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Abstract
Developing early results of Prawitz, Tennant proposed a criterion for an expression
to count as a paradox in the framework of Gentzen’s natural deduction: paradoxical
expressions give rise to non-normalizing derivations. Two distinct kinds of cases,
going back to Crabbé and Tennant, show that the criterion overgenerates, that is, there
are derivations which are intuitively non-paradoxical but which fail to normalize.
Tennant’s proposed solution consists in reformulating natural deduction elimination
rules in general (or parallelized) form. Developing intuitions of Ekman we show
that the adoption of general rules has the consequence of hiding redundancies within
derivations.Once reductions to get rid of the hidden redundancies are devised, it is clear
that the adoption of general elimination rules offers no remedy to the overgeneration
of the Prawitz–Tennant analysis. In this way, we indirectly provide further support for
a solution to one of the two overgeneration cases developed in previous work.

Keywords Paradox · Natural deduction · General elimination rules · Normalization ·
Crabbé counterexample · Set-theory

1 The Prawitz–Tennant analysis of paradoxes

The natural deduction system for minimal implicational logic NM consists of the fol-
lowing introduction and elimination rules for implication as its only primitive rules of
inference:1

1 In rule schemata we indicate in square brackets the assumptions which can be discharged by rule appli-
cations. In actual derivations we indicate discharge with numbers placed above the discharged assumptions
and repeated next to the rule label. In schematic derivations we use square brackets to indicate an arbitrary
number of occurrences of a formula, if the formulas is in assumption position, or of the whole sub-derivation
having the formula in brackets as conclusion.
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[A]
B ⊃I

A ⊃ B
A ⊃ B A ⊃E

B

Negation is defined as implication of absurdity ⊥, i.e., ¬A =def A ⊃ ⊥.
In natural deduction systems, the application in a derivation of an introduction

rule followed immediately by an application of the corresponding elimination rule
constitutes a redundancy. Redundancies can be eliminated by rearranging the structure
of derivations according to certain reductions. The reduction for implication is the
following:

n[A]
D

B
(n)

A ⊃ B
D ′
A

B

⊃-Red�
D ′
[A]
D

B

The occurrence of A ⊃ B in the left derivation, which is removed by this reduction
step, will be called an ⊃-redundant formula occurrence. A derivation is normal if and
only if it is redundancy-free. In his book on natural deduction, Prawitz (1965) showed
that all derivations in minimal (as well as intuitionistic and classical) logic can be
transformed into normal form.

In Appendix B to this book, Prawitz considered a system for naive set theory,
we will refer to it as NM∈, obtained by extending the one for minimal logic with an
introduction and an elimination rule for formulas of the form t ∈ {x : A} to express
set-theoretical comprehension:

A(t/x) ∈I
t ∈ {x : A}

t ∈ {x : A} ∈E
A(t/x)

where A(t/x) is the result of substituting t for x in A. Also in this case an application
of the introduction rule immediately followed by an application of the corresponding
elimination rules constitutes a redundancy which can be eliminated according to the
following ∈-reduction:

D

A(t/x)

t ∈ {x : A}
A(t/x)

∈-Red� D

A(t/x)

The occurrence of t ∈ {x : A}, which is removed by this reduction, will be called an
∈-redundant formula occurrence.

Taking ρ to be r ∈ r, where r is the Russell term {x : x /∈ x}, an application of ∈I
allows one to pass over from ¬ρ to ρ, and an application of ∈E from ρ back to ¬ρ:

¬ρ ∈Iρ

ρ ∈E¬ρ
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Using these instances of ∈I and ∈E one can construct the following derivation of
Russell’s paradox in NM∈:

1
ρ ∈E¬ρ

1
ρ ⊃E⊥ ⊃I (1)

¬ρ

1
ρ ∈E¬ρ

1
ρ ⊃E⊥ ⊃I (1)¬ρ ∈Iρ

⊃E⊥

(R)

Since the encircled occurrence of ¬ρ is an ⊃-redundant formula occurrence, this
derivation is not normal. By applying the implication reduction ⊃-Red we obtain the
following derivation:

1
ρ ∈E¬ρ

1
ρ ⊃E⊥ ⊃I (1)¬ρ ∈I

ρ
∈E¬ρ

1
ρ ∈E¬ρ

1
ρ ⊃E⊥ ⊃I (1)¬ρ ∈Iρ ⊃E⊥

(R′)

Here the encircled occurrence of ρ is an∈-redundant formula occurrence. By applying
the following instance of ∈-Red:

D

¬ρ

ρ

¬ρ

∈-Red
▷

D

¬ρ

we obtain the derivation R we started with. Since at each of the two steps there was
only a single possibility to reduce the derivation, all possible ways of reducing the
derivation (called reduction sequences) get stuck in a loop. Prawitz proposed this to
be the distinctive feature of Russell’s paradox.

Tennant (1982) considered awide range of examples and claimed that all prominent
mathematical and logical paradoxes follow this pattern. The steps playing the role of
∈I and ∈E are called id est inferences, as they result from extra-logical principles: In
the case of Russell’s paradox, from set-theoretic comprehension. In the case of the liar
paradox, to take another example, analogous id est inferences would be based on the
observation that a certain sentence says of itself that it is not true.Here, “observation” is
not necessarily empirical inspection, butmay result fromsomearithmetical referencing
mechanism.2

2 Instead of looping reduction sequences one can, more generally, consider non-terminating reduction
sequences, which covers paradoxes such as Yablo’s (see Tennant 1995). In the following, wewill throughout
speak of the looping feature of paradoxical derivations, keeping in mind that “non-termination” of reduction
sequences is the appropriate more general term.
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Schroeder-Heister and Tranchini (2017) dubbed the ‘Prawitz–Tennant analysis of
paradox’ the thesis that a paradoxical derivation is a derivation of ⊥ or of any other
“unwanted” sentence (as in the case of Curry’s paradox) that fails to normalize.

The Prawitz–Tennant analysis of paradoxes is a way to characterize paradoxes
by their proof-theoretic behavior, looking at the derivation of absurdity generated.
Although this is not per se a solution to the paradoxes and Tennant stresses it should
not be meant as such (see, e.g., Tennant 1982, p. 268), it can be naturally turned into a
solution (as implicitly suggested by both Prawitz and Tennant and, in a more explicit
manner, by Schroeder-Heister 2012; Tranchini 2016, 2018). Derivations in natural
deduction aim at representing proofs. According to Prawitz and Tennant, however,
only normalisable derivations ‘really’ represent proofs. Tennant’s moral is thus the
following:

The general loss of normalisability […] is a small price to pay for the protection it
gives against paradox itself. Logic plays its role as an instrument of knowledge
only insofar as it keeps proofs in sharp focus, through the lens of normality.
(Tennant 1982, p. 284)

As the paradoxical derivations of absurdity do not normalize, they are no ‘real’ proofs.
Although we are strongly sympathetic to the Prawitz–Tennant analysis, in a pre-

vious article (see Schroeder-Heister and Tranchini 2017) we suggested that certain
results by Ekman (1994) can be naturally seen as showing that the proposed criterion
for paradoxicality overgenerates. To solve the overgeneration problem, we argued that
the notion of reduction underlying the criterion must be appropriately qualified, by
requiring the reductions to preserve the identity of the proofs represented by deriva-
tions (or more philosophically, by requiring the reductions to bemeaning-theoretically
justified).

Tennant (2016) discards our solution as too baroque, and attempts to untrigger the
overgenerationwe observed (aswell as another one Tennant observed in 1982)without
having to assume any fundamental difference between “good” and “bad” reductions.
His attempted solution, corresponding to observations by von Plato (2000), consists
in rejecting modus ponens in favor of the so-called general (or parallel) implication
elimination rule.

In this paper,we show that Tennant’s attempted solution is prone to the difficulties of
the original proposal, too. That is, without a criterion for the acceptability of reduction
procedures, thePrawitz–Tennant analysis overgenerates evenwhen reformulated using
general elimination rules. The results presented thus aim at providing further evidence
in favor of our previously advocated solution.

2 Two cases of overgeneration

In this section we discuss two distinct cases in which the Prawitz–Tennant analysis
overgenerates, i.e. in which it ascribes paradoxality to derivations of ⊥ that fail to
normalize, although they belong to deductive settings that are too weak to allow for
the fomulation of paradoxes.
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2.1 From naive comprehension to separation

The first case of overgeneration arises in a consistent set theory in which Zermelo’s
separation axiom is formulated in rule form:

t ∈ s A(t/x) ∈z I
t ∈ {x ∈ s : A}

t ∈ {x ∈ s : A} ∈zE
A(t/x)

t ∈ {x ∈ s : A} ∈zE2t ∈ s

(the second elimination rule will actually play no role in what follows). We call the
resulting system NM∈z

.
Again an application of ∈zI followed by ∈zE constitutes a redundancy that can

be eliminated according to the following reduction (we call the formula eliminated a
Zermelo-redundant formula) :

D1
t ∈ s

D2

A(t/x)

t ∈ {x ∈ s : A}
A(t/x)

∈z -Red
▷

D2

A(t/x)

What if we now try to reconstruct Russell’s reasoning in this setting? For any set
y, we can construct a term denoting the Russell subset of y, i.e. the set of all elements
of y which do not belong to themselves, ry =de f {x ∈ y : x /∈ x}. Taking now ρy to
be ry ∈ ry , an application of ∈zE allows one to pass over from ρy to ¬ρy , but in order
to pass over from ¬ρy to ρy using an application of ∈zI one needs a further premise,
namely ry ∈ y:

ry ∈ y ¬ρy ∈z Iρy

ρy ∈zE¬ρy

Thus, by following Russell’s reasoning in NM∈z
one obtains a derivation of absurdity⊥

in NM∈z
that, contrary to R, depends on an assumption, namely the assumption ry ∈ y

that is needed for the application of ∈zI (for visibility this assumption is boxed):

1
ρy ∈zE¬ρy

1
ρy ⊃E⊥ ⊃I (1)

¬ρy

ry ∈ y

1
ρy ∈zE¬ρy

1
ρy ⊃E⊥ ⊃I (1)¬ρy

∈z Iρy
⊃E⊥

(Rz)

Now assume that existential quantification with its standard rules is available. As
y does not occur free in the conclusion nor in any undischarged assumption other
than ry ∈ y, by assuming ∃y(ry ∈ y) we can obtain by ∃E a derivation of ⊥ from
∃y(ry ∈ y) and by ⊃I we can thereby establish ¬∃y(ry ∈ y), that is that no set
contains its own Russell subset:
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3∃y(ry ∈ y)

1
ρy ∈zE¬ρy

1
ρy ⊃E⊥ ⊃I (1)¬ρy

2
ry ∈ y

1
ρy ∈zE¬ρy

1
ρy ⊃E⊥ ⊃I (1)¬ρy ∈z Iρy ⊃E⊥ ∃E (2)⊥ ⊃I (3)¬∃y(ry ∈ y)

That no set contains its own Russell subset is a perfectly acceptable conclusion in
a consistent set theory like Zermelo’s. It shows in particular that there is no set of all
sets, which is something that any reasonable consistent set theory should be able to
prove. However, and here is the problem, the derivation Rz of ⊥ from ry ∈ y (and
likewise the one of ⊥ from ∃y(ry ∈ y)) fails to normalize, for the same reason as
Russell’s original R. By removing the encircled ⊃-redundant occurrence of ¬ρy , a
Zermelo-redundant formula is introduced, and by removing it, one gets back toRz. So,
on the Prawitz–Tennant analysis the derivation does not represent a real proof, and (as
in the case of the derivation of ⊥ in naive set theory) no other derivation fares better.
That is, on the Prawitz–Tennant analysis, though we have derivations showing that
there is no set of all sets in Zermelo set theory based on separation, these derivations
are unacceptable as they qualify as paradoxical.

These facts were first observed byMarcel Crabbé (n.d.) in 1974 at the Logic Collo-
quium in Kiel (Müller et al. 1975) and have been largely neglected in the philosophical
literature (in particular by Tennant), except for a short reference to them in Sundholm
(1979). However, they represent the starting point of modern proof-theoretic investi-
gations of set theory (see Hallnäs 1988; Ekman 1994).

2.2 Ekman’s paradox

The other kind of overgeneration arises in an even weaker setting: pure propositional
logic. Suppose we have derived A by means of a derivation D . By assuming A ⊃ B,
D can be extended by⊃E to a derivation of conclusion B. By further assuming B⊃ A
one can conclude A, but this had already been established byD . The two applications
of ⊃E just make one jump back and forth between A and B:

B ⊃ A
A ⊃ B

D

A ⊃E
B ⊃E

A

Ekman (1998) observed that although the official reductions of NM do not allow to get
rid of patterns of this kind, such patters certainly constitute redundancies which can
be easily removed by identifying the top and bottom occurrences of A and removing
the two applications of ⊃E between them. We refer to this conversion as Ekman and
we will call an Ekman-redundant formula occurrence the occurrence of B acting as

123



Synthese (2021) 199 (Suppl 3):S617–S639 S623

conclusion of the first application of⊃Eand asminor premise of the second application
of ⊃E in the schema below:3

B ⊃ A
A ⊃ B

D

A ⊃E
B ⊃E

A

Ekman� D

A

Observe now that ¬A follows from A ⊃ ¬A:

A ⊃ ¬A
1
A ⊃E¬A

1
A ⊃E⊥ ⊃I (1)¬A

By further assuming ¬A ⊃ A, the previous derivation can be extended by ⊃E to a
derivation of A from A ⊃ ¬A and ¬A ⊃ A:

¬A ⊃ A

A ⊃ ¬A
1
A ⊃E¬A

1
A ⊃E⊥ ⊃I (1)¬A ⊃E

A

The two derivations can be joined together by an application of ⊃E and the result is
the following derivation of ⊥ from A⊃¬A and ¬A⊃ A (here and below some of the
rules labels will be omitted for readability):

A ⊃ ¬A
1
A ⊃E¬A

1
A ⊃E⊥ ⊃I (1)

¬A
¬A ⊃ A

A ⊃ ¬A
1
A

¬A
1
A

⊥ (1)¬A ⊃E
A ⊃E⊥

(E)

The derivationE is not normal, since the encircled occurrence of¬A is an implication-
redundant formula occurrence. By applying ⊃-Red one introduces a redundancy of
the kind observed by Ekman (we encircle in the derivation the Ekman-redundant
formula occurrence):

3 We observe that there is a fundamental distinction between Ekman and, say, ⊃-Red in that the latter is a
means of getting rid of an application of an introduction rule followed by an application of the corresponding
elimination and is thus an immediate consequence of the “harmony” governing the two rules. Not so
for Ekman, that may thus be seen as lacking a prima facie plausible meaning-theoretical justification.
This remark has been fully developed in Schroeder-Heister and Tranchini (2017) to untrigger the kind of
overgeneration discussed in this section.
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A ⊃ ¬A

¬A ⊃ A

A ⊃ ¬A
1
A

¬A
1
A

⊥ ⊃I (1)¬A ⊃E
A

⊃E¬A
¬A ⊃ A

A ⊃ ¬A
1
A

¬A
1
A

⊥ (1)¬A ⊃E
A ⊃E⊥

(E′)

By applying the relevant instance of Ekman:

A ⊃ ¬A
¬A ⊃ A

D

¬A ⊃E
A ⊃E¬A

Ekman� D

¬A

we get back the derivation E.
Thus, on the natural extension of the set of conversions suggested by Ekman, we

have a counterexample to normalization in NM: E is not normal and does not normal-
ize, since its reduction process enters a loop. Given the Prawitz–Tennant analysis of
paradoxes in term of non-normalizability, the phenomenon observed by Ekman should
show that paradoxes already appear at the level of propositional logic.

In fact, Ekman’s paradox can be taken to show that the logical component of Rus-
sell’s paradox can be fully described using propositional logic. The derivations of
Russell’s paradox R and R′ can be obtained from Ekman’s derivations E and E′ by
suppressing all occurrences of A ⊃ ¬A and¬A ⊃ A and by replacing all occurrences
of the schematic letter Awith ρ: In this way, the applications of⊃Ewithmajor premise
¬A ⊃ A and A ⊃ ¬A become applications of ∈I and ∈E respectively. In other words,
the id est inferences involved in the derivation of Russell’s paradox are simulated by
applications of ⊃E in E and E′, and the instance of ∈-Red used to transform R′ into
R is simulated by the instance of Ekman used to transform E′ into E.

However, it is not its logical component what makes Russell’s reasoning paradoxi-
cal, but the id est rules encoding naive comprehension. Propositional logic alone is too
weak to allow for the formulation of paradoxical expression and thereby there cannot
be anything paradoxical about a derivation in NM.4

3 A solution to overgeneration

The phenomena presented in the previous section throw a shadow on the analysis of
paradoxes put forward by Prawitz and Tennant. In another article (Schroeder-Heister
andTranchini 2017)we showedhow to save thePrawitz–Tennant analysis of paradoxes
from the threat of Ekman by imposing some restrictions on what is to count as an
appropriate reduction. If one requires that reductions have to preserve proof identity

4 Elia Zardini observes that the derivations E and E′ are paradoxical because there are instances of them
which are paradoxical. Observe however, thatR andR′ are not simply instances of E and E′, as they do not
arise by simply instantiating A with ρ, but moreover by replacing the assumptions ¬A ⊃ A and A ⊃ ¬A
with genuine inferential steps, and it is to these steps that the source of paradoxicality is—in Tennant’s
intentions—to be ascribed.
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in the sense of categorial or computational approaches to natural deduction, there
are strong reasons to reject Ekman’s reduction (see also footnote 3 above). There
is however no immediate way of applying this strategy to solve the other kind of
overgeneration cases observed by Crabbé. From the perspective of identity of proof,
there is a strong asymmetry between the two cases, and the overgeneration cases
observed by Crabbé show a particular resilience.

A different kind of solution to the overgeneration phenomenon observed by Ekman
was put forward by von Plato (2000) and recently reinstated by Tennant (2016), who
showed how it could be used to overcome also the other kind of overgeneration cases.
For Tennant, this alternative solution is preferable not only because it allows one to
solve both issues at once, but also because it does not require to introduce criteria to
select what counts as an appropriate reduction. The aim of what follows is a critical
discussion of this alternative solution,which shows, at least, that the question ofwhat is
to count as an appropriate reduction cannot be evaded so quickly as Tennant apparently
supposes.

To clarify our position, we are strongly sympathetic to the Prawitz–Tennant analysis
of paradoxes, and we do not take the kind of overgeneration observed by Ekman as
being a real threat, provided the criterion for paradoxality is based on a qualified notion
of reduction procedure. On the other hand, we do regard the kind of overgeneration
observed by Crabbé as problematic (even on our refined formulation of the Prawitz–
Tennant criterion) and as calling for further investigations.

What we are not at all sympathetic with is the “solution” to both kinds of over-
generation proposed by von Plato and Tennant, which will be shown in the remaining
part of the present article to be, in fact, no solution at all, being flawed by the same
problems of Tennant’s original proposal. The line of argument developed in the present
paper is thereby meant as a further—though indirect—reason to adopt our solution to
the Ekman kind of overgeneration, and to further investigate the exact nature of the
Crabbé kind of overgeneration.5

3.1 Von Plato’s solution to Ekman

According to von Plato (2000), the source of Ekman’s problem6 is the form of the
elimination rule for implication, and he suggested that the problem could be solved
by replacing ⊃E with its general (or parallelized) version (von Plato 2001; Tennant
2002):

A ⊃ B A

[B]
C ⊃Eg

C

We call NMg the system obtained from NM by replacing ⊃E with ⊃Eg .

5 In thementioned article,we also discuss and refute an attempted dismissal of the Prawitz–Tennant analysis
based on a supposed case of undergeneration due to Rogerson (2007). A general investigation of possibly
systematic undergeneration cases is the object of current research by the authors.
6 It should be observed that von Plato (2000) is not in the least interested in the issue of paradoxes, and
regards Ekman’s phenomenon as a problem for normalization in minimal propositional logic.

123



S626 Synthese (2021) 199 (Suppl 3):S617–S639

Consecutive applications of the introduction and of the general elimination rule
for implication also constitute a redundancy that can be eliminated according to the
following reduction (we call the formula of the form A ⊃ B eliminatedby the reduction
an ⊃g-redundant formula occurrence):

n[A]
D

B
(n)

A ⊃ B
D ′
A

m[B]
D ′′
C

(m)
C

⊃g−Red�

D ′
[A]
D

[B]
D ′′
C

In NMg the derivation of Ekman’s paradox can be recast as follows:

¬A ⊃ A

A ⊃ ¬A
3
A

2¬A
3
A

1⊥ (1)⊥
(2)⊥ (3)¬A

A ⊃ ¬A
6
A

5¬A
6
A

4⊥ (4)⊥
(5)⊥

(6)⊥

(E′
g)

The reduction ⊃g-Red does not apply to E′
g. Moreover, neither does Ekman (obvi-

ously, since E′
g is formulated with the general elimination rule and not with modus

ponens) nor any generalization thereof,

which have the general form of ‘shrinking’ to a single occurrence of A, any
logically circular segments of branches (within the proof ) of the form shown
below to the left

A
B1

.

.

.

Bn
A

� A

(Tennant 1995, pp. 199–200)

which Tennant (2016) calls subproof compactification. Note that, as Ekman (1994)
already observed, ∈-Red and ∈z-Red are also instances of subproof compactification
(and so are the standard reductions for conjunction of Prawitz 1965), though neither
⊃-Red nor ⊃g-Red are.

On these grounds, von Plato concludes that “the problem about normal form in
Ekman (1998) is solved by a derivation using the general ⊃E rule” (2000, p. 123).

3.2 Another“safe version” of Russell’s paradox

Independently of Crabbé, Tennant (1978, 1982) proposed a weakening of naive com-
prehension, but in the context of a free logic. By free logic, one means a logic which
is free from the assumption that singular terms denote. Using Zermelo’s comprehen-
sion one wishes to neutralize Russell’s paradox by recasting Russell’s reasoning as
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showing that no set contains its Russell subset as element. Similarly, Tennant wishes
to recast Russell’s reasoning as showing that the Russell term lacks a denotation.

That a term t does possess a denotation is expressed by the formula ∃!t =def ∃x(t =
x), and accordingly in free logic the introduction rule for identity is weakened to the
effect that t = t can be derived only if one has previously shown that t denotes:7

∃!t
t = t

In this setting, Tennant proposes to replace the rules for naive comprehension with
rules to introduce and eliminate set-terms in the context of identity statements:8

[A(y/x)]
y ∈ s

[y ∈ s]
A(y/x) {}=I{x : A} = s

with y eigenvariable

{x : A} = s A(t/x) {}=E1t ∈ s

{x : A} = s t ∈ s {}=E2A(t/x)

We call NM∈=
the system that results by adding these rules to NM.

It is important to observe that in Tennant’s reformulation we have two elimination
rules for set terms, and the two elimination rules of Tennant correspond respectively
to Prawitz’s ∈I and ∈E rules. By taking s to be {x : A} we have that Tennant’s {}=E1
allows one to infer t ∈ {x : A} from A(t/x) together with the premise {x : A} =
{x : A}, and that {}=E2 allows one to infer A(t/x) from t ∈ {x : A} together with the
premise {x : A} = {x : A} (the extra premises expressing the requirement that {x : A}
is a denoting set-term).

Redundancies constituted by consecutive applications of the introduction rule fol-
lowed immediately by one of the corresponding elimination rules can be eliminated
using the obvious reductions. Moreover, consecutive applications of the two elimina-
tion rules give rise to Ekmanesque redundancies of which one can get rid using the
following reduction (we call respectively Ekman= and Ekman=-redundant formula
this transformation and the occurrence of t ∈ s in the schematic derivation on the
left-hand side):

{x : A} = s
{x : A} = s

D

A(t/x) {}=E1t ∈ s {}=E2A(t/x)

Ekman=
� D

A(t/x)

To reconstruct Russell’s reasoning in this further setting Tennant suggests to choose
both t and s to be some variable y and to take A to be the formula ¬(x ∈ x). One
thereby obtains the following instances of {}=E1, {}=E2 (as before we abbreviate the
Russell term {x : ¬(x ∈ x)} with r):
7 Similar modifications of the rules of the quantifiers are required as well, see, e.g., Tennant (1978, §7.10).
8 The following rules are in fact a simplification of Tennant’s rules obtained by omitting some premises
and dischargeable assumptions of the form ∃!t . The reason for the simplification is that they help making
the presentation and the discussion more concise. Each derivation using these rules should be understood as
an abbreviation of a derivation using Tennant’s original rules. The interested reader can easily reconstruct
full derivations by adding the (in most cases trivial) sub-derivations of each of the missing premises of each
rule application.
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r = y ¬(y ∈ y) {}=E1y ∈ y

r = y y ∈ y {}=E2¬(y ∈ y)

By abbreviating y ∈ y with υ, we can reason as in Ekman’s derivation E and thereby
construct a derivation of ⊥ depending on the assumption r = y:

r = y
1
υ {}=E2¬υ

1
υ ⊃E⊥ ⊃I (1)

¬υ

r = y

r = y
1
υ {}=E2¬υ

1
υ ⊃E⊥ ⊃I (1)¬υ {}=E1υ

⊃E⊥

(R=)

Like in Rz, the variable y in R= occurs free neither in the conclusion nor in any
undischarged assumption other than r = y. The derivation R= can thus be extended
by ∃E and ⊃I to a closed derivation of ¬∃y(r = y) that establishes that r has no
denotation.

However, as in Ekman’s E, the encircled occurrence of ¬υ is an ⊃-redundant
formula occurrence. The reader can easily check that by getting rid of it using⊃-Red,
an Ekman=-redundant formula occurrence is introduced. By getting rid of it using
the following instance of Ekman=:

r = y
r = y

D

¬υ {}=E1υ {}=E2¬υ

Ekman=
� D

¬υ

one gets back to R=. As in the previous cases, in spite of its innocuous character the
derivation fails to normalize. This overgeneration case seems a perfect blend of the
two previously discussed, and Tennant (2016) showed how the (purported) solution of
von Plato to Ekman’s case can be applied also to this one: as soon as one replaces the
elimination rules {}=E1 and {}=E2 with their general versions (we call the resulting
system NM∈=

g ):

{x : A} = u A(t/x)

[t ∈ u]
C {}=E1g

C

{x : A} = u t ∈ u

[A(t/x)]
C {}=E2g

C

one can give the following (apparently) redundancy-free derivation of ⊥ from r = y:

r = y

r = y
3
υ

2¬υ
3
υ

1⊥ (1)⊥
(2)⊥ (3)¬υ

r = y
6
υ

5¬υ
6
υ

4⊥ (4)⊥
(5)⊥

(6)⊥

(R=
g

′)
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4 General Ekman-reductions

Althoughwe believe that the Prawitz–Tennant analysis undoubtedly provides the basis
for a proof-theoretic clarification of the phenomenon of paradoxes, we do not find the
way out of the overgeneration cases proposed by von Plato and Tennant satisfactory.

It is true that in the derivationsE′
g andR

=
g

′ no subproof compactification is possible.
However, aswewill now show, it is still possible to detect some redundancieswhich are
hidden by the more involved shape of derivations constructed with general elimination
rules. By defining procedures to get rid of these hidden redundancies, Ekmanesque
loops will crop up again. In the remaining part of the paper this suggestion will be
made precise.

4.1 Ekman’s decomposing inferences

The possibility of reformulating his “paradox” using general elimination rules was
clearly envisaged by Ekman in his doctoral thesis, where he introduces the notion of
‘decomposing inference’:

Let� and A designate the premise deductions and conclusion of a rule R respec-
tively. That is, R is the inference schema:

�
R

A

We obtain the corresponding decomposing inference schema RD as follows:

�

[A]
E
C RDC

We obtain the premise deductions of the inference schema RD by adding one
deduction E to the premise deductions of the R schema, where E designates a
deduction in which occurrences of the conclusion A of the R schema, as open
assumptions in E may be cancelled at the RD inference. If, in the R schema, B
designates an open assumption in any of the premise deductions � and B may
be cancelled at the R inference, then in the RD schema, B also designates an
open assumption of the same premise deduction and B may be cancelled at the
RD inference. (Ekman 1994, pp. 9–10)

Obviously, in the case of ⊃E, the decomposing inference ⊃ED is just the general rule
⊃Eg .9

9 The two notions of general rule and decomposing inference do not in general coincide, since according
to the schema given by Ekman the decomposing inferences associated with the conjunction elimination
rules of Gentzen (1935) and Prawitz (1965) differ from the (more commonly adopted) single elimination
rule considered by Schroeder-Heister (1981) following Prawitz (1979):
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On p. 10 Ekman introduces the notion of a simple deduction corresponding to one
with decomposing inferences by giving an informal, though precise description of a
procedure for translating derivations with decomposing inferences into derivations
with the corresponding “simple” inferences. When restricted to the systems NM and
NMg , Ekman’s translation amounts to the following (the definition is by induction on
the number of inference rules applied in a derivation):

1�. If D is an assumption, then D� = D
2�. If D ends with an application of ⊃Eg , i.e. it is of the following form:

D1

A ⊃ B

D2

A

n[B]
D3

C ⊃Eg (n)
C

then D� has the following form:

D
�
1

A ⊃ B

D
�
2

A ⊃E[B]
D

�
3

C

3�. IfD ends with an application of ⊃I, thenD� is obtained by applying ⊃I to the
translation D�

1 of the immediate subderivation D1 of D .

At this point Ekman writes:

Let H and H′ be a deduction with decomposing inferences and its correspond-
ing simple deduction, respectively. Then indeed, H and H′ both represent the
same informal argument. The difference is only a matter of the display of the
inferences. Therefore it ought to be the case that H is normal if and only if H′
is normal. (1994, p. 13)

The translation (E′
g)

� of von Plato’s derivation E′
g into NM is indeed E′. It is beyond

doubt that the quoted passage hints at the possibility to extend the set of conversions
of NMg in such a way that on the extended set of conversions von Plato’s derivation
E′
g fails to normalize as well.
To this we now turn.

A ∧ B

[A]
C ∧E1D

C
A ∧ B

[B]
C ∧E2D

C
A ∧ B

[A][B]
C ∧Eg

C

It is finally worth observing that the notion of decomposing inference is not restricted to elimination rules
only. When applied to introduction rules, it yields what Negri and von Plato (2001, p. 213ff.) called general
introduction rules. More on this in Sect. 5 below.
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4.2 Implication-as-rule vs implication-as-link

As a starting point, we recall Schroeder-Heister’s (2011) proposal to distinguish
between two ways in which the assumption of an implication can be interpreted:
Implication-as-rule and implication-as-link. In natural deduction the two interpreta-
tions correspond to the two distinct forms that the rule of implication elimination may
take (see also Schroeder-Heister 2014).

The adoption of ⊃E yields the implication-as-rule interpretation. Suppose we have
a derivation D of conclusion A. By assuming the implication A ⊃ B we can extend
D as if we had at our disposal a rule R allowing to pass over from A to B:

A ⊃ B
D

A ⊃E
B

D

A
R : A ⇒ B

B

On the other hand, the adoption of ⊃Eg does not amount to assume only the rule
to pass over from A to B, but rather to assume also the existence of a link connecting
two distinct derivations:

A ⊃ B
D

A

n[B]
D ′
C ⊃Eg (n)

C

D

A
R : A ⇒ B

B

.

.

.

[B]
D ′
C

Applications of the rule R correspond—even graphically—to the application of
⊃E. This is not so in⊃Eg , where there is nothing in the structure of the rule which can
be said to correspond to the application of the rule to pass from A to B. The transition
from A to B remains implicit.

The implicit link in ⊃Eg between the two sub-derivations D and D ′ is a form of
transitivity: if B can be derived by means of D from a set of assumptions � (among
which the rule R allowing to pass over from A to B), and C can be derived by means
ofD ′ from some other set of assumptions � together with (a certain number of copies
of) B, then C can be derived from � and � alone.

We wish to defend the claim that the transitivity principle encoded by ⊃Eg hides a
redundancy in the derivation E′

g. In fact, Ekman (1994) himself refers to decomposing
rules as ‘cut-hiding’.

4.3 Implication-as-link and Ekman’s paradox

To state this intuition in a more explicit manner we take seriously the idea that in ⊃Eg

the minor premise A is linked with the assumptions of form B which are discharged
by the application of the rule.

Certain configurations of two consecutive applications of ⊃Eg may thus be viewed
as constituting a redundancy. Consider for instance situations of the following kind:
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A ⊃ B
D

A
B ⊃ A

m
B

n[A]
D ′
C

(n)
C

(m)
C

The formula A which is the conclusion of D is linked by A ⊃ B to the discharged
occurrence of B marked with m. This in turn is linked by B ⊃ A to the discharged
assumptions A marked by n. In other words, the two applications of the general
elimination rule make one jump from A to B and back in a quite unnecessary way.
This intuition, which is essentially Ekman’s, can be spelled out by defining a new
conversion to get rid of redundancies of this kind.

By directly linking togetherD andD ′, both applications of⊃Eg could be eliminated
as follows:

D

[A]
D ′
C

However, this is only possible if in the original derivation no other occurrence of B is
discharged in D ′ by the application of ⊃Eg marked with m.

If suchoccurrences of B are present, than the lower application of⊃Eg is still needed
in order to discharge them. This is perfectly reasonable, since these occurrences of B
do not belong to the detour generated by the links of the two applications of ⊃Eg . We
take the following reduction to be what in NMg corresponds to Ekman (the occurrence
of B in the leftmost derivation constituting the redundancy is encircled and will be
called an Ekmang-redundant formula occurrence):

A ⊃ B
D

A

B ⊃ A
n

B

m[A] n[B]
D ′
C ⊃Eg (m)

C ⊃Eg (n)
C

Ekmang�

Ekmang�
A ⊃ B

D

A

D

[A] n[B]
D ′
C ⊃Eg (n)

C

Observe now that von Plato’s E′
g contains an Ekmang-redundant formula occur-

rence (encircled):

¬A ⊃ A

A ⊃ ¬A
3
A

2¬A
3
A

1⊥ (1)⊥
(2)⊥ (3)¬A

A ⊃ ¬A
6

A

5¬A
6
A

4⊥ (4)⊥
(5)⊥

(6)⊥

(E′
g)
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The redundancy can be eliminated using the following instance of Ekmang:

¬A ⊃ A
D

¬A

A ⊃ ¬A
n

A

m[¬A] n[A]
D ′
⊥

(m)⊥
(n)⊥

Ekmang�
¬A ⊃ A

D

¬A

D

[¬A] n[A]
D ′
⊥

(n)⊥

By applying this instance of Ekmang to E′
g one obtains the following derivation:

¬A ⊃ A

A ⊃ ¬A
3
A

2¬A
3
A

1⊥ (1)⊥
(2)⊥ (3)¬A

A ⊃ ¬A
6
A

5¬A
6
A

4⊥ (4)⊥
(5)⊥ (6)

¬A
8
A

7⊥
(7)⊥

(8)⊥
(Eg)

The encirled occurrence of¬A is the conclusion of an application of⊃I and the major
premise of an application of ⊃Eg and thus it is an ⊃g-redundant formula occurrence.
By applying ⊃g-Red to this derivation, one gets back to E′

g. That is, by enriching the
set of conversions with Ekmang , the process of normalizing the derivations Eg and
E′
g gets stuck in a loop in the same way as that of the derivations E and E′. As already

observed in Sec. 4.1, E′ is the image of E′
g under the traslation � from NMg to NM, and

as the reader can easily check the same is true of E and Eg.
It is easy to see that the foregoing line of reasoning can be extended in a straight-

forward manner to Tennant’s derivation R=
g in NM∈=

g . In particular, the remarks on
the cut-hiding nature of ⊃Eg can be applied to Tennant’s {}=E1 and {}=E2 as well. In
particular, we can define the following general version of the Ekman=-reduction:

{x : A} = s
D

A(t/x)

{x : A} = s

n

t ∈ s

m[A(t/x)] n[t ∈ s]
D ′
C

{}=E2g (m)
C {}=E1g (n)

C

Ekman=
g�

Ekman=
g�

{x : A} = s
D

A(t/x)

D

[A(t/x)] n[t ∈ s]
D ′
C {}=E1g (n)

C

The derivationR=
g

′, likeE′
g, contains a hidden redundancy that can be eliminated using

Ekman=
g . As the reader can check, by applying the reduction one obtains a derivation

that, like Eg, contains an ⊃g-redundant formula occurrence. By eliminating it using
⊃g-Red one gets back to Tennant’s R=

g
′.
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Moreover, the translation �, mapping NMg-derivations onto NM-derivations, can be
easily extended to a translation �∈ mapping NM∈=

g -derivations onto NM∈=
-derivations.

The image of Tennant’s derivation R=
g

′ and of the derivation to which R=
g

′ reduces
via Ekmang are Tennant’s (1978, 1982) derivations R=′ and R= respectively.

4.4 Copy-and-paste subproof compactification

As observed by Tennant, both Ekman and Ekman= are instances of the general reduc-
tion pattern called by Tennant subproof compactification. Crudely put, the adoption
of general elimination rules has the result of chopping up derivations and scattering
around their subderivations. As a consequence, it is natural to generalize subproof
compactification to a reduction pattern that could be called copy-and-paste subproof
compactification: if a derivationD contains a sub-derivationD ′ of A and someassump-
tions of the form A are discharged in D , the result of replacing D ′ for the discharged
assumptions of A may bring to light hidden possibilities of applying subproof com-
pactification. Although some subderivations may have to be copied in the process, the
overall result will be a derivation depending on less assumptions than the original one
and containing less (explicit or implicit) redundancies.

Instances of copy-and-paste sub-proof compactification are not just the conversions
Ekmang and Ekman=

g , but also all other known reductions, in particular ⊃-Red
(and ⊃g-Red), that could be analysed as consisting of one (respectively two) step(s)
of “copy-and-paste”, where the “copy-and-paste” operation could be schematically
depicted as follows:

n[A]
D ′
A

D

C

�
D ′
[A]

D ′
A

D

C

followed by one step of subproof compactification. In the case of ⊃-Red, we would
have:

n[A]
D

B ⊃I (n)
A ⊃ B

D ′
A ⊃E

B

�

D ′
[A]
D

B ⊃I
A ⊃ B

D ′
A ⊃E

B

�
D ′
[A]
D

B

5 General introduction rules and Ekmang

It may be retorted that, compared to Ekmans’s original conversion, the conversion
Ekmang is much less straightforward, and one may wonder whether in the end, it is
not just artificial. We rebut this criticism by observing that Ekmang is as much as
plausible as Ekman. Or at least, that this is the case if one (like von Plato himself) is
willing to accept not only general elimination rules but general introduction rules as
well.
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According to Negri and von Plato (2001), not only elimination rules, but also
introduction rules can be recast in general form, according to the following idea:
“General introduction rules state that if a formula C follows from a formula A, then
it already follows from the immediate grounds for A; general elimination rules state
that if C follows from the immediate grounds for A, then it already follows from A”
(ibid. 217).10

For example, the Prawitz-Gentzen introduction and elimination rules for conjunc-
tion:

A B ∧I
A ∧ B

A ∧ B ∧E1A
A ∧ B ∧E2B

are recast in general form as follows:

A B

[A ∧ B]
C ∧Ig

C
A ∧ B

[A][B]
C ∧Eg

C

As of today there is no systematic study of the properties of natural deduction systems
with general introduction rules. In a recent paper however, Milne (2014) argued for
their significance for the inferentialist project of characterizing the meaning of logical
constants through the inference rules governing them. In this context he suggested
reductions to eliminate consecutive applications of the general introduction and elim-
ination rules for a connective. In the case of conjunction, Milne’s proposal amounts
to the following transformation:

D1

A

D2

B

n
A ∧ B

m1[A]
m2[B]

D ′
C ∧Eg (m1,m2)

C ∧Ig (n)
C

�
D1

[A]
D2

[B]
D ′
C

However, one cannot exclude that the application of the general introduction rule
labelled with (n) discharges some occurrences of A ∧ B in D ′ as well. Such further
occurrences (if any) are not part of the redundancy, and the application of ∧Ig would
still be needed to discharge them. The solution consists in revising Milne’s proposed
reduction as follows:

D1

A

D2

B

n
A ∧ B

m1[A]
m2[B] n[A ∧ B]
D ′
C ∧Eg (m1,m2)

C ∧Ig (n)
C

∧G−Red� D1

A

D2

B

D1

[A]
D2

[B] n[A ∧ B]
D ′
C ∧Ig (n)

C

The conversion ∧G-Red certainly has the flavor of Ekmang . To spell out the analogy
between reductions for general introduction-elimination patterns and Ekmang in full,

10 In fact, general introduction rules are nothing but the decomposing inference corresponding to the usual
introduction rules according to the pattern proposed by Ekman given in Sect. 4.1 above.
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we consider the general version of the introduction and elimination rules for naive set
theory of Prawitz:

A(t/x)

[t ∈ {x : A}]
C ∈Ig

C

t ∈ {x : A}
[A(t/x)]

C ∈Eg
C

and the reduction ∈G -Red associated with ∈Ig and ∈Eg (we call the encircled formula
occurrence ∈G-redundant formula occurrence):

D

A(t/x)

n

t ∈ {x : A}

m[A(t/x)] n[t ∈ {x : A}]
D ′
C

∈Eg (m)
C ∈Ig (n)

C

∈G−Red�

∈G−Red� D

A(t/x)

D

[A(t/x)] n[t ∈ {x : A}]
D ′
C ∈Ig (n)

C

By removing all occurrences of ¬A ⊃ A and of A ⊃ ¬A from von Plato’s E′
g and

replacing all occurrences of A with occurrences of ρ, all applications of ⊃Eg with
major premises¬A ⊃ A or A ⊃ ¬A inE′

g are turned into applications of the following
instances of ∈Ig and ∈Eg respectively:

¬ρ

[ρ]
C ∈Ig

C

ρ

[¬ρ]
C ∈Eg

C

Thus E′
g becomes the following derivation of ⊥ in the system obtained by extending

NMg with ∈Ig and ∈Eg (we call it NMG ):11

3
ρ

2¬ρ
3
ρ

1⊥ ⊃Eg (1)⊥ ∈Eg (2)⊥ ⊃I (3)¬ρ

6
ρ

5¬ρ
6
ρ

4⊥ ⊃Eg (4)⊥
∈Eg (5)⊥ ∈Ig (6)⊥

(R′
G)

The derivation R′
G in fact contains an ∈G -redundant formula occurrence (encircled).

To eliminate this redundancy we can apply the following instance of ∈G-Red:

11 To obtain a derivation in a system in which all rules are in general form, one should have to add an extra
discharged premise in correspondence to the application of ⊃I so to turn it into an application of ⊃Ig :

[ 1A]
D

⊥ ⊃I (1)¬A

���
[ 1A]
D

⊥ 2¬A ⊃Ig (1, 2)¬A

123



Synthese (2021) 199 (Suppl 3):S617–S639 S637

D

¬ρ

n
ρ

m[¬ρ] n[ρ]
D ′
C

∈Eg (m)
C ∈Ig (n)

C

� D

¬ρ

D

[¬ρ] n[ρ]
D ′
C ∈Ig (n)

C

As the reader can check, one thereby introduces a new ⊃g-redundant formula occur-
rence. By getting rid of this redundancy using ⊃g-Red one gets back the derivation
R′
G from which one started.
The relation between the relevant instances of ∈G -Red and of Ekmang is exactly

the same as that between the relevant instances of ∈-Red and of Ekman. Thus, as
Ekman’s reduction canbe seen as encodingRussell’s paradox inNM, the general Ekman
reduction we propose can be seen as encoding the version of Russell’s paradox with
general rules in NMg .

6 Conclusions and outlook

The addition of the conversion Ekman to the standard set of conversions for NM
results in counterexamples to normalization. These can be viewed as simulations in
the propositional setting of the counterexamples to normalization in the extension of
NM with Prawitz’s rules for naive set theory. The “safe” version of Russell’s paradox
proposed by Tennant (1978, 1982) faces the same problem as soon as one considers—
besides reductions to get rid of introduction-elimination redundancies—the further
reduction Ekman=.

Replacing standard elimination rules with their general versions does not help. As
we have shown, it is possible to define general versions of the Ekmanesque reductions,
that can be seen as simulating the reduction for general introduction and elimination
rules for naive set theory. Using these reductions, Ekman’s paradox and Tennant’s safe
version of Russell’s paradox fail to normalize even when formulated using general
elimination rules.

As alreadymentioned, we take these phenomena to call for a thorough investigation
of criteria of acceptability for reduction procedures. In another place (see Schroeder-
Heister and Tranchini 2017) we proposed as a natural criterion that reductions should
preserve the identity of the proof (i.e. the process of reasoning) represented by the
derivations to which they apply. The identity criteria for proofs to be adopted are those
considered in categorial and computational approaches to proof-theory, as they apply
to natural deduction using the Curry-Howard correspondence.

On such an understanding of reductions, neither Ekman nor its variants are accept-
able, but only reductions to get rid of introduction-elimination patterns. Thus, Ekman’s
derivations do not qualify as paradoxical, nor does Tennant’s safe version of Russell’s
paradox, independently of whether standard or general rules are adopted.

As remarked, the phenomenon observed by Crabbé is however unaffected by our
proposed constraint on reductions, thus showing that further work is required for a
thorough analysis of paradoxes along the lines of the Prawitz–Tennant analysis.
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Further investigation is also needed to clarify the exact relatioship between the
Prawitz–Tennant analysis of paradoxes based on normalization failure and the solution
to paradoxes consisting in restricting the use of the cut rule in sequent calculus, a
solution which goes back at least to Hallnäs (1991) and that has been recently brought
up again by several authors, notably Ripley (2013).

Given the close correspondence between normalization in natural deduction and cut
elimination in sequent calculus, the solution to paradoxes arising from the restriction
to normalizable derivations can certainly be seen as anticipating current non-transitive
sequent-calculus-based solutions. The adoption of general elimination rules called for
by Tennant brings the two approaches even closer, given that general elimination rules
more directly correspond to sequent calculus left rules than standard elimination rules.

The results presented in this paper, however, suggest that the relationship between
two two approaches is not as obvious as one may assume. Von Plato’s and Tennant’s
derivations correspond to cut-free derivations, and thereby it is prima facie unclear
to which sort of transformation on sequent calculus derivations, the reductions we
proposed correspond.

Moreover, whereas in natural deduction we have two kinds of derivations (normal-
izable and non-normalizable), in sequent calculus, by ruling out the cut rule from the
outset (as Ripley, but also Tennant in his most recent work, recommend to do) no such
distinction is available, and hence the original Prawitz–Tennant criterion for paradox-
icality based on looping reduction sequences cannot immediately be reformulated in
a cut-free setting.

Arguably, by allowing cut as a primitive rule, a distinction analogous to the one
available in natural deduction can be formulated in sequent calculus as well (that is,
between derivations for which the cut-elimination procedure does or does not enter
a loop) and the reductions for general elimination rules can find a counterpart in the
sequent calculus setting as well. A thorough investigation of these issues must be left
for another occasion.
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