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We reconstruct Frege's treatment of certain deducibility problems posed by Boole. It turns out that in his 
formalization and solution of Boole's problems Frege anticipates the idea of propositional resolution. 

1. Boole's example 
In his posthumously published paper 'Booles rechnende Logik und die 

Begrifsschrift ' (' Boole's computational logic and the Begriffsschrift '), written in 1880 
or 188 1, which was motivated by Schroder's (1 880) review of the Begriff~schrift,~ Frege 
compares his novel approach to logic with Boole's and with Schroder's algebra of 
logic. He basically defends his functional view of concepts and his account of 
quantification, and demonstrates the expressive power of his system by many 
examples, including nested quantifiers and such complicated operations as the 
substitution of formulas for function variables in quantified formulas. Although Frege 
is well aware of the fact that the handling of functions and of quantification is the main 
achievement of his Begrifsschrift (51/45), he demonstrates by means of an example 
from Boole's Laws of Thought (1854) that he can deal as well with problems of 
propositional logic which in the algebra of logic are solved using equational reasoning. 
As he says: 

It would not be surprising and I could happily concede the point, if Boolean logic 
were better suited than my Begriffsschrift to solve the kind of problems it was 
specifically designed for, or for which it was specifically invented. But maybe not 
even this is the case (44139). 

Boole's example had been independently considered by Schroder (1877), by Wundt 
(1880), who essentially followed Schroder's presentation, and also by Lotze (1880). 
Frege refers to Boole, Schroder and W ~ n d t . ~  Boole's own formulation was as 
follows : 

Let the observation of a class of natural productions be supposed to have led to the 
following general results. 

lst, That in whichsoever of these productions the properties A and C are 
missing, the property E is found, together with one of the properties B and D, but 
not with both. 

1 For the history of Frege's paper see Nachgelassene Schriften (1969), p. 9, footnote 1; Posthumous 
Writings (1979), p. 9, footnote 1. In the following, page numbers of the form n / m  refer to this paper by 
Frege, where n is the page number in Nachgelassene Schriften and m the corresponding page number 
in the translation Posthumous Writings. 

2 Gottfried Gabriel, to whom I owe the reference to Lotze, suggests that Frege perhaps missed the 
passage in Lotze, which is part of an appendix added to the third chapter in the second edition of his 
Logik (pp. 265-267) - see Gabriel 1989. 
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96 Peter Schroeder-Heister 

2nd, That wherever the properties A and D are found while E is missing, the 
properties B and C will either both be found, or both be missing. 

3rd, That wherever the property A is found in conjunction with either B or E, 
or both of them, there either the property C or the property D will be found, but 
not both of them. And conversely, wherever the property C or D is found singly, 
there the property A will be found in conjunction with either B or E, or both of 
them. 

Let it then be required to ascertain, first, what in any particular instance may 
be concluded from the ascertained presence of the property A,  with reference to the 
properties B, C, and D; also whether any relations exist independently among the 
properties B, C, and D. Secondly, what may be concluded in like manner respecting 
the property B, and the properties A, C, and D (Boole 1854, p. 146). 

This paper attempts to show that Frege's treatment of Boole's example anticipates 
for the propositional case certain ideas which since Robinson (1963, 1965) are 
commonly grouped under the heading 'resolution'. For this purpose we take a fresh 
look, from a more modern point of view, at Frege's line of argument. 

2. Begvimchvif implications as clauses 
Frege translates the three conditions of Boole's example into a collection of 
implicational formulas of propositional logic. For example, the first condition is 
translated into the following three implications : 3  

The problems posed by the example then consist in determining which conclusions of 
a certain form can be logically deduced from these conditions. For example, the first 
problem4 ('what in any particular instance may be concluded from the ascertained 
presence of the property A,  with reference to the properties B, C, and D') is to 
determine which implication holds with A occurring in the antecedent and with at 
most B, C and D occurring in the implication in addition to A.  Frege considers only 
implications of the form 

without nesting of implications to the left, as in 

3 I use Latin letters throughout, not distinguishing (as Frege did) between the description of the 
problem (Latin letters) and its logical representation (Greek letters). 

4 Each of the two tasks in Boole's example consists of two subtasks, so we have four problems. 
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Frege and the Resolution Calculus 97 

When dealing with a formula of the form (*) Frege leaves it ambiguous, whether 
&,...,(P, are to be considered conjunctively, such that (*) is to be read as 
(4, A . .. A 4,) + 4, or whether (*) represents an iterated implication of the form 
(PI + (. . .(an + a ) .  . .). This ambiguity, which is justified since both readings are logically 
equivalent, is a great but rarely acknowledged6 advantage of Frege's notation. It 
allows us to write (*) in the form of a sequent 

in Gentzen's sense with a single formula as the succedent. 
Since Frege permits the contraction ('Verschmelzung' in the terminology of his 

Grundgesetze der Arithmetik) of two occurrences (Pi and @j of the same formula 
(i.e., $i = 4j) as well as arbitrary permutation ('Vertauschung' in Grundgesetze) of 

. . , a,, we may consider the antecedent of (**) as a set of formulas. Furthermore, 
since there is no nesting of implication to the left in the present context, (PI, ... , $I,, 4 
are literals, i.e, either atomic formulas (propositional variables, atoms) or negations 
thereof. Finally, using his contraposition laws ('Wendung' in Grundgesetze), Frege 
identifies 

41,...,@n*@ 
with any 

- 
;b, 41, . . , , @i-1, @ i t 1 2  . . . 3 a, (Pi. 

Here 6 is 1 4  if @ is an atom, and y~ if 4 is of the form l y ~ .  Thus Frege permits 
exchanging a member ai of the antecedent ('Bedingung'/'condition') with the 
succedent ('Folge'/'consequence') (P by replacing them at the same time with their 
opposites & and $i7 

This identification entitles us to use multiple-succedent sequents of atoms (i.e. 
sequents with a finite set of atoms on the right and on the left side of 3) as invariant 
representatives of single-succedent sequents modulo contraposition. This means that 
the sequent 

al,...,an*P1,...,Pm 

with atoms ai, 0, stands for any sequent of the form 

In this way the sequent notation can dispense with the negation sign. In the following, 
cc and p (with and without indices) stand for atoms exclusively. 

The sequent 
a1, . . ., a, =+ PI, . . . , Pm 

can also be read as 
( a , ~  ... A E , ) + ( ~ , v  ... vp,) 

or as 
l a l v  ... v l a n v p l v  ... vp,. 

- 

5 I use lower case Greek letters as syntactical variables for formulas. 
6 An exception is Thiel 1995. 
7 We prefer Gentzen's technical terms 'antecedent' and 'succedent' to Frege's terminology, particularly 

since in the following we shall consider sequents as consequences of other sequents. 
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98 Peter Schroeder-Heister 

The latter formula is normally called a clause in the theory of resolution, sometimes 
being formulated as a set which is understood disjunctively:' 

We follow this terminology, calling a sequent of atoms 

a clause (as is common in proof-theoretic approaches to resolutiong). The antecedent 
or the succedent of a clause may be empty. As a limiting case the empty clause =- 
represents a contradiction. 

For example, clausal translations of the three BegrzfSsschrift implications 
mentioned at the beginning of this section are 

Using clausal terminology, Boole's first problem asks which clauses of the form 
A, T 3 A1° are derivable from clausal translations of the assumptions, where T and 
A contain at most B, C and D, and similarly with the other problems. 

In our clausal framework, which hides rules of contraposition, Frege's way of 
proceeding from implications to implications can be viewed as deriving clauses from 
clauses in the calculus of (propositional) resolution, as will be shown in the following. 

3. Propositional resolution 
Frege argues that in order to obtain a solution to any of Boole's problems, we have to 
eliminate ('wegschaffen') certain atoms from the clauses assumed. For the first 
problem, the clauses A, T * A to be deduced must not contain E. Therefore, if we want 
to use assumptions in which E occurs (most of Boole's assumptions actually contain 
E), we have to eliminate E from them. According to Frege, 'this can be done if E is a 
consequence in one judgement [. . .] and a condition in another [. . .] ' (47142) or 'where 
its affirmation is a condition in one and its denial in the other' (48/42), the second 
principle being a variant of the first one in view of contraposition. Using clause 
notation, the underlying law is the rule of propositional resolution: 

TI =. Al, a a, T2 * A2 
r,, r1 +- A,, A2 

provided a $ A, and a $ T,, 

which (unlike the full resolution rule with unification) is an atomic case of Gentzen's 
cut rule. Here a is called the resolution atom of the application of (Res) considered. Its 
conclusion is called the resolvent of the premises with respect to a. If the two premises 
belong to a set, K, of clauses, the conclusion is also called a resolvent of K with respect 
to a. A resolution step with resolution atom a is also called an a-resolution. In the 
following it is always tacitly understood that in applications of (Res) the proviso stated 
in the formulation of the rule is satisfied. 

8 See e.g. Gallier 1986. 
9 See e.g. Robinson 1979. 

10 We use capital Greek letters for finite sets of atoms. As usual, T, A and T, A, etc. stand for the sets 
T u {A) and l- U A, etc., respectively. 
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Frege and the Resolution Calculus 

For example, (Res) allows us to eliminate E from 

and 

(Frege's single-succedent formulation in brackets)," yielding 

as a resolvent, which is already one solution to Boole's first problem. 
It is crucial for our interpretation that Frege considers his principle of the 

elimination of atoms-the resolution rule-not just as one possible inference rule 
justifiable in the logical system of the Begrzfsschrift, but as a rule that is sufficient to 
generate all solutions to Boole's problems (and, of course, to related problems as well). 
Frege explicitly claims that he is able to obtain complete answers (48143). In this way 
Frege does not anticipate the resolution method as a refutation procedure, according 
to which the validity of a formula 4 is established by deriving the empty clause * from 
a set of clauses {r, * A,, . . . , F, A,} that represents a conjunctive normal form of -4. 
However, Frege does anticipate the resolution calculus, which is based on the idea of 
deriving clauses from other clauses by means of the rule of resolution as the basic rule 
of inference. This also means that, in a certain sense, we find in Frege already the idea 
of a rule-based logic normally attributed to Gentzen (albeit, of course, only in a very 
restricted form). 

The resolution calculus Frege implicitly uses can be described as a system 9 for the 
derivation of clauses from clauses by means of tautology axioms of the form 

(Taut) a, r e= A, a, 

the resolution rule (Res), and the rule of thinning 

(Thin) rle= AI 
r1, I-2 * Al, 4 ' 

We have to add (Thin) and (Taut) to (Res), since we are not interested merely in 
derivations of the empty clause.12 

According to our interpretation, Frege implicitly assumes something like the 
following lemma concerning the relationship between the system of his BegrzfSsschrift 
and the calculus used in the discussion of Boole's example. Let F,, denote derivability 
in the formal system of the Begrzffsschrift. Let t-, denote derivability in the resolution 
calculus based on (Taut), (Thin) and (Res). Let el, ..., 8,,8 be BegrifSsschrift 
implications, each of the form 

11 These are conditions (5) and (9); see section 4. 
12 The precise formulation of (Taut) and (Thin) is a matter of technical convenience. For example, due to 

the presence of thinning, we could have chosen tautology axioms of the form a * a.-Frege is aware of 
these additional principles. For thinning this is shown by the fact that he considers, e.g., the clause 
A, C, D to be a solution to the first problem, although it does not contain B (i.e., from which a solution 
containing B is obtained by thinning) (see 48/43). For tautologies this can be concluded from his taking 
into account only implications which 'give information' ('geben Auskunft') about certain contents 
(47/42), where those implications, which do not give any information, have the form of our tautology 
axioms. 
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Peter Schroeder-Heister 

for literals +il,. . . , 4is,, +i (1 < i < n). Let Of, ... ,8,*, 8* be clausal translations thereof. 
Conversely, given a clause K, let K+ denote any BegrzfSsschrift implication of the form 
just mentioned, which represents K, i.e., of which K is a clausal translation. Then the 
following holds : 

Lemma 1 
el, ... ,On F,,O iff Of, ... ,8,* F,8* 

K,, . . . , K, F,K iff KT,. . . , K: Fay K+.  

The proof is easy.13 
Using certain proof-theoretic results about 9, we shall justify further features of 

Frege's solution to Boole's problems and finally rigorously establish that Frege's 
solution is in fact complete. We use throughout our clausal translation of Frege's 
terminology. 

Frege's procedure to obtain all consequences of a certain form of a set of clauses 
is the following (47-8142-3). First he checks whether any of the assumptions is 
already a solution to the problem under consideration. For instance, in solving Boole's 
first problem, Frege looks whether a clause of the form A, l- * A, with E not occurring 
in l- or A, is already among the assumptions. In the next step he chooses an atom, a, 
which is not to occur in the solution to the problem and generates all resolvents with 
respect to a of the set of clauses given, thus eliminating a. For Boole's first problem this 
means that Frege has to perform all possible resolutions with Eas  the resolution atom. 
If necessary, he eliminates some further atom in the next step, based on the clauses he 
has obtained in the previous step. In the solution to Boole's first problem, he computes 
all resolvents with respect to B of the clauses without E obtained so far, since a sequent 
A,  l- - A, with r and A only containing C and D, would also be a solution to the 
problem, and so on. 

In proceeding in this way, Frege considers only resolution steps in which the 
resolvent is not tautological, arguing that tautologies do not convey any substantial 
information and that we are interested only in non-tautological solutions to our 
problems. 

To justify this procedure and thus Frege's claim that in his paper he has obtained 
all solutions to the problems posed, we have to show that we can always proceed by 
eliminating atoms step by step and that non-tautological resolvents are useless in the 
derivation of a non-tautological clause. 

Define a subclause K' of a clause K to be a clause, from which K can be obtained by 
(Thin), with K being a subclause of itself as a limiting case. Let o be a sequence of 
atoms, let () be the empty sequence, and let o * a be (a,, . . . , a,, a),  if o is (a,, . . . , 
a,)(where () * a is (a)). Let K be any finite set of clauses. Let K, be the set of those 
clauses in K which contain a. Let Rsm(K) be the set of all non-tautological resolvents 

13 If one chooses the propositional fragment of the Grundgesetze as the basis for t,,, the proof is 
straightforward, since this system has axioms corresponding to (Taut) and inference rules cor- 
responding to (Res) as the only principles of deduction apart from the rules hidden in our usage of 
multiple-succedent sequents. 
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Frege and the Resolution Calculus 101 

of K with respect to a. The restriction of Rsa(K) to non-tautological clauses guarantees 
in particular that a does not occur in Rsa(K), provided K does not contain tautological 
clauses.14 For a sequence of atoms o let Res0(K) be defined as follows: 

Res()(K) = the set of non-tautological clauses in K 

This means that R~S"*~(K) contains, first, all clauses in Resu(K) which do not contain 
a ;  and, second, all non-tautological resolvents of clauses in Res0(K) with respect to a.15 

Then we have the following result: 

Lemma 2 
(i) Res0(K) = Resd(K), if o' is a permutation of o. 
(ii) K ~ * K  for non-tautological K iff there is a subclause K' of K such that K'E 

Res0(K), where o is the set of all atoms which are in K but not in K'. 

The proof is sketched in the appendix. Part (i) says that the order of eliminations of 
atoms is irrelevant, so that we may consider cr to be a set. Therefore, in the following 
we use a terminology like ResO(K) or ResuU'(K) for sets of atoms o or z. Part (ii) says 
that, if z is the set of atoms in K, then by generating 

we receive a (finite) set of clauses, from which by thinning we obtain all non- 
tautological clauses derivable from K. This finite set may be viewed as representing the 
(infinite) set of non-tautological consequences of K.16 For example, if in K the atoms 
a, j3 and y occur, this set is 

Since K' is a subclause of K, it furthermore follows from Lemma 2 that, if z' is the set 
of atoms in K but not in K, 

is a set from which, by thinning, we can derive all non-tautological clauses not 
containing atoms from r'. Therefore, this set may be viewed as representing all non- 
tautological consequences of K without atoms from z'. For example, if in K the atoms 
a, p and y occur, then the set 

represents the set of all non-tautological consequences of K which do not contain a. 
Furthermore, if we are looking for clauses of the form a, l- *A (with a not in r or 

A), which are derivable from K such that r =>A alone is not derivable from K, then 

14 That an atom occurs in K means that it occurs in some clause in K. 
15 We might further restrict ResU'"(K) by removing a clause K if a subclause K' of K already occurs in this 

set (see e.g. Robinson 1979, p. 201). However, we refrain from this here.-The operation Res" is a 
generalization of the usual closure operation for resolution steps. The usual one does not specify the 
resolution atom used in each step (see Goltz and Herre 1990, pp. 43-6). 

16 Therefore, Lemma 2 shows that what is actually used to compute consequences of a set of clauses K, 
is resolution only. Tautology axioms and thinning are just closure conditions which serve the purpose 
to generate all clauses including non-informative ones, i.e. those without content at all (tautologies) as 
well as those which are just weakenings of informative clauses. 
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102 Peter Schroeder-Heister 

from (ii) it follows that we need not compute any Res0(K) with ci in o. Since in such 
computations an ci occurring on the right side of always remains on that side and 
never disappears, we can disregard any clause in K and any resolution step in which ci 
occurs on the right side of *. The analogue holds, of course, for clauses of the form 
I- * A, a. 

4. Computation of the solutions 
Now we can reconstruct Frege's solution to Boole's problems in detail. If we translate 
the Begrzfsschrift implications, by means of which Frege formalizes Boole's 
assumptions, into clauses, we obtain the following: 

With the exception of (12') and (12") the numbering is due to Frege.17 Clauses (1)-(3) 
formalize Boole's first assumption; clauses (4) and (5) formalize Boole's second 
assumption; and clauses (6)-(12"), Boole's third assumption. In the following, K 
denotes the set of assumptions (1)-(12"). 

Boole's problems can be stated as follows: 

1. Determine the set of all non-tautological consequences of K of the form A,  I- * A, 
such that l- and A contain at most the atoms B, C and D. Here we are interested in 
clauses in which A 'relevantly' occurs; i.e. for which l- A is not a consequence 
of K. 

2. Determine the set of all non-tautological consequences of K of the form I- * A, 
such that I- and A contain at most the atoms B, C and D. 

3. Determine the set of all non-tautological consequences of K of the form B, l- * A, 
such that l- and A contain at most the atoms A, C and D. Here we are interested in 
clauses in which B 'relevantly' occurs; i.e. for which I- A is not a consequence 
of K. 

4. Determine the set of all non-tautological consequences of K of the form I- =. A, 
such that r and A contain at most the atoms A. C and D. 

Our numbering of clauses throughout follows Frege's numbering. If m and n are 
numbers of clauses, by m x n we denote the resolvent of m and n based on a resolution 

17 Instead of (12') and (12), which are correct, Frege uses the incorrect clause (12) D B, E, as has been 
pointed out by the editors and by the translators (see footnotes on p. 47/41). However, exchanging (12') 
and (12") with (12) causes no difference to the results obtained below, as can easily be checked. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
i
l
h
e
i
m
 
S
c
h
i
c
k
a
r
d
 
I
n
s
t
i
t
u
t
]
 
A
t
:
 
1
5
:
5
5
 
2
8
 
M
a
y
 
2
0
0
9



Frege and the Resolution Calculus 103 

step with m as the left premise and n as the right premise, provided it is defined. From 
the context it will always be clear which is the resolution atom. Since K is fixed, we 
suppress the reference to K and write Res" rather than Resa(K). 

Solution to problem 1. We have to compute the union of the following sets: 

Since K contains no tautological clauses, we have Reso = K. Therefore: 

Since we can disregard clauses in which A occurs on the right side of 3, we have: 

which gives two solutions already. Resolvents of K with respect to E are 

all of which, however, are tautologies, except (5) x (9). The latter is the clause 

which is the third solution.ls Therefore : 

Since each clause in {(6), (7), (16)) contains B, the set RedE* B, is obtained by computing 
(16) x (6) and (16) x (7), which are the only resolvents of RedE} with respect to B. Here 
(1 6) x (6) is a tautology, whereas (16) x (7) is: 

Thus : 

The procedure so far is completely parallel to Frege's argumentation (47-8142-3). 
In addition to RedE) and Res(E,BJ Frege does not compute any further sets of 
resolvents. However, he is aware of possible further cases, as is shown by his writing 
of the elimination of ' B,-say '. It can be seen that all further sets are empty : since each 
clause in {(6), (7), (16)) contains C, we obtain Res{E,C) by computing the resolvents 
(6) x (7) and (6) x (16) with respect to C,  which are both tautological. Thus Res{EsC1 = 

0. Similarly, Res(E,D1 = 0, since all resolvents to be considered are tautological. Since 
{E, C} c a or {E, D} E a for all remaining Res", each such Res" is empty. 

18 If we used (12) instead of (12') and (12"), as Frege erroneously does, (12) x (9) would be a non- 
tautology, but would be identical to (16). So no different result would arise. 
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104 Peter Schroeder-Heister 

Therefore the complete solution to problem 1 is given by the set: 

which is in full accordance with Frege. 

Solution to problem 2. We have to compute the union of the following sets: 

As before, 
RedE) = (K\ KE) u RsE(K). 

Since we cannot use the positional argument with respect to A as we did before, we 
have : 

K\KE = {(2)7(3)7(6),(7)7(~0),(11)} 

All clauses in RedE' contain A. Therefore: 

All resolvents of RedE) with respect to A turn out to be tautological. Thus Res{E,A' 
and all other sets to be computed are empty. So the solution to the problem is the 
empty set. Frege argues in exactly the same way, listing in a table all possible 
resolutions with resolution atom A (49/43-4).19 

Solution to problem 3. We have to compute the union of the following sets: 

As before, 
RedE' = (K\ KE) U RsE(K). 

19 In this table. the numbers '(17)' and '(18)' have to be replaced with '(18)' and ' (l9)', respectively (this 
mistake is found both in the German and English editions). Formula (17) is no candidate for a 
resolution step at all in the present context, whereas (18) and (19) are Beschrzffsschrift implications 
corresponding to (2) and (3), respectively. 
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Frege and the Resolution Calculus 105 

Since in (2) B occurs on the right side of +, we may disregard it. Therefore 

Since in (1 6), which is the only non-tautological resolvent of K with respect to E (see 
above), B occurs on the right side of a, RsE(K) is empty. Therefore: 

It can easily be seen that R e ~ ( ~ 3 ' '  and Res{EaD1 are empty, since all 
resolvents to be considered are tautological. Therefore all remaining Res" are empty as 
well. Since (10) and (1 1) are already solutions to problem 4, we omit them and obtain 
{(3), (6), (7)) as the complete solution to problem 3. This is in accordance with Frege, 
who (on 49/44) considers only (K\ KE) (disregarding (10) and (ll)), without 
computing any resolvent. Perhaps he considers it obvious that all resolvents are 
tautological. 

Solution to problem 4. We have to compute the union of the following sets: 

Since we cannot use arguments concerning the position of B in a clause, we now 
obtain 

Then : 

The resolvents of Red") with respect to B are the following: 

Only (16) x (7), which is (17) [i.e. A, C, D 3 1 ,  is non-tautological. Thus 

This is computed by Frege in exactly the same way (49144). That the elimination 
of further atoms (which is not explicitly considered by Frege) does not add anything 
to the solution can easily be seen as follows: since each clause in ReslE,Bl contains A, 
C and D, the sets Res{E,B,A', and Res{E,B3Dt consist of the resolvents of 
RedEyB' with respect to A, C and D, respectively. All these resolvents are tautological. 
Therefore all Res" beyond RedE% B, are empty, which means that {(lo), (1 I), (17)) is the 
complete solution. 

The last paragraph of his paper clearly demonstrates that Frege himself is not 
aware either of the conceptual significance of the problem he is dealing with or of the 
computational significance of his solution : 

It [the Begrifsschrift] can be used to solve the sort of problems Boole tackles, and 
even do so with fewer algorithmic prerequisites. This is the point to which I attach 
least importance, since such problems will seldom, if ever, occur in science (52146). 
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In the meantime Gentzen has shown that the deviation of implicational ('sequent') 
structures, to which Frege had reduced Boole's problems, lies at the heart of logic, and 
Robinson has shown that resolution is an extremely powerful rule, the only one needed 
for such derivations in the clausal case. From this perspective Frege's insights turn out 
to be much deeper that he himself could have estimated. 

Appendix: Proof of Lemma 2 
Suppose a derivation 9 of K from Kin 8 is given, where K is non-tautological. We 

first show that all tautological clauses can be eliminated from 9 and that all 
applications of thinning can be moved down to the last step. Then we show that 
resolutions can be permuted. 

Removal of (Taut) and restriction of (Thin) to the last step 
An occurrence of a clause in 9 is called a critical clause, if it is either tautological 

(not necessarily an axiom!) or the conclusion of an application of (Thin), and at the 
same time a premise of an application of (Res) or of (Thin). In order to eliminate 
critical clauses, we perform certain reductions. For example, we replace 

(here the tautological right premise of (Res) is a critical clause) with 

* a (Thin). 
r1,l-z =- 4 ,  A 2 9  a 

Similarly, we replace 

(here the left premise of (Res) is a conclusion of (Thin) and therefore a critical clause) 
with 

if r , ,  r , ,  I-, * A,, A,, A, is tautological, and with 

~thenvise. '~ Other cases of critical clauses are treated analogously. If a new critical 
clause happens to be generated by these reductions, then its height is always lower than 

20 As usual, the notation ," indicates that 9 ends with K .  
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that of the critical clause eliminated, where the height of an occurrence of a clause is 
the number of inference steps between this occurrence and the end clause K. Therefore, 
by choosing an appropriate induction measure, we can show that a derivation 9" of 
K from K can be obtained which contains no critical clause. If K is non-tautological, 
this means that 9" has the form 

K" 
- (Thin), 
K 

where the last step may be lacking, in which case K" is K and 9" is 9". The derivation 
9" has the following properties : 

(1) Only non-tautological members of K occur as assumptions. 
(2) Resolution (Res) with non-tautological conclusion is the only rule applied (in 

particular, tautology axioms or thinning are not used at all). 
(3) If an a-resolution is used, then a occurs in K. 

Permutation of resolution steps 
Suppose a sequence (a,, . . . , a,) of atoms which occur in K is given. Suppose 

1 < i, j 6 n where i + j. We can change the order of resolutions in 9" as in the 
following example. Replace 

If r,, r3 A,, A,, ct, or a?, T2, r3 * A2, A3 happens to be a critical clause (if T3 or A, 
contains a,), we have to perform the above procedure to eliminate critical clauses. 
Since this procedure sometimes removes, but never interchanges resolution steps, it 
has no disturbing effect on the result of our permutation of  resolution^.^^ By 
successively permuting resolutions and eliminating critical clauses we can obtain a 
derivation 9' of a subclause K' of K" (and therefore of K), which shares with 9" 
properties (1)-(3), and which in addition has the feature that no aj-resolution precedes 
an a,-resolution if 1 < i < j 6 n. Furthermore, we can assume that no a-resolution for 
an a occurring in K' is used in 9', since otherwise a could be permuted down to be the 
last resolution step which would eliminate a. This implies that in 9' no a can occur 
below an a-resolution, because otherwise a would occur in K'. Therefore, if in 9' an a- 
resolution is followed by a p-resolution, the p-resolution cannot have a premise in 

21 Other cases are treated similarly. In the case presented here, both 9, and 9, end with sequents 
containing a, on the right hand side, i.e. the resolution step applied to g, and 9, contains an implicit 
contraction with respect to a,. - I owe to Rodrigo Readi-Nasser the reference to this point, which I had 
overlooked in a previous version. 
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108 Frege and the Resolution Calculus 

which cc occurs. This corresponds to the fact that Resa*"(K) generates only clauses 
without a. 

It is easy to see that these results imply the assertions of Lemma 2. 
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