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Ekman’s Paradox

Peter Schroeder-Heister and Luca Tranchini

Abstract Prawitz observed that Russell’s paradox in naive set theory yields a
derivation of absurdity whose reduction sequence loops. Building on this obser-
vation, and based on numerous examples, Tennant claimed that this looping fea-
ture, or more generally, the fact that derivations of absurdity do not normalize,
is characteristic of the paradoxes. Striking results by Ekman show that looping
reduction sequences are already obtained in minimal propositional logic, when
certain reduction steps, which are prima facie plausible, are considered in addi-
tion to the standard ones. This shows that the notion of reduction is in need of
clarification. Referring to the notion of identity of proofs in general proof theory,
we argue that reduction steps should not merely remove redundancies, but must
respect the identity of proofs. Consequentially, we propose to modify Tennant’s
paradoxicality test by basing it on this refined notion of reduction.

1 Introduction

Tennant [18], [19], building on ideas of Prawitz [11], proposed the following proof-
theoretic test for paradoxicality: a derivation of absurdity is paradoxical whenever
each reduction sequence starting from this derivation eventually loops. Results by
Ekman [8], [9] show that already minimal propositional logic gives rise to looping
reduction sequences if the standard reductions are extended with new reductions that
remove redundancies in a way which is prima facie very plausible. Based on the
discussion on the identity of proofs within general proof theory, we argue that the
characterization of reductions as transformations of derivations that remove redun-
dancies is too broad. It needs to be augmented by the feature that the addition of new
reduction steps must preserve the identity of proofs established by the standard reduc-
tions. This is not the case with the new reductions proposed by Ekman. We conclude
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that Tennant’s test is too coarse, and we suggest how to improve it by adopting the
more restricted notion of reduction.

2 The Prawitz–Tennant Analysis of Paradoxes

The natural deduction system for minimal implicational logic consists of the follow-
ing introduction and elimination rules for implication as its only primitive rules of
inference:

ŒA�

B (!I)
A ! B

A ! B A (!E)
B

Negation is defined as implication of absurdity ?; that is, :A Ddef A ! ?.
In natural deduction systems, the application in a derivation of an introduction

rule followed immediately by an application of the corresponding elimination rule
constitutes a redundancy. Redundancies can be eliminated by rearranging the struc-
ture of derivations according to certain reductions. The reduction for implication is
the following:

n
ŒA�

D

B
(!I).n/

A ! B

D 0

A (!E)
B

B!

D 0

ŒA�

D

B

The occurrence of A ! B in the left derivation, which is removed by this reduction
step, will be called a redundant implication formula. A derivation is normal if and
only if it is redundancy-free. In his book on natural deduction, Prawitz [11] showed
that all derivations in minimal (as well as intuitionistic and classical) logic can be
transformed into normal form.

In Appendix B to this book, Prawitz considered a system for naive set theory
obtained by extending the one for minimal logic with an introduction and an elimi-
nation rule for formulas of the form t 2 ¹x W Aº to express set-theoretical compre-
hension:

AŒt=x�

t 2 ¹x W Aº
(2I)

t 2 ¹x W Aº

AŒt=x�
(2E)

where AŒt=x� is the result of substituting t for x in A. Also in this case an application
of the introduction rule immediately followed by an application of the corresponding
elimination rules constitutes a redundancy which can be eliminated according to the
following 2-reduction:

D

AŒt=x�

t 2 ¹x W Aº

AŒt=x�

B2

D

AŒt=x�
(1)

The occurrence of t 2 ¹x W Aº, which is removed by this reduction, will be called a
redundant 2-formula.

Taking � to be r 2 r , where r is the Russell term ¹x W x … xº, an application of
the 2-introduction rule allows one to pass over from :� to � and an application of
the 2-elimination rule from � back to :�. This yields Russell’s paradox in the form
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of the following derivation of absurdity ? in minimal logic extended with (2I) and
(2E):

1
� (2E)

:�
1
� (!E)

?
(!I).1/

:�

1
� (2E)

:�
1
� (!E)

?
(!I).1/

:� (2I)
�

(!E)
?

(2)

Since the encircled occurrence of :� is a redundant implication formula, this deriva-
tion is not normal. By applying implication reduction B! we obtain the following
derivation:

1
� (2E)

:�
1
� (!E)

?
(!I).1/

:� (2I)
�

(2E)
:�

1
� (2E)

:�
1
� (!E)

?
(!I).1/

:� (2I)
� (!E)

?

Here the encircled occurrence of � is a redundant 2-formula. By applying the
2-reduction B2 we obtain the derivation (2) with which we started. Since at each of
the two steps there was only a single possibility to reduce the derivation, all possi-
ble ways of reducing the derivation (called reduction sequences) get stuck in a loop.
Prawitz proposed this to be the distinctive feature of Russell’s paradox.

Tennant [18] considered a wide range of examples and showed that all prominent
mathematical and logical paradoxes follow this pattern. The steps playing the role of
(2I) and (2E) are called id est inferences, as they result from extralogical principles:
in the case of Russell’s paradox, from set-theoretic comprehension. In the case of the
liar paradox, to take another example, analogous id est inferences would be based on
the observation that a certain sentence says of itself that it is not true. Here, “observa-
tion” is not necessarily empirical inspection, but may result from some arithmetical
referencing mechanism.1

The Prawitz–Tennant analysis of paradoxes is a way to characterize paradoxes
by their proof-theoretic behavior, looking at the derivation of absurdity generated.
Although this is not per se a solution to the paradoxes, and Tennant (see, e.g., [18],
p. 268) stresses it should not be meant as such, it can be naturally turned into a solu-
tion, as implicitly suggested by both Prawitz and Tennant and, in a more explicit man-
ner, by the authors [14], [21]. Derivations in natural deduction aim at representing
proofs. According to Prawitz and Tennant, however, only normalizable derivations
“really” represent proofs. Tennant’s moral is thus the following:

The general loss of normalisability [. . . ] is a small price to pay for the protection
it gives against paradox itself. Logic plays its role as an instrument of knowledge
only insofar as it keeps proofs in sharp focus, through the lens of normality. [18,
p. 284]

As the paradoxical derivations of absurdity do not normalize, they are not “real”
proofs.
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3 Ekman’s Paradox

Suppose that we have derived A by means of a derivation D . By assuming A ! B ,
D can be extended by (!E) to a derivation of conclusion B . By further assuming
B ! A one can conclude A by another application of (!E). Ekman [8], [9] observed
that a pattern of this kind, though not belonging to the official set of redexes, certainly
constitutes a redundancy, which can easily be removed as follows:

B ! A

A ! B

D

A
. ! E)

B
. ! E)

A

BE
D

A
(3)

We call this step Ekman’s reduction and the occurrence of B in the left derivation,
which is removed by Ekman’s reduction, an Ekman-redundant formula.

Consider now the following derivation:

A ! :A
1
A (!E)

:A
1
A (!E)

? (!I)(1)
:A

:A ! A

A ! :A
1
A (!E)

:A
1
A (!E)

? (!I)(1)
:A (!E)

A

(!E)
?

(4)

Since the encircled occurrence of :A is a redundant implication formula, this deriva-
tion is not normal. By applying implication reduction B! we obtain the following
derivation:

A ! :A

:A ! A

A ! :A
1
A (!E)

:A
1
A (!E)

? (!I)(1)
:A (!E)

A
(!E)

:A

:A ! A

A ! :A
1
A (!E)

:A
1
A (!E)

? (!I)(1)
:A (!E)

A (!E)
?

Here the encircled occurrence of A is an Ekman-redundant formula. By applying
Ekman’s reduction BE we obtain the derivation (4) with which we started. Since at
each of the two steps there was only a single possibility to reduce the derivation, we
are caught in a loop. This loop is not only a feature of the particular derivation (4).
Ekman demonstrated that in the formulation of minimal logic considered, there is no
derivation of absurdity from A ! :A and :A ! A, which is normal with respect to
B! and BE .

The instance of Ekman’s reduction (3) that is used in Ekman’s derivation (4)

A ! :A

:A ! A

D

:A ( ! E)
A ( ! E)

:A

BE
D

:A
(5)
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can be viewed as a translation of the corresponding instance of the 2-reduction (1)
used in the derivation of Russell’s paradox (2):

D

:� (2I)
� (2E)

:�

B2

D

:�
(6)

The difference between (5) and (6) consists only in the fact that the redundancy is in
one case generated by id est inferences, whereas in Ekman’s case it is mimicked in
propositional logic by applications of modus ponens. The major premise of modus
ponens represents the rule applied in id est inferences. As Ekman puts it:

Whatever motivation we have for [the instance (6) of 2-reduction B2] this moti-
vation also applies to [the instance (5) of Ekman’s reduction BE ] since the two
reductions, from an informal point of view, are one and the same, but expressed
using two different formal systems. ([8, p. 148], [9, p. 78])

Given this observation, paradoxical derivations can be analyzed as consisting of an
extralogical construction which is plugged into a portion of purely propositional rea-
soning. The extralogical part is constituted by id est inferences which allows one
to pass over, for some specific �, from :� to � and back. The logical part consists
of the derivation (4) of absurdity ? from :A ! A and A ! :A, for an unspecific
(i.e., for all) A. Ekman’s paradox would thus show that loops are not a feature of the
extralogical part, but of the logical part of paradoxical derivations. The looping fea-
ture would not depend on the possibility to move, for a certain �, from � to :� and
vice versa, but that we can move, for any formula A, from A $ :A to absurdity.2

We do not take this to be the right conclusion to be drawn from the phenomenon
observed by Ekman. Rather, we take Ekman’s paradox to push the question of when a
certain reduction counts as acceptable: whether a derivation is normal depends on the
collection of reductions adopted, and hence Tennant’s criterion requires particular
attention in what should be taken to be a good reduction. In particular, Ekman’s
phenomenon shows that on a too loose notion of reduction, one obtains a too coarse
criterion of paradoxicality.

Before presenting substantial reasons for denying the goodness of Ekman’s reduc-
tion, we would like to stress the fact that the problem of choosing the collection of
reductions is crucial also to avoid the converse problem, namely, of a too-narrow
criterion for paradoxicality.

4 Paradoxes and Classical Logic

Rogerson [13] criticizes Tennant’s criterion in that it fails to detect a paradox when
there is one. In particular she considers a formulation of Curry’s paradox in classical
logic and observes that the derivation fails to display the loopy feature called for by
the Prawitz–Tennant analysis. We consider a slight variation of Rogerson’s proof
based on Russell’s rather than Curry’s paradox.

In the presence of the classical rule of reductio ad absurdum

Œ:A�

? (RAA)
A
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the derivation of Russell’s paradox (2) can be recast in a more symmetric fashion:3

1
� (2E)

:�
1
� (!E)

?
(!I).1/

:�

1
:�

1
:� (2I)
� (!E)

?
(RAA) .1/

�
(!E)

?

(7)

This derivation can be reduced by an application of implication reduction B! to the
following:

1
:�

1
:� (2I)
� (!E)

?
(RAA) .1/

� (2E)
:�

1
:�

1
:� (2I)
� (!E)

?
(RAA) .1/

� (!E)
?

According to Rogerson, this derivation cannot be further reduced:4

No standard reduction steps given by Prawitz in [11] straightforwardly apply in
this case as the use of the � operator insulates the formulas from the normaliza-
tion process. It seems plausible to conclude that this proof does not reduce to
a normal form and does not generate a non-terminating reduction sequence in
the sense of Tennant in [18] or [19]. Thus, Tennant’s criterion for paradoxicality
does not apply here. (This is not to say that it is inconceivable that someone
might be able to define a reduction step applicable in this case that would induce
a non-terminating reduction sequence.) ([13, p. 174])

Although it is true that no standard reduction step given by Prawitz in [11] applies
to this derivation, it is also well known that the normalization strategy for classi-
cal logic devised there applies only to language fragments for which the application
of (RAA) can be restricted to atomic conclusions. In richer languages, for exam-
ple in languages containing disjunction and existential quantification, the conclusion
of (RAA) cannot be restricted without loss of generality to atomic formulas, and in
order for normal derivations to enjoy the subformula property a further (family of )
reduction(s) has to be considered. This new reduction is based on the idea that the
conclusion of an application of (RAA) which is also the major premise of an elim-
ination rule counts as a redundancy to be eliminated. The reduction, proposed by
Stålmarck [16], can be depicted schematically as follows:

Œ
n

:A�

D

?
(RAA) .n/

A D
(�E)

B

BRAA

n
:B

m
A D

(�E)
B

?
(!I).m/

Œ:A�

D

?
(RAA) .n/

B

where (�E) stands for an application of an elimination rule for some connective �

belonging to the language fragment under consideration and D stands for the (pos-
sibly empty) list of derivations of the minor premises of the application of (�E).
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In the language of naive set theory, the presence of the operators for the formation
of set terms jeopardizes the notion of atomic sentence. Thus, a redundant conclu-
sion of (RAA) is not always a nonatomic formula, but more generally any formula
which can act as the major premise of an elimination rule. This makes it plausi-
ble to let, in the scheme for reduction proposed by Stålmarck, �E range over (2I)
as well. Once this is done, Rogerson’s derivation can be further reduced, and the
derivation after some steps reduces back to itself.5 Tennant formulated his criterion
for paradoxicality with an emphasis on intuitionistic logic, by claiming that a para-
doxical sentence is one governed by id est inferences such that, in the extension of
intuitionistic logic obtained by this addition, there are derivations of ? that fail to
normalize. As observed by Rogerson, the choice of intuitionistic logic is certainly
motivated by the will of showing that nonconstructive principles of reasoning do not
play any significant role in the phenomenon of paradoxes. However, part of the rea-
son for this choice is also the fact that the criterion for paradoxicality is formulated
in terms of normalization, and intuitionistic logic (in its usual formulation at least)
is well behaved with respect to normalization. Given the crucial role played by nor-
malization (not only from the formal, but also from the conceptual point of view, as
stressed by Tennant in the quote at the end of Section 2), the “base” system relative
to which the nonnormalizability effects of id est inference is to be tested must enjoy
normalization.

Tennant may be wrong in restricting the attention to intuitionistic logic, but we do
not believe that extending the criterion beyond this logic is as problematic as Roger-
son claims. For the case of classical logic, the above observations are sufficient to
show that on a proper account of normalization for classical logic, Russell’s (and
Curry’s paradox as well) display the looping effect called for by Prawitz and Ten-
nant’s analysis. Rogerson hints at other possible counterexamples, but, provided the
logical frameworks in the background can be given a proper proof-theoretic presenta-
tion, Tennant’s criterion should always be applicable. In fact, if any derivation in the
“base” system reduces to a normal one, and if normal derivations enjoy the subfor-
mula property, then the derivation of absurdity in the system extended with the id est
inferences cannot normalize. This holds at least when the id est inferences display a
certain symmetry, for instance, by being introduction and elimination rules for a cer-
tain expression equipped with a reduction to get rid of the redundancies constituted
by consecutive applications of introduction and elimination rules (for a discussion
see [20]).

5 Paradoxes and Reduction

We now turn back to the original question posed at the end of Section 3, namely,
whether the reduction proposed by Ekman should be taken for good. In almost all
presentations of natural deduction, reductions are presented as means to get rid of
redundancies within proofs. This is also the background of Tennant’s analysis, who
writes:

The reduction procedures for the logical operators are designed to eliminate such unnec-
essary detours within proofs.

So are other abbreviatory procedures � , which have the general form of ‘shrinking’ to
a single occurrence of A, any logically circular segments of branches (within the proof ) of
the form shown below to the left:
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A

B1

:::

Bn

A

B� A

One thereby identifies the top occurrence of A with the bottom occurrence of A, and gets
rid of the intervening occurrences of B1; : : : ; Bn, that form the filling of this unwanted
sandwich. Logically, one should live by bread alone. ([19], pp. 199–200)

Given this, Tennant should have nothing to object against the reduction BE pro-
posed by Ekman as it is a variant of B� . However, the understanding of reduction
as “abbreviatory procedures” is not the only possible one. We actually claim that
this understanding is not appropriate for meaning-theoretical investigations and take
Ekman’s paradox to be a striking phenomenon that points to this fact.

From a semantical standpoint6 proofs may be viewed as abstract entities linguisti-
cally represented by natural deduction derivations. Reduction procedures for deriva-
tions can then be viewed as yielding a criterion of identity between proofs (see [12,
Section I.3.5.6]) in the following sense: the reflexive, symmetric, and transitive clo-
sure of the relation of one-step reducibility clearly induces an equivalence relation
between the derivations of a logical system, and derivations equivalent in this sense
are considered to represent the same proof. For what follows, only this identity cri-
terion is relevant, not the exact nature of “proofs” beyond this. For simplicity, proofs
might, for example, be considered to be equivalence classes with respect to equiva-
lence of derivations, though, in this context, the most natural understanding of proofs
is the (informal) one provided by the Brouwer–Heyting–Kolmogorov interpretation
of intuitionistic logical constants.

A typical example of two derivations of the same formula which represent two
distinct proofs of it is this:

1
A (!I)(1)

A ! A (!I)
A ! .A ! A/

1
A (!I)

A ! A (!I)(1)
A ! .A ! A/

In the two derivations the assumption is discharged at different places, which is
intuitively a reason to consider them to be two ways of establishing the formula
A ! .A ! A/, namely, either as an instance of A ! .B ! A/ or as an instance of
B ! .A ! A/ (see Došen [4]).

On the standard reductions, the two derivations in fact do belong to two different
equivalence classes induced by the reflexive, symmetric, and transitive closure of
reducibility. This is a consequence of the fact that both are in normal form and
of a property of the reduction system based on implication reduction, namely, the
Church–Rosser property (also called “confluence”). According to it, if one derivation
reduces (in a number of steps) to two distinct derivations, then there should be a
third one to which the latter two both reduce (in some finite numbers of steps). An
immediate consequence of this is that two different derivations in normal form (thus
two derivations which do not reduce further to the same derivation) can never be
obtained by reducing some derivation. In other words, there is no chain of reductions
which connects the two derivations, thus they belong to different equivalence classes.
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The above example thus shows that identity of proofs is not trivial (given the
standard reductions). A natural requirement for the addition of a new reduction could
be that of not trivializing identity of proof, in the sense that it should always be
possible to exhibit two derivations of the same conclusion belonging to two distinct
equivalence classes. If this requirement is not met, proof-theoretic semantics would
collapse to truth-functional semantics. For every sentence there would be either a
(single) proof or there would be no proof at all.

It is actually known that any reduction extending the equivalence relation induced
by the reduction for implication and the following expansion:

D

A ! B
B!-exp

D

A ! B
1
A (!E)

B (!I).1/
A ! B

trivializes the identity of proofs in the implicational fragment of intuitionistic logic
(see Došen [6], Widebäck [22]).7

However, we will show that Ekman’s reduction is sufficient to trivialize the iden-
tity of proofs induced by implication reduction alone. On such an understanding, the
notion of reduction is much narrower than the one arising from taking reductions as
“abbreviation procedures.” On this narrower conception, Ekman’s alleged reduction
turns out to be no reduction at all.

Although the notion of identity of proof is quite established in general and catego-
rial proof theory (see [2]–[4], [7]) as well as in investigation on the lambda calculus,
it is usually disregarded in presentations of natural deduction. We therefore discuss at
some length a simple counterexample vindicating Ekman’s reduction as inappropri-
ate, with the hope of stressing the relevance of these formal results for philosophically
informed proof-theory.

To begin with, instead of (3) we actually consider Ekman’s reduction BE in the
more general form

D 00

B ! A

D 0

A ! B

D

A
. ! E)

B
. ! E)

A

B�
E

D

A
(8)

That is, we allow for A ! B and B ! A to be obtained by derivations D 0 and D 00.
This means that we assume, as it is natural to do, that Ekman’s reduction is closed
under substitution of derivations for open assumptions. In Section 6 we show that
even without this generalization a corresponding counterexample can be given.

For simplicity of exposition, we consider a language containing conjunction.
A corresponding, but less well-readable example could be given in the implicational
language considered so far. The rules and reductions associated to conjunction are
the following:

A B (^I)
A ^ B

A ^ B (^E1)
A

A ^ B (^E2)
B

D1

A

D2

B (^I)
A ^ B (^E1)

A

B^1
D1

A

D1

A

D2

B (^I)
A ^ B (^E2)

B

B^2
D2

B
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Consider now the formulas A ^ A and A and the following proofs of their mutual
implications:8

1
A ^ A (^E1)

A (!I)(1)
.A ^ A/ ! A

1
A

1
A (^I)

A ^ A (!I)(1)
A ! .A ^ A/

Given an arbitrary derivation D of A^A, consider the following derivation D 0:

D 0
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1
A

1
A (^I)

A ^ A (!I) (1)
A ! .A ^ A/

2
A ^ A (^E1)

A (!I)(2)
.A ^ A/ ! A

D

A ^ A
(!E)

A
(!E)

A ^ A

Ekman’s (starred) reduction enables the performance of the following reduction step:

D 0

A^A
B D

A ^ A
(9)

Since in D 0 both .A^A/ ! A and A ! .A^A/ are maximum formulas, we also have
the following reduction, which is obtained by applying B! twice:

D 0

A^A
B

D

A ^ A (^E1)
A

D

A ^ A (^E1)
A

A^A

(10)

Now suppose that D has the form

D1

A

D2

A (^I)
A^A

for some arbitrary derivations D1 and D2 of A.
Then (9) and (10) give us the reductions

D 0

A^A
B

D1

A

D2

A (^I)
A ^ A

(11)

and

D 0

A^A
B

D1

A

D2

A (^I)
A ^ A (^E1)

A

D1

A

D2

A (^I)
A ^ A (^E1)

A (^I)
A^A

B^1

D1

A

D1

A (^I)
A ^ A

(12)

respectively. Therefore the adoption of Ekman’s (starred) reduction implies that the
following two derivations

D1

A

D1

A

A ^ A

D1

A

D2

A

A ^ A
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are equivalent with respect to reducibility, that is, that they represent the same proof.
This means that also the following two derivations, which result from the previous
ones by extending each of them with an application of (^E2):

D1

A

D1

A

A ^ A
^E2

A

D1

A

D2

A

A ^ A
^E2

A

are equivalent with respect to reducibility. If we apply to each of them the reduction
B^2, we obtain the two derivations:

D1

A

D2

A

meaning that D1 and D2 are equivalent with respect to reducibility. Therefore by
using Ekman’s (starred) reduction in addition to the standard reductions, we can show
that any two derivations D1 and D2 of a formula A represent the same proof. As
argued above, this is a devastating consequence. If we require that reductions do not
trivialize the notion of identity of proofs, Ekman’s transformation does not count as
a reduction.

We thus propose to amend Tennant’s paradoxicality criterion by requiring that
reductions do not trivialize identity of proofs. In this way the problem posed by
Ekman’s result for the Prawitz–Tennant test for paradoxicality is resolved in that
Ekman’s derivation (4) now fails to count as a paradox.

6 The Issue of Substitution

In defense of Ekman, one might argue that he formulates his reduction with A ! B

and B ! A in assumption position according to (3), whereas to show that his reduc-
tion trivializes identity of proofs we considered the generalized form (8). This gen-
eralized form is closed under substitution of derivations for open assumptions. Now
it is hard to make sense of a notion of reduction not closed under substitution in this
sense. However, the following example demonstrates our trivialization result even
without this assumption, on the basis of Ekman’s reduction in the form (3).

The following derivation (encircled is an Ekman redundant formula)

1

A ! .A ^ A/

2

.A ^ A/ ! A

D1

A

D2

A (^I)
A ^ A

(!E)
A

(!E)
A ^ A (!I) (1)�

A ! .A ^ A/
�

! .A ^ A/

(!I) (2)�
.A ^ A/ ! A

�
!

�
A ! .A ^ A/

�
! .A ^ A//

3

A ^ A (^E1)
A (!I)(3)

.A ^ A/ ! A

(!E)�
A ! .A ^ A/

�
! .A ^ A/

4

A
4

A (^I)
A ^ A (!I) (4)

A ! .A ^ A/

(!E)
A ^ A
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reduces via Ekman’s reduction BE to the following (in which the applications of
(!I) without numeral do not discharge anything):

D1

A

D2

A

A ^ A (!I)�
A ! .A ^ A/

�
! .A ^ A/

(!I)�
.A ^ A/ ! A

�
!

�
A ! .A ^ A/

�
! .A ^ A//

3
A ^ A

^E1
A (!I)(3)

.A ^ A/ ! A�
A ! .A ^ A/

�
! .A ^ A/

4
A

4
A

A ^ A (!I) (4)
A ! .A ^ A/

A ^ A

which in turn reduces via two applications of B! to
D1

A

D2

A

A ^ A

On the other hand, by applying first B! (for four times) and then B^1 (twice) to the
first derivation one obtains

D1

A

D1

A

A ^ A

In other words, we have that the two derivations
D1

A

D2

A

A ^ A

D1

A

D1

A

A ^ A

are equivalent with respect to reducibility even when one adopts the restricted form
of Ekman’s reduction. Thus the restricted form of Ekman’s reduction is sufficient to
trivialize identity of proofs (by the argument given at the end of Section 5).

Outlook

Ekman’s “paradox” not only teaches us the importance of an appropriate notion of
reduction for formulating a proof-theoretic criterion of paradoxicality, but also tells
us something about the nature of paradoxical sentences. What triggers a genuine
paradox is not simply the assumption that a sentence is interderivable with its own
negation, as in Ekman’s derivation (4). A genuine paradox is a sentence A such that
there are proofs from A to :A and from :A to A that composed with each other
give us the identity proof A (i.e., the formula A considered a proof of A from A).
Such a notion, which is stricter than just interderivability, and which is well known
in general (in particular categorial) proof theory as isomorphism of formulas (see
Došen [5]), must be given a much more prominent role in proof-theoretic semantics
than it currently enjoys.

Notes

1. Instead of looping reduction sequences one can, more generally, consider non-
terminating reduction sequences, which covers paradoxes such as Yablo’s (see Tennant,
[19]). In the following, we will throughout speak of the looping feature of paradoxi-
cal derivations, keeping in mind that “nontermination” of reduction sequences is the
appropriate more general term.
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2. Ekman [8] also investigated more general forms of reductions in propositional logic
related to Crabbé’s [1] example (see Sundholm, [17]) of a nonnormalizing derivation
in set theory based on Zermelo’s subset axiom rather than the unrestricted comprehen-
sion rules. This was one of the starting points of Hallnäs’s [10] work, on which Ekman’s
[8] work, whose main subject is normalization in set theory, builds.

3. By “symmetric” we mean that the two immediate subderivations of (7) can be obtained
from each other by replacing occurrences of � with occurrences of :� (and vice versa)
and by switching the order of the premises of ( ! E).

4. Although Rogerson speaks of a derivation based on Curry’s paradox, the derivation we
discuss can be viewed as obtained from the last derivation in [13, p. 174] by replacing
a 2 a with � and p with ?, and moreover by (i) removing in both main subderivations
redundant applications of (RAA), i.e. applications allowing one to pass from ? to ? with

no discharge; (ii) replacing in both subderivations the pattern
:�

1
�

?
(1)

:�

with just :�. The

considerations in this section apply exactly to Rogerson’s original derivation as well.

5. Provided that, as usual, one also reduces redundant applications of (RAA) (see endnote 4
above). Otherwise, one ends up with the more general kind of nontermination mentioned
in endnote 2.

6. In the sense of “proof-theoretic semantics,” see [15].

7. This result is what in the typed lambda calculus corresponds to a corollary of Böhm’s
theorem for the untyped lambda calculus.

8. A substantially equivalent counterexample in the implicational fragment can be obtained
using the formulas A ! .A ! B/ and A ! B .

Note added in proof. We have argued that Ekman’s reduction (3), as a general reduction,
trivializes the notion of identity of proofs. However, to show that Ekman’s derivation (4)
is paradoxical, only an instance of (3) is used, in which A is a negated formula. Now on
standard accounts of identity of proofs as dealt with in categorial proof theory of intu-
itionistic logic, there is only one single proof of :A, if there is a proof of :A at all; that
is, all proofs of negated formulas are identical (see Došen [4]). This could be seen as
a justification of the relevant instance of Ekman’s reduction, and thus as reinstantiating
Ekman’s result as a genuine paradox. However, the identification of all proofs of negated
formulas relies essentially on the conversions associated with the ex-falso rule. As in
Ekman’s derivation (4) the negated formula A ! ? is just treated like an implication
A ! C for an arbitrary C , without the absurdity rule for ? being invoked at any place
(i.e., (4) is a derivation in minimal logic), we would then rather consider Ekman’s para-
dox as an argument against the idea that there can be only a single proof of a negation.
This would put into question the status of absurdity as what in categorial proof theory
is called an initial object. From that point of view, Ekman’s paradox not only calls for
the consideration of identity of proofs within the field of general proof theory, but also
for an alternative theory of absurdity in categorial proof theory, which would have many
repercussions including the conceptual role of � conversion.
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