assume X I- A2. Hence, (X2)2u(Cn1(X1)) I2A2, 
from which we easily obtain (Cnl(X))o F-2 A2. For conservativeness assume 
XI F A,. Hence, 

(XlI), u (Cn2((Xl )2))O F-l Al. 

With (X1)2 = (X1)o and (0), i.e. (Cn2(Y0))O = (CnI(Y0))0, it easily follows that 
X1 K A1. 

What we have proved in this section depends on the assumption that an 
implication connective -4 is obtainable for F-1 and F-2 such that (MP) and (DT) hold. 
That this requirement cannot be dispensed with is shown by the following example: 
Let Fl be derivability in propositional logic with = as the only connective and 
modus ponens for D as the only inference rule, F-2 the same with =* instead of -, Lo 
therefore having no connective. Then for A, B, C E Lo, from {A, A D B} K- B and 
{B, B D* C} F-2 C it follows by (F-3) that {A, A D B, B =* C} F-1 C, but not 
necessarily that {A, A D B} u (Cn2({A, B D* C}))0 F- C as required by Lemma 6. 
(The other conjunct required by Lemma 6, viz. {A, B =* C} Iu (Cn ({A, A = B}))o 
F-2 C, does hold, since B E (CnI({A, A D B}))O.) 

It is clear that for A, B E L, or A, B E L2, the relation I-u satisfies (MP). We shall 
also show that with these assumptions it satisfies (DT): 

LEMMA 8. If A, Be L1 or A, Be L2, then X u {A} KB = X cA B. 
PROOF. Suppose X u {A, } I B,. Then, by Lemma 6, we have 

(i) (X), u (IA, I), u (Cn2((X)2 u ({Al }2)0 1F1 (JBI ) 

(ii) (X)2 u (IA,1)2 u (Cn,((X), u (JAl})I))o l2(jBl})2 

If A, E Lo, then we obtain by Lemmata 6.1 and 6.2 

(X)1 u {A1,} u (Cn2((X)2))0 f1 ({B1})1, 

(X)2 U {A1} Iu (CnI((X)1))0 l-2({B1})2, 

which together with (DT) for F-1 and F-2 yields X F AI - B, (if B, ? L2, then 
(X)2 u (Cnl((X)1))o L-2({A, -+ B,})2 is trivially satisfied because ({Al B,+)2 
- 0). If Al ? Lo, then from (i) with the help of (DT) for Fl we obtain 

(X), u (Cn2((X)2))0 1fl ({A,1 -}) 

Since ({A, - B1 })2 = 0, we have that (X)2 Ku (Cn2((X)2))0 F2 ({A1 - B1 })2 is 

trivially satisfied. Hence, X F Al -4 B,. We proceed analogously with 
Xu{A2}KccB2 D 

?5. Interpolation and definability for first-order logic. Let L now be the set of 
formulae of a first-order language which has besides the usual logical constants 
arbitrarily many nonlogical constants. The subsets L, and L2 of L are obtained by 
specifying which nonlogical constants may occur in them. Note that L, U L2 is in 
general not closed under binary logical functors, and is hence a proper subset of L. 
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Let F- be the usual relation of deducibility from hypotheses in either classical or 
intuitionistic logic. The relation F- is a compact consequence relation. We assume 
that the deduction theorem holds in the following form: 

Xu {A}F-B= XF-A- B. 

This can be achieved by restricting the use of rules like universal generalization in 
proofs from hypotheses. 

Let V, and V2 be chosen in such a way that for every XO and AO we have 
Xo u VI F-A 0 X u V2 F-AO. Then we define: 

XI 1- Al :---df XI U VI Al, 

X2 -2A2 -->df X2 U V2 FA2, 

XF-*A dfXU VI U V2F-A. 

V1 and V2 need not be sets of sentences. Thus, unlike F-, the relations Fl- and -2 are 
not necessarily closed under replacement of individual variables by terms; this 
substitution is not necessary in our framework. 

It is easy to check that Fl- and -2 are compact consequence relations over L1 and 
L2, respectively, for which (MP) and (DT) hold. Moreover the assumption (0) is 
satisfied for Fl- and F-2, and since in Lo we have A and T (if T is not primitive it can 
be defined as Vx(x = x)), both Theorem 1.2 and Theorem 1.3 hold for . 
Furthermore, we have the explicit characterization of F given in the previous 
section. 

In general X F A is not equivalent to X F-* A. For example, if VI = V2 = 0, then 
{A1 A A2} F- A1 holds, but not necessarily {AI A A2} F A1. Consider however the 
following restricted equivalence of X F A and X F-* A: 

(Equ) X u IA} 
' 

LI u L2 (X *A X -c X A). 
We shall show that (Equ) is equivalent to the following Interpolation Property: 

(Interp) X1 u X2 F* A2 => 3BO(Xl Fl- Bo & X2 u {Bo} -2 A2) and 
X1 u X2 -A1 =3BO(X2 -2Bo & XL u {Bo} -1 A1). 

THEOREM 3. (Equ) (Interp). 
PROOF. (=>) Assume (Equ) and X1 u X2 F-* A2 . With (F4) and (DT) we can obtain 

a B2 such that X1 F-* B2, and then by (Equ) we get X1 I B2. Then by Theorem 1.3 
there is a Bo such that X1 Fl- Bo and {Bo} F-2 B2. Using (MP) and properties of F-2, it 
follows easily from the second conjunct that X2 u {Bo} F-2A2. We proceed 
analogously with X1 u X2 F-* Al. 

('=) Assume (Interp). That X F A implies X F-* A is shown as follows. The 
relation F-* is a compact consequence relation extending F- and F-2, and we apply 
Lemma 1.2. Now assume X u {A} c LI u L2 and X F*A. From the second 
conjunct we have (X)1 u (X)2 F-* A. Let A e L2. Then by (Interp) there is a Bo such 
that (X)1 Fl- Bo and (X)2 u {BO} -2 A. Hence, by Lemma 1.2, (X)1 , Bo 
and (X)2 kU {Bo} F A, which by (F-3) gives X F A. We proceed analogously for 
A eL1. D2 

It is not difficult to show that (Interp) is equivalent to Craig's interpolation lemma. 
As a direct consequence of the first implication of (Interp) we have, for X1 = {AI } 
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and X2 = VI = V2 = 0, 

{A1} F- A2 => 3Bo({AI} F- Bo & {B0} F- Aj, 

whereas from Craig's interpolation lemma using (DT) and (MP) for F- we easily 
obtain (Interp). 

By proving (Equ) for V1 = V2 = 0 independently of (Interp) we would obtain an 
independent proof of Craig's lemma. Such a proof of (Equ) might proceed as 
follows. Using the characterization of Lemma 6, it is possible to prove that F 
satisfies the rules of a sequent or natural deduction calculus formalizing first-order 
logic, if these rules are restricted to formulae of L, u L2, i.e. if no mixing of L, and 
L2 occurs within formulae. In Lemma 8 this is shown for the rule of ->-introduction, 
and along the lines of its proof it can be carried out for the other rules as well. If for 
this calculus we could demonstrate that 

(Norm) 
if X u {A} c L1 u L2 and X F- A is provable, then there is 
a proof of X F- A in which only members of L, u L2 occur, 

then we would have that X u {A} c LI u L2 and X F- A imply X kcc A (that 
X c A implies X F- A follows from Lemma 1.2). 

Since a proof of (Norm) would involve a cut-elimination or normalization 
procedure, which yields Craig's lemma more directly and more informatively, we 
shall not try to produce such a proof here. The point of this section was not to find 
an independent proof of Craig's lemma, but to demonstrate that with (Equ) Beth's 
definability theorem in a consequence of our definability theorem. 

Let LI now be L. of ?1, and let L2 be L,.. Suppose that a is implicitly definable in 
Ta, i.e. for every A(a) we have T7 tu T. tu {A(a)} F- A(a*). Then if V1 = T1 and V2 
- T1, by (Equ) we have {A(a)} F A(a*). It is not difficult to check that the 
conditions of our definability theorem are fulfilled, and hence there is a Bo such that 
{A(a)} F- Bo and {B0} FI- A(a), i.e. T, tu A(a) F- Bo and T, t {B0} F- A(a). From this 
we conclude that a is explicitly definable. 

For our definability theorem we did not make any assumption about the 
syntactical category of a, whereas in this section, as in Beth's theorem, a is restricted 
to the syntactical categories of nonlogical expressions of a first-order language. This 
restriction on a comes in via (Equ), which is equivalent to Craig's lemma. To prove 
Craig's lemma, we determine L, and L2 by their nonlogical vocabulary. 

The sets V1 and V2 used for defining Fl- and -2 were not necessarily sets of sen- 
tences, as T, and T,* are in Beth's theorem. We could take this freedom with V1 and 
V2, because we introduce implicit and explicit definability with the clause "for every 
A(a)", and hence need not prove in Beth's theorem the universal closures of for- 
mulae like a(x1,. . ., x) - x*(x,. . ., x) and a(xI,. . ., x,) +- B(xl,. . ., x). Usually, 
implicit and explicit definability are presented with universal closures of such 
formulae. 

If from the hypotheses T, tu T. tu {A(a)} we have deduced A(a*) with the help of 
first-order logic in L = L., we might have applied logical laws involving logical 
constants to formulae with both a and a*. Then (Equ), which guarantees that we also 
have {A(a)} j A(a*), shows that this mixing of a and a* is unnecessary. With (Equ) 
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we can reduce the mixing of a and a* in logic, involving possible mixing on the 
"operational" level with logical constants, to mixing on the "structural" level only. 
This reduction enables us to view Beth's definability theorem as a consequence of 
our definability theorem. 
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