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Abstract—This paper proposes an approach that
predicts the road course from camera sensors lever-
aging deep learning techniques. Road pixels are iden-
tified by training a multi-scale convolutional neural
network on a large number of full-scene-labeled night-
time road images including adverse weather condi-
tions. A framework is presented that applies the
proposed approach to longer distance road course
estimation, which is the basis for an augmented reality
navigation application. In this framework long range
sensor data (radar) and data from a map database
are fused with short range sensor data (camera) to
produce a precise longitudinal and lateral localization
and road course estimation. The proposed approach
reliably detects roads with and without lane markings
and thus increases the robustness and availability
of road course estimations and augmented reality
navigation. Evaluations on an extensive set of high
precision ground truth data taken from a differential
GPS and an inertial measurement unit show that
the proposed approach reaches state-of-the-art per-
formance without the limitation of requiring existing
lane markings.

I. Introduction
Augmented reality navigation applications that sup-

port drivers navigating in unknown environments are
one example of future advanced driver assistance sys-
tems (ADAS). Although this ADAS function is aimed
mostly at urban navigation, where the difficulty lies in
navigating in a complex road network, another use case is
inter-urban navigation, especially for poor visibility con-
ditions (e.g., fog, snow, night, . . . ). Regular navigation
applications leverage a map database and a GPS sensor
for coarse localization. Augmented reality applications,
however, not only require a precise localization but also
a precise road course estimation. Accurate lateral local-
ization and shorter distance road course estimation is
particularly important for realistic augmentations of the
camera image. Common approaches exploit existing lane
and road markings for this task (cf. [1], [2]). Lane and
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Fig. 1: An augmented reality navigation application. The orange tube
displays the longer distance road course while the arrows are pinned to
the road surface and augment the short distance road course. Figures
are best viewed in color.

road markings, though, might not be usable or available
for all inter-urban roads because of damage, soiling or
simple absence.

The image-based road detection approach presented
in this paper classifies each pixel with a deep multi-
scale convolutional neural network (CNN). The CNN
learns feature extractors to identify road pixels in an
integrated fashion. It is therefore capable of reliably
classifying road pixels disregarding the presence of lane
markings. Classified road pixels are homogenized by a
floodfill algorithm to create a coherent road segment.
A road contour is extracted from that segment and
fitted into a spline-based road model, the optical map.
This optical map is fused with processed data from a
map database, the digital map, and a grid map from a
radar sensor to conduct a precise localization and road
course estimation. This is used in the augmented reality
navigation system depicted in Fig. 1.

The approach is trained on a large number of full-
scene-labeled near infrared (NIR) images showing night-
time road scenes including adverse weather conditions.
Localization and road prediction results are evaluated in
extensive experiments against ground truth trajectories
measured by a high precision inertial measurement unit
(IMU) and differential GPS (D-GPS). Evaluation results
show state-of-the-art performance compared to a base-
line approach [3], but no failures when lane markings
are not available. This increases the robustness and
availability of the application.



II. Related Work

Using digital maps as a source for road course estima-
tion at longer distances requires accurate localization.
The precision of common GPS sensors of up to 10m for
localization satisfies the needs of regular navigation sys-
tems but not those of a precise road course estimation, es-
pecially for augmented reality navigation [1]. To achieve a
higher precision for longitudinal and lateral localization,
road course estimation applications fuse multiple sensors
with longer and shorter perception ranges. An exhaustive
overview of different sensor fusion approaches is collated
in [4]. In the following, a few approaches are introduced
that are closer related to the scope of this paper.

Tsogas et al. [5] fuse measurements of a camera, laser
scanner and a digital map based on the clothoid road
model. A Sugeno-fuzzy system determines appropriate
weightings for each of the different sensors dependent
on the prediction distance from the ego-vehicle and the
range of the sensor. The clothoid model, though, is only
able to model cubic road curvatures. Complex curva-
tures, which commonly reside in arbitrary rural roads,
can only be represented by joining several clothoids
together. This, however, would increase the parameter
space considerably and is not modeled by the aforemen-
tioned approach.

The sensor fusion system of Deusch et al. [2] is not
dependent on the clothoid model and the digital map. It
belongs to the category of systems that record a custom
map containing landmarks and sensor data that can be
used to localize the car later on. Coordinates from a D-
GPS sensor are mapped to landmarks extracted from for-
ward and backward looking cameras and the occupancy
grid of a laser scanner. In a recall phase, the regular GPS-
position is refined by matching concurrently extracted
landmarks to those in the database. The creation of a
landmark database, though, is a procedure that needs
to be completed in advance. Moreover, maintenance of
the database has to be performed on a regular basis to
remove landmark errors because of construction works,
etc.

Schüle et. al. [1] describe a framework that fuses a
NIR camera sensor, a radar sensor and a digital map.
It performs longitudinal localization by fusing a radar
grid map and a digital map using a particle filter. Pre-
cise lateral localization is then accomplished by fusing
the longitudinally mapped digital map with an optical
lane recognition algorithm [3] in the camera image. In
subsequent works [6], a Bayesian fusion system that
performs the final road course estimation is introduced.
In both systems, the road course model is not a clothoid
but rather lists of connected 2D points sampling the
right and left borders of the lane. This approach, as
well as all aforementioned approaches, relies on lane
marking detectors for the estimation of an optical map.
To increase the robustness and availability of such a
system, an optical road course recognition is desired that

works independent of lane or road markings.
Seo et al. [7] describe a road boundary estimator based

on intensity distribution thresholding from camera im-
ages. The thresholded intensity distribution is extracted
from a region of interest (ROI) on the inverse perspec-
tive mapped camera image. Extracted road boundaries
are tracked over time by a Bayes filter. Although the
thresholding method is a simple and efficient approach
for detecting road pixels in color images, it might fail for
grayscale night vision images.

Fernández et al. [8] perform road detection by training
decision trees. They use the disparity features of a stereo
camera for a ground plane detection and several hand-
crafted color and texture features to classify superpixels
segmented by a watershed transform. This approach,
though, strongly relies on features not available for
grayscale NIR monocular camera images.

Alvarez et al. [9] describe a road scene segmentation
from single images using a convolutional neural network.
The CNN is trained on publicly available annotated road
scenes that are not necessarily images from the camera
used in the application. To overcome this and allow
adapting to immediate situations, the CNN classification
is fused with the color intensity distribution from an
ROI ahead of the vehicle through a Bayesian framework.
Recent developments of CNN classifiers, though, show
a high transferability of features [10]. If the input data
between the sensors is similar enough, a CNN can be
pre-trained on a big dataset (e.g. ImageNet [11] or
Cityscapes [12]) and adapted to the current sensor with
only fraction of the data needed to train it from scratch.
Apart from that, this approach is not directly suitable for
a road course extraction. Other road users that possibly
occlude parts of the road are not explicitly classified,
what complicates road border extractions in these cases.

Recently, many CNN topologies have been developed
for image classification and subsequently image segmen-
tation tasks [13]–[17]. Used in an image segmentation
setup, the original formulations of these topologies com-
monly do not retain the image resolution in their output.
Long et al. [10] introduced a way to recover resolution
by repeatedly deconvolving the subsampled output and
combining it with feature maps of higher resolution
from earlier layers of the network. This method, though,
requires to iteratively train each deconvolution layer after
another, which is not end-to-end trainable.

To avoid training these deconvolution layers and re-
duce the inherent higher computational cost, Badri-
narayanan et al. [18] introduce a technique that traces
back max pooling activations to perform a smart upsam-
pling of the low resolution pixel classifications. Despite its
advantages, this approach shows a reduced classification
performance compared to rivaling network architectures
(c.f. [12]).

Another way of retaining resolution is the fragmen-
tation scheme of Giusti et al. [19], which removes the
subsampling property of pooling layers and substitutes



Fig. 2: Processing units of the proposed framework.

that with a spatial reordering of the pixels into frag-
mented feature maps. This approach was also picked up
by [20] and exists in modified formulations as Dilated
Convolution [21], A-trous Convolution [22] or Strided
Kernels [23]. Thom and Gritschneder [24] proof that by
using fragmentation, patch-based CNNs can be trans-
formed into computational more efficient image-based
CNNs (FCN), that produce equivalent results to patch-
based networks evaluated at every possible pixel location.

The framework proposed in this paper is based on [1],
but replaces the optical lane detection module from [3]
with a road segmentation module based on deep multi-
scale CNNs. These CNNs are structurally based on [14]
and [15] and use an implementation of the fragmentation
scheme [19] during inference. They are trained on a
dataset of night-time images with a large variety of road
and weather situations with and without lane markings.
This approach therefore increases the robustness and
availability of shorter distance road course estimations
to situations without lane markings or adverse weather
situations.

The remainder of this paper is structured as follows:
Section III describes the framework, while Section IV
presents the road detection module in more detail. Ex-
tensive experiments are described and discussed in Sec-
tion V. Section VI summarizes the results.

III. Framework

To compute a reliable localization and road course
estimation, a framework that fuses different sensor in-
puts is needed. This paper leverages a derivation of
the framework from [1] and is depicted in Fig. 2. The
modules of the framework are as follows: First, radar data
in combination with a tracked ego-motion estimation
produces a grid map. Second, initialized by the GPS
position, the rough location in a commercially available
map database is determined and map parameters for
that location are transformed into a compliant digital
map model. Third, the grid map and the digital map
are fused to produce a longitudinally matched digital
map. The fourth module performs road detection in a
corresponding camera image and produces an optical
map. Finally, the optical map and the matched map are
fused into a laterally matched digital map.

A. Grid Mapping
A grid map is a 2D map representing the local envi-

ronment quantized into equally sized cells representing
occupancy (see Fig. 3). Each cell temporally integrates
respective sensor measurements from a distance measur-
ing sensor and thereby reduces the inherent noise and
uncertainties of singular measurements. In the proposed
framework, data from an imaging automotive radar,
which returns both, the distances of reflections and their
velocities, is stored in the grid map. Since the ego-
vehicle is moving, its relative position on the grid map
needs to be determined by estimating the ego-motion. An
extended Kalman filter with a CTRV-model (constant
turn rate and velocity [25]) leverages the wheel speeds
and yaw rate measurements to accomplish an ego-motion
estimation. The ego-motion estimation is then used to
determine the correct cells where static radar objects are
stored and integrated over time.

B. Digital Mapping
A commercial map database commonly stores its in-

formation in annotated discrete shape points using the
UTM (Universal Transverse Mercator) coordinate sys-
tem. The amount of points per road, the accuracy of such
points and the meta-information per point varies greatly,
since major roads are better sampled and maintained
by database providers. To obtain a continuous local
digital road model, shape points around the current ego-
vehicle’s location are interpolated by a cubic hermite
spline. This creates the digital map, which serves as the
base for the following fusion modules.

C. Map Matching
To estimate the orientation and longitudinal position

of the ego-vehicle on the digital map, the grid map is
fitted into the digital map using a particle filter. Each
particle of the filter represents the position and orienta-
tion of the vehicle and is weighted by how well the digital
map and the grid map fit using various features [26]. The
sampling of the particles is initialized by the previous
position or the GPS position if no previous position is
available.

D. Road Detection
The original Optical Lane Detection module [3] in the

framework of [1] is replaced with the lane-independent
Road Detection module proposed in this paper. In this
processing step, pixels in a camera image belonging to
the currently traveled road are identified. These detected
pixels are used to determine the road boundaries which
are then transformed into and tracked by the optical
map. Further details of this processing step are described
in Section IV.

E. Lane Course Fusion
To increase the precision of the lateral localization,

the optical map is fused with the digital map. Therefore,



Fig. 3: An example of a grid map. The ego-vehicle and its travel direction
are displayed as the orange box with the arrow. The white and gray
dots show integrated values of reflections from the radar sensor. These
reflections are generated primarily by grass, curbs or barriers at the side
of the road. The green lines are splines of the digital map road shape
points matched to the grid map.

lateral coordinates in the ego-vehicle’s coordinate system
are sampled from both maps along the longitudinal tra-
jectories of lane or road borders. Corresponding lateral
positions are linearly interpolated by weighting each
sensor according to its reliability for different distances
from the ego vehicle. The optical map is very reliable
for close distances while the digital map is more reliable
for larger distances. The specific weighting scheme is
described in [1].

IV. Road Detection
The road detection module described in the following

identifies the currently traveled road in a camera image
by performing a pixel classification using deep learning
techniques. It then extracts and tracks the left and
right road border taking into account uncertainties and
border-occlusions by other road users. It then computes
the optical map that can be fused with the digital map.

A. Scene Labeling
The scene labeling module proposed in this paper

is a deep multi-scale CNN. It combines the approach
of [15] with the multi-scale scheme of [14]. [15] introduces
network topologies characterized by many convolution
layers with small convolution kernels and comparatively
few pooling layers. Many convolution layers increase
the amount of non-linearities and thus the capability
of the network to learn complex classification functions.
If small convolution kernel sizes are used, the increase
of convolution layers does not necessarily lead to a
drastic increase of computational complexity. Multiple
scales further improve the scale-invariance of the network
without increasing its depth. Smaller input patches for
each scale can be used than for deeper single-scale CNNs
because the input patches of higher scales de facto cover
a larger context of the input image. Multiple scales also
increase data parallelism over sequential networks, which
is often exploited by parallel hardware (e.g. GPUs) to
increase its occupancy. Since real-time performance is
needed for augmented reality applications, techniques
from [19] and [24] are implemented for a computational
efficient application of a CNN to entire images.

Multi-scale neural networks process multiple scales of
the same input data concurrently. In this approach, an
image pyramid of nl levels is constructed by reducing

Fig. 5: Fragmentation of a 2 × 2 pooling. The interleaved feature map
pixels of an overlapping pooling are reordered to produce 4 independent
subsampled feature map arrays.

the image resolution by 0.5 in both dimensions for each
new level. This is the smallest integer downscaling factor.
Each pyramid level is then normalized to zero-mean
unit-variance in a local neighborhood, which enhances
the texture and equalizes bright and dark areas in the
image. The normalized image pyramid levels are then
fed to their respective branches of the neural network. All
branches of the network are built with the same structure
and are finally joined in a fully-connected layer that also
serves as the output layer of the network. A diagram of
possible network topologies of the above defined multi-
scale CNN is depicted in Fig. 4.

Though each branch is structurally identical, no
weights are shared between the branches. A branch
overall consists of alternating np pooling layers and nb =
np + 1 convolution layer blocks. Every convolution layer
block consists of nc convolution layers that use the ReLU
function: ReLU(x) = max(0, x) as activation function.
The size of the filter bank nf is identical within each
convolution layer block and is doubled after each pooling
layer. The kernel size of the convolution kernels kc is the
same in all convolution layers.

In a patch-based application of the proposed network,
correctly sized image patches need to be extracted from
the normalized image pyramid levels prior to feeding
them to the branches. Applying the CNN efficiently to
complete images while retaining the full image resolution
requires slight changes in various layers and the introduc-
tion of several helper layers into the network (see [19]
and [24]). These changes are explained in the following.
1) Overlapping Pooling: In an image-based appli-

cation, pooling layers, which are normally strided
(
∏

stridekp
> 1) according to their kernel size kp, need

to be applied in an overlapping fashion (
∏

stridekp = 1),
so that no resolution is lost.
2) Fragmentation: Fragmentation layers need to be

inserted after each pooling layer. They split the oversized
feature maps of the preceding layer into

∏
stridekp

fea-
ture maps of reduced resolution, which are processed in-
dividually afterwards. This ensures that the subsampling
property of the pooling functions is preserved without
loosing resolution. Fig. 5 depicts a 2× 2 fragmentation.
3) Defragmentation: A defragmentation layer is

needed after the last convolution block before all
branches are joined. It reverts all performed fragmenta-
tions and transforms the fragmented feature map arrays



Fig. 4: Diagram of possible network architectures. A preprocessing step generates a normalized image pyramid of nl levels. Each level performs an
inference in its own CNN branch that consists of alternating convolution blocks and pooling/fragmentation layers. The fragmented feature maps of
all branches are defragmented, upscaled and consolidated in a convolutional fully-connected layer that produces a probability map for each class.
From these probability maps a final pixel classification is generated, the class membership map.

into one cohesive feature map array that has the same1
resolution as the corresponding input pyramid level.
4) Upscaling: After defragmentation, the feature map

arrays of lower pyramid levels need to be sampled up
and eventually cropped so that they match the resolution
of the lowest pyramid level. In this manner, the feature
maps of all scales can be concatenated and used as an
input to the fully-connected layer.
5) Convolutional Fully-Connected Layer: The fully-

connected layer is applied in a convolutional fashion to
emulate the patch-based functionality. To achieve this,
fully-connected layers have to be transformed into con-
volution layers with as many input channels as incoming
feature maps. This technique is the crucial step to turn
a patch-based network into an image-based network and
is commonly denoted as FCN.

B. Road Segmentation
A CNN, such as outlined above, generates a class

membership map, in which every pixel is assigned to
one of the trained classes. The class membership map
of the preceding step needs to be segmented such that a
cohesive road segment can be extracted. Fig. 6 displays
a road segmentation generated by the following steps.

Assuming that the biggest connected group of clas-
sified road pixels approximates the actual connected
group of road pixels, detached road pixel clusters can be
neglected. Holes in the connected group of pixels are then
filled leveraging a flood-fill algorithm. The algorithm is
seeded at the bottom of the image, since that is supposed
to be part of the road in most of the cases.

A contour is extracted from the segmented road pixels
by using the snake algorithm of [27]. The left and right
road border is then determined by splitting the contour
in half at the highest central contour point. The road
contours are ignored at all border pixels of the camera
image. Contour pixels that are adjacent to pixels clas-
sified as other road-users, such as vehicle pixels, are
ignored as well, since road users might conceal parts of
the correct road border. Finally, the remaining contour
pixels are transformed into the digital map’s coordinate
system and stored for tracking in the following frames.

1Valid convolutions might crop some border pixels.

Fig. 6: The green area displays a road segmentation. The blue area
depicts a detected vehicle. The red and the blue lines denote the left
and right border of the detected road. The green lines (e.g. adjacent to
the vehicle area) denote ignored border pixels.

Fig. 7: Road border and center estimates projected to the grid map. The
right border shows a big variance and missing values over time. So the
shape points of the right border are supported by the center points and
the left border.

C. Road Border Shaping

To compute the optical map needed in the following
fusion step, the tracked road border estimates need to
be fitted into a conclusive road model. All estimates are
longitudinally binned, with each bin representing a road
border shape point. The values of each bin are analyzed
to compute a reliability measure of that particular road
border shape point. The bin medians are used as the
shape points for fitting a spline, while the interquartile
range determines if a shape point is used in the spline
computation. Exploiting meta-information contained in
the digital map, other track splines, like lane borders,
can be interpolated from the left and the right border
splines. If preceding processing steps continuously fail to
deliver usable measurements for one road border (e.g., in
sharp curves) that road border can be extrapolated by
the other road border and the other track splines. Fig. 7
displays a spline fitting for unreliable measurements.



A: regular B: wet road C: rain D: heavy snowfall E: bad lane markings

Fig. 8: Example images for the five evaluation sequences showing various road and weather conditions.

V. Experiments

The performed experiments are twofold. First, various
network topologies were redundantly trained and eval-
uated with respect to their classification performance
(Section V-B). The dataset for training and evaluating
the classifiers consists of 7095 full scene labeled images
from an NIR camera of rural road sequences at night
containing a large variety of weather situations, seasons
and landscapes. Second, the optical map of the best
performing classifiers were compared to the standard
optical map from [3] using the fusion framework from [1]
(Section V-C). The evaluation is performed on five night-
time sequences resulting in 13.5 km of driven distance
with a ground-truth trajectory taken from a D-GPS
sensor and a high accurate IMU. Fig. 8 shows examples
images of these sequences.

A. Training of the CNN
Only certain combinations of parameters mentioned in

section IV-A are used in the experiments. The influence
of the number of pyramid levels (nl), the deepness of
the network while retaining the input patch size (nc, kc)
and the initial number of filters of the first convolution
block (nf ) were evaluated. The topologies are therefore
denoted as topo-nl-nc-nf , with a parameter range of
nl ∈ [1..5], (nc, kc) ∈ {(1, 7), (3, 3)} and nf ∈ {16, 32}.
Parameters nc and kc have to be chosen such that the
input patch size stays the same, which holds for the above
defined tuples. The kernel size of the max pooling layers
is fixed at 2×2 pixels for all pooling layers in all topology
variants. Topology topo-4-1-32, for example, has the
following parameters: nl = 4, (nc, kc) = (1, 7), nf = 32.

All scene-labeled images are split into a set of 6895
images for training and a set of 200 images for evaluation.
The original resolution of 512× 1024 pixels of the input
images is scaled down to 256 × 512 and padded by 46
(the amount of border pixels lost due to the use of
valid convolutions) resulting in 302×558 pixels. To train
the topologies, multinomial logistic regression performs
a stochastic gradient descent leveraging the backprop-
agation algorithm [28] with linear learn rate annealing.
The target classes consist of the default class background
and specific classes: road, vehicle, sky, vru (vulnerable
road users) and infrastructure. Training examples are
sampled patch-wise and class-balanced for an equal but
random distribution of examples per class. The trainable
parameters of the networks are initialized by random-
sampling a Gaussian distribution. Learn rates for each

topology are empirically determined by choosing the
best performing learn rate in various mini-trainings.
With the selected learn rate full trainings are performed.
After completion, the biases of the fully connected layers
are adjusted such that the multi-class extension of the
Matthews Correlation Coefficient (MCC) [29] is opti-
mized. To ensure that equal topologies perform similarly,
each topology is trained three times. All trainings were
conducted with cuda-convnet [13].

B. Scene Labeling Results

Table I shows the classifier performances with regard
to several measures and their processing times. Those
measures are the MCC [29], the overall accuracy (ACC),
the intersection over union (IU) as an average over all
classes (IUglobal) and specifically for the road (IUroad)
and vehicle class (IUveh). The IU measure is defined
as:

IU = TP
TP ∪ FP ∪ FN (1)

where TP (true positives) is the amount of correctly
classified pixels and FP ∪ FN (false positives and false
negatives) the amount of wrongly classified pixels regard-
ing one specific class. The table shows the average result
for one multiple trained topology of the individually
evaluated classifiers. The timings have been performed
on an NVIDIA GTX 970 using CUDA-7.5 and CUDNN-3
including up- and downloading of the data and preallo-
cated memory.

Topology topo-1-1-16 is comparable to the best per-
forming topology of [9]. According to Table I, this topol-
ogy achieves the lowest performance. Other topologies
are therefore encouraged for road segmentation tasks.
Topologies topo-[3..5]-3-32 perform best regarding
most of the measures. This implies that an increase of
pyramid levels after level 3 has almost no effect to the
best performing topology variant. Fig. 9 shows this effect
in a graphical display of the MCC performances depen-
dent on the pyramid levels. Best performing topologies
topo-[3..5]-3-32 take 75.6 to 80.61ms per frame to
be computed, which results in 13.23 to 12.41 frames
per second. Switching to topologies topo-[3..5]-3-16,
which take 28.53 to 32.11ms, theoretical framerates of
35.05 to 31.14 frames per second can be achieved without
a significant drop of classification accuracy. This shows
that these topologies can be used in real-time applica-
tions.



TABLE I: Performance evaluation of the trained network topologies
with respect to various quality measures and their processing time (in
milliseconds). Best performing values are marked in bold font.

Name MCC ACC IUglobal IUroad IUveh ms

topo-1-1-16 0.56 0.69 0.40 0.67 0.31 14.55
topo-1-1-32 0.60 0.71 0.43 0.70 0.38 45.81
topo-1-3-16 0.61 0.72 0.44 0.70 0.38 19.19
topo-1-3-32 0.66 0.75 0.48 0.75 0.45 53.43
topo-2-1-16 0.66 0.76 0.48 0.78 0.42 19.56
topo-2-1-32 0.70 0.78 0.51 0.82 0.48 59.71
topo-2-3-16 0.71 0.79 0.52 0.82 0.49 25.68
topo-2-3-32 0.72 0.80 0.54 0.83 0.52 69.45
topo-3-1-16 0.71 0.79 0.52 0.84 0.48 21.73
topo-3-1-32 0.73 0.81 0.54 0.86 0.52 64.48
topo-3-3-16 0.75 0.82 0.56 0.86 0.55 28.53
topo-3-3-32 0.76 0.83 0.58 0.87 0.57 75.60
topo-4-1-16 0.73 0.80 0.53 0.86 0.46 23.31
topo-4-1-32 0.73 0.81 0.53 0.86 0.49 66.67
topo-4-3-16 0.75 0.82 0.56 0.86 0.56 30.43
topo-4-3-32 0.77 0.83 0.59 0.88 0.58 78.69
topo-5-1-16 0.71 0.79 0.50 0.85 0.43 24.91
topo-5-1-32 0.71 0.79 0.51 0.86 0.46 68.56
topo-5-3-16 0.75 0.82 0.56 0.87 0.56 32.11
topo-5-3-32 0.77 0.83 0.57 0.88 0.59 80.61

1 2 3 4 50.55
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0.7

0.75

0.8
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Fig. 9: The MCC of various topology variants in relation to the amount
of pyramid levels.

C. Lane Course Prediction Results
In the following, the fusion system performance is

evaluated using the best performing classifier for each
topology variant in relation to the optical lane recogni-
tion from [3] and the system without the optical map.
The performance measure is taken from [1]. It compares
the deviations of the road course estimations from the
ground truth trajectory for different distances to the
ego-vehicle. Since [1] have shown that their fusion al-
gorithm benefits primarily short range estimations, only
the average performances of the five sequences for short
range estimations (0-30m) are displayed in Table II.
The final row displays the failure rates of the lane-
based recognition (percentage of frames, where no lane
markings are detected). It should be noted that the lane-
based recognition measure is solely computed for frames,
which contain detected lane markings.

Table II displays that the CNN-based optical map
approach performs slightly worse for sequences con-
taining good lane markings (A,B), but better for se-
quences with bad weather (C,D) or bad lane mark-
ings (E). Considering the better performing topologies
(topo-[3..5]-*-*), the CNN-based optical maps show
a similar range of performance values (~ 28 cm) for se-

TABLE II: Estimation error for the five sequences A-E (smaller is
better). Leaving out the optical map leads to significant deviations (first
row) of the error. Lane based estimation [3] performs better on scenes
where the lane is clearly visible (A, B) but has a significant failure in
all other conditions (C-E). Our approach generates robust estimations
for all scenes.

Name average error [m] short range (0-30m)
A B C D E

w/o optical map 1.94 2.74 3.39 2.19 2.40

topo-1-1-16 0.28 0.38 0.31 0.77 0.33
topo-1-1-32 0.27 0.33 0.27 0.64 0.29
topo-1-3-16 0.28 0.33 0.35 0.74 0.35
topo-1-3-32 0.25 0.29 0.26 0.53 0.27
topo-2-1-16 0.25 0.30 0.35 0.73 0.31
topo-2-1-32 0.26 0.30 0.33 0.65 0.28
topo-2-3-16 0.26 0.31 0.33 0.64 0.31
topo-2-3-32 0.27 0.29 0.30 0.72 0.27
topo-3-1-16 0.25 0.29 0.28 0.65 0.28
topo-3-1-32 0.25 0.30 0.26 0.70 0.29
topo-3-3-16 0.26 0.30 0.26 0.61 0.29
topo-3-3-32 0.26 0.31 0.29 0.64 0.28
topo-4-1-16 0.25 0.29 0.34 0.70 0.32
topo-4-1-32 0.25 0.28 0.28 0.47 0.29
topo-4-3-16 0.27 0.30 0.32 0.67 0.33
topo-4-3-32 0.26 0.27 0.23 0.57 0.27
topo-5-1-16 0.27 0.29 0.26 0.55 0.30
topo-5-1-32 0.26 0.29 0.31 0.61 0.28
topo-5-3-16 0.25 0.29 0.30 0.58 0.31
topo-5-3-32 0.26 0.28 0.28 0.54 0.28

lane-based [3] 0.19 0.25 0.50 0.89 0.33
failure rate 6% 8% 65% 93% 23%

quences A-C and E . Contrary to that, the lane-based
approach shows a greater variance there, ranging from
19 cm (seq. A) to 50 cm (seq. C). This implies that the
CNN-based approach is performing more robustly than
the lane-based approach, although the peak performance
of the latter might not be reached.

Sequence D is an exception regarding this robustness.
Its performance ranges from 50 cm to 60 cm for the
CNN-based and 89 cm for the lane-based approach. This
sequence contains severe snowfall and thus, poses a big
challenge to sensor processing and detection algorithms.
While the CNN-based approach robustly delivers road
course estimations for all frames (see Fig. 10 for an
example augmented image), the failure rate of the lane
marking detection exceeds 90%. This means that the
lane-based approach is practically inapplicable and needs
to switch to a mode without optical map. The perfor-
mance of that mode, though, is always much lower than
with an optical map (see first row of Table II).

VI. Conclusion
This paper presented a deep multi-scale convolutional

neural network based approach for camera-based road
course prediction and localization at night. Various net-
work topologies were trained that reliably detect road
and vehicle pixels, from which an optical map is ex-
tracted. Deeper topologies with a higher number of filters
per convolution layer perform better, while an increase
of pyramid levels after level three does not increase the
performance considerably. The extracted optical maps
have been successfully fused with a digital map to refine
the lateral localization. Compared to a baseline lane-
based algorithm, the approach proposed in this paper



Fig. 10: Augmented reality navigation example for sequence D. Despite
the non-existent lane markings and the heavy image distortions due
to weather conditions, the approach proposed in this paper is able to
reasonably augment the image.

shows a slightly worse performance for optimal road
and weather conditions. However, contrary to the base-
line, our approach performs consistently well for various
weather conditions, even if lane markings are missing.
This demonstrates that state-of-the-art performance can
be achieved while increasing the robustness and applica-
tion scope to situations, where traditional lane marking
detection is not possible.
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