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Abstract. We present a Direct Visual Odometry (VO) algorithm for
multi-camera rigs, that allows for flexible connections between cameras
and runs in real-time at high frame rate on GPU for stereo setups. In
contrast to feature-based VO methods, Direct VO aligns images directly
to depth-enhanced previous images based on the photoconsistency of all
high-contrast pixels. By using a multi-camera setup we can introduce an
absolute scale into our reconstruction. Multiple views also allow us to
obtain depth from multiple disparity sources: static disparity between
the different cameras of the rig and temporal disparity by exploiting
rig motion. We propose a joint optimization of the rig poses and the
camera poses within the rig which enables working with flexible rigs. We
show that sub-pixel rigidity is difficult to manufacture for ≥720p cameras
which makes this feature important, particularly in current and future
(semi-)autonomous cars or drones. Consequently, we evaluate our ap-
proach on own, real-world and synthetic datasets that exhibit flexibility
in the rig beside sequences from established KITTI dataset.

1 Introduction

Visual Odometry (VO) and Self Location And Mapping (SLAM) systems tradi-
tionally are feature-based approaches: Distinct features are tracked over many
frames. The scene reconstruction, i.e. determining for all frames the parameters
of the camera poses and the positions of all scene points, is usually formulated
as a least squares optimization problem that aims at minimizing the difference
between the observed feature positions in the images and the reprojections of
the scene points into the frames.

Direct methods instead maintain per pixel depth information for several
keyframes which allows the keyframe’s image to be projected into other frames,
given the camera’s intrinsic parameters and its relative pose to the keyframe.
The camera poses of new frames can be found by minimizing the photometric
error between the keyframe projected into the new frame and the new frame
itself. When the relative camera transformation between the keyframe and an-
other frame is known, depth information of the keyframes is improved with stereo
depth estimation techniques.

With a stereo camera rig, the quality of the depth maps of the keyframes can
be improved by applying not only the dynamic stereo between a keyframe and
its subsequent frames, but also by applying static stereo between two images
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that were recorded by the rig at the same time with known rig intrinsics (poses
of the cameras relative to the rig) [1].

It turns out that direct VO methods are much less forgiving to bad calibra-
tions as feature-based VO methods. Feature-based methods optimize based on
distances on the image which increase gradually when the calibration becomes
bad. Direct methods optimize based on photoconsistency in a small window
which can be arbitrarily bad if the calibration is just one pixel off.

While the intrinsic parameters of cameras can usually be controlled with pixel
precision and the tracking of the rig’s pose works just as precise, the rig intrinsics
can’t be assumed to be static enough for sub pixel precision over time, especially
for higher resolution cameras, large baselines and/or material/cost/weight limi-
tations of the rig. Deflection theory shows that two 0.5 kg cameras mounted on
a 300x25x4 mm stainless steel carrier are rotated by 0.56◦ against each other
when an acceleration of ±1 g is applied (see supplemental material). This already
introduces significant errors if the rig flexibility is not concerned (see Fig. 1).

In this paper, we propose a method that extends existing, direct monocular
or stereo VO approaches with per frame rig intrinsics tracking for multi-camera
rigs. We target on high-frequency rotations of the cameras in the rig up to a few
degrees which are hard to avoid but harmful to conventional direct VO methods
(see Fig. 1,2). For each keyframe, we maintain per pixel depth information for
the images of all cameras. For every new frame, we optimize for the rig’s pose
as well as for its intrinsics based on the photometric error between every image
of the keyframe and every new image. This way, we find consistent poses for all
cameras of the rig by utilizing the information that is available in all images.

In fact, we can even choose (1) the pairs of keyframe / new frame images that
should be used for tracking and (2) the new frames’ or keyframes’ images that
should be used to improve the depth information of the keyframe images. This
flexibility can be used to balance between computation speed and reconstruction
quality as well as to adjust the processing to the rig configuration, e.g. avoid
direct interaction of cameras that never see the same field of view (FoV).

We implemented most of our algorithm on the GPU using CUDA to address
the increased computational demands compared to a monocular setup.
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Fig. 1. ROC evaluation of the depth quality on a synthetic dataset (720p, 90◦ FoV
camera). Note that even for small camera rotations inside the rig of 0.56◦, taking the
rig flexibility into account improves the results very significantly: For a 3% threshold,
the recall is 49.4% (rigid model) vs. 85.9% (flexible model).
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Fig. 2. Comparison of the depth maps reconstructed without (center) and with (right)
flexible rig optimization. The original frames are shown on the left. Without flexible
tracking, tracked frames cannot be aligned consistently to the last keyframe. This leads
to a bad alignment of projected depths onto image gradients and therefore to stereo
errors which result in incomplete and noisy depth maps (center), while flexible tracking
does not suffer from those issues (right).

Please note that building a globally consistent reconstruction of a scene in-
cluding loop closing and global error distribution is out of the scope of this
document. However, our technique can be used as a plugin replacement for the
VO part of other SLAM systems.

2 Related Work

The proposed approach reconstructs camera poses as well as the scene structure,
so we consider VO / SLAM methods as well as Structure from Motion (SfM)
and Multi View Stereo (MVS) techniques in this section.

2.1 Visual Odometry and SLAM

Most VO and SLAM methods are feature-based. Chiuso et al. [2] presented one
of the first real time capable, monocular, feature-based SLAM systems. Nistér et
al. [3] established the term ”Visual Odometry” by presenting a feature tracking
based system for frame-to-frame monocular or stereo camera pose estimation.
Davison et al. [4] proposed MonoSLAM which is an Extended Kalman Filter
(EKF) based method that creates a probabilistic but persistent map of natural
landmarks and is therefore drift free in small workspaces. PTAM [5] is designed
to avoid the iterative tracking and mapping per frame by separation into two
concurrent threads: The mapping thread integrates all previously tracked camera
poses and features into a consistent representation in the background while the
tracking thread tracks every new frame against the newest available map. Paz
et al. [6] combine an EKF-based framework with a stereo camera setup.

Direct methods for VO and SLAM are available for some years now and have
two major benefits over the feature-based methods: First, there is no need to
craft a feature detector. Second, not only the information from sparse feature
points but virtually any gradient information in the images can be used for
reconstruction. Direct monocular methods first appeared in the RGBD domain
[7, 8] where the per pixel depth information comes directly from the sensor and
only the tracking has to be performed. The first direct real-time method relying
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solely on color images is LSD-SLAM [9] which tracks each new frame to the
previous, depth-enhanced keyframe based on dense image alignment. Then, the
keyframe’s depth information is updated by probabilistically merging it with
the depth information obtained from stereo with the previously tracked frame.
LSD-SLAM was extended to stereo cameras [1] where tracking only happens on
the left camera. This is in contrast to our approach which allows for tracking
between multiple cameras. Consequently, in [1], a depth map is maintained only
for the left camera; the right images are just used for static stereo with the
corresponding left images which improves the keyframe’s left depth map and
introduces an absolute scale to the reconstruction. This is however not feasible
if the rig intrinsics change over time. In addition, we show that we can reconstruct
datasets from rigs with few overlap between the fields of view of the cameras
by utilizing the information from all cameras where methods like [1] fail (see
Section 4.4). Pillai et al. [10] accelerates the depth estimation for stereo pairs by
starting from few sparse, Delaunay triangulated piecewise planar surfaces which
can be refined in multiple iterations in areas where the matching cost is high,
e.g. due to non-planarity. A substantially different approach is the method of
Comport et al. [11] which avoids the explicit reconstruction of scene depth and
uses the quadrifocal constraints from two pairs of stereo images to obtain the
transformation of the camera rig instead.

2.2 Structure from Motion and Multi View Stereo

SfM (usually feature based) with subsequent MVS (dense, direct surface recon-
struction) is similar to SLAM since both reconstruct consistent 3D models and
camera poses from images. However, SfM+MVS methods traditionally aim more
at image collections instead of videos and reconstruction quality instead of real
time processing with low latency. Recently, there have been efforts to develop
SfM / MVS methods that utilize the redundancy of video streams to achieve
close-to-real-time performance. Resch et al. [12] have accelerated SfM by the
consequent subsampling of frames, features, scene points and loop closure can-
didates in their Bundle Adjustment framework and employing a linear solver to
keep unsampled frames consistent. The MVS methods in [13, 14] compute depth
maps based on the photoconsistency with up to 100 other images but compare
for photoconsistency based on 1x1 pixel masks only.

Delaunoy and Pollefeys propose a Photometric Bundle Adjustment [15] which
is designed to recover camera parameters and a dense surface mesh based on the
photometric error between observed and model-based, generated images.

3 Multi-view VO for flexible camera rigs

In this section we’d like to introduce our method. Fig. 3 shows an overview of
the originally monocular LSD-SLAM algorithm [9] and our extensions.
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Fig. 3. Overview over the LSD-SLAM algorithm and our extensions.

LSD-SLAM tracks the camera poses of new images against a previous, depth
enhanced keyframe. If the current keyframe is still good for tracking (content sim-
ilar to the new frame), new depth information is estimated with a stereo method
between the new image and the keyframe and is merged into the keyframe. If the
keyframe is not good enough anymore, it gets propagated to the current image.
A mapping component finally cares about global consistency of all keyframes.

Our method allows for multiple input images from multiple cameras per frame
and stores depths for all cameras of a keyframe, consequently. We extended
the tracking to optimize for the rig pose and the rig intrinsics (camera poses
within the rig) jointly (Section 3.2). For stereo cameras, we propose a reliable rig
parameterization in Section 3.3. Tracking gives us the transformation from every
keyframe image to every new frame’s image, so we can generate multiple stereo
observations per keyframe (Section 3.4). In order to utilize all that information,
we extended the Bayesian depth merging approach (Section 3.5).

However, we’d like to start by introducing the aspects of LSD-SLAM [16, 9]
that are important to our method first:

3.1 LSD-SLAM

LSD-SLAM is a direct, semi-dense, monocular Self Location And Mapping ap-
proach. It consists of the following steps (see Fig. 3):

1. Tracking has the goal of finding the relative transformation ξij of the camera
from the last keyframe Ki = {Ii, Di, Vi} to the most current image Ij . For
keyframes, a semi-dense, inverse depth map Di as well as the variances Vi of the
inverse depth values are assumed to be available beside the pixel intensities Ii.
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A new image is aligned to the previous keyframe by Levenberg-Marquard
(LM) minimization of the photometric error

E(ξij) =
∑
p

(Ii(p)− Ij(ω(p,Di(p), ξij)))
2 (1)

between every pixel p in the keyframe’s image Ii and the intensity at the cor-
responding location in the new image Ij , obtained by warping p based on its
depth Di(p) and the camera transformation ξij . The intrinsic camera calibra-
tion π : R3 −→ R2 × R transforming from view space to an image position plus
depth is used to define the warping function

ω(p, d, ξ) = [(π ◦ ξ−1 ◦ π−1)(p, d)]p. (2)

Note that ξ is the transformation of the camera, so ξ−1 has to be used to
transform the points relative to the camera.

Tracking is performed on an image pyramid in a coarse-to-fine manner: A
coarse representation helps to converge even with high disparities, fine details
provide exact tracking at the end.

After tracking, a decision about creating a new keyframe is made based upon
the distance that the camera covered since the last keyframe and the number of
pixels that could be used for tracking. Depending on the decision, steps 2 and 3
or step 4 are executed.

2. Depth estimation produces a new inverse depth map D̂i and a correspond-
ing variance map V̂i, using a stereo method on the image intensities Ii and Ij
by using the previously obtained camera transformation ξij .

Depth D̂i is obtained for all pixels that exhibit a sufficiently large gradient
∇Ii(p) along the Epipolar Line (EPL) by brute force evaluation of the Sum of
Squared Differences (SSD) error in a 5x1 pixel mask (aligned with the EPL). The
depth is further refined by second order Taylor approximation. The search range
for each pixel p on the EPL corresponds to the depth range (Di(p)± 3Vi(p)).

The variance values V̂i(p) are estimated based on the photometric disparity

error (≈ camera noise
|∇Ii(p)| ) and the geometric disparity error (≈ 1/〈 ∇Ii(p)|∇Ii(p)| ,

EPL
|EPL| 〉,

i.e. it is large if the image gradient is orthogonal to the EPL direction), both
determined in the image domain and transformed to the inverse depth domain.

3. Probabilistic depth merging is used to update the previous keyframe
depths Di and variances Vi with the new estimations D̂i and V̂i. This is done
by multiplying the distributions according to the update step in a Kalman fil-
ter: Given a prior distribution Nprior = N (Di(p), Vi(p)) and a new observation

Nnew = N (D̂i(p), V̂i(p)), the posterior is given by

Npost = Nprior · Nnew = N

(
Vi(p)D̂i(p) + V̂i(p)Di(p)

Vi(p) + V̂i(p)
,
Vi(p)V̂i(p)

Vi(p) + V̂i(p)

)
. (3)

After depth and variance have been updated, smoothing and hole filling are
applied to Di and Vi.



Real Time Direct Visual Odometry for Flexible Multi-Camera Rigs 7

4. Depth map propagation establishes a new keyframe by propagating depth
and variance information from the previous keyframe to the currently processed
frame. A forward mapping from the keyframe to the new frame is established by
using ω (see Equation 2) and depths and variances are assigned to the closest
pixel in the new frame’s image.

After the depth propagation, the new depth and variance maps are subject
to removal of occluded pixels, hole filling and smoothing.

5. Map Optimization Every keyframe is added to the mapping component of
LSD-SLAM which integrates it into a complete, globally consistent map of the
reconstructed scene, caring about loop closing and tracking error distribution
over the whole scene. This fifth step is out of scope of our method and just
mentioned for completeness.

3.2 Tracking flexible multi-camera rigs

The following subsections describe our contributions for enabling multi-camera,
flexible rig VO, starting with the tracking part where we optimize for the rig
pose and the rig intrinsics concurrently:

For multi-camera rigs, if the ith frame is a keyframe Kli = {I li , Dl
i, V

l
i }, it

contains image intensities I, inverse depths D and inverse depth’s variances
V for every camera l of the rig. For tracking, we introduce the extrinsic rig
transformation ζij and the rig intrinsics ϕi = (ϕc1i , ϕ

c2
i , ...) that can be different

for every frame i and expand to a rig-to-view-space transformation for every
individual camera of the rig.

For using potentially all information that is available in all images of the
keyframe and the frame to be tracked, the photometric error expands to

E(ζij , ϕj) =
∑
ci

∑
cj

(
ft(ci, cj)

∑
p

(Icii (p)− Icjj (ω(p,Di(p), ζij , ϕ
ci
i , ϕ

cj
j )))2

)
.

(4)
ci and cj are iterating over the individual cameras of the keyframe’s or the

tracked frame’s rig. The mapping ft : N2 → {0, 1} is user defined and can be
used to disable pairs of cameras for tracking, e.g. if their fields of view do not
overlap at all or for performance reasons (see also Fig. 6).

For the extended photometric error, we need an extended warping function
that projects an image position p and its depth d to the viewspace of a keyframe’s
camera, then to the keyframe’s rig space, then to the tracked frame’s rig space,
to the tracked camera’s view space and into the tracked camera’s image:

ω(p, d, ζ, ϕcii , ϕ
cj
j ) = [(π ◦ ϕcjj ◦ ζ

−1 ◦ ϕcii
−1 ◦ π−1)(p, d)]p. (5)

Note that for introducing a new rig configuration to our system, it is sufficient
to specify ϕi, i.e. a rig-to-view-space transformation for each camera (for flexible
rigs: based on some rig parameters which may change for each frame i).
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For solving the minimization problem with the LM algorithm, we have to
solve the augmented normal equations (please refer to [17] for its derivation)

(JTJ + µI)δζϕ = JT ε (6)

for δζϕ = (δζ , δϕ) to improve our parameters with ζn+1 = ζn + δζ and ϕn+1 =
ϕn+ϕζ . µ is a damping factor which controls if the updates δζϕ are Gauss Newton
or small gradient descent steps. J = ( ∂E∂ζ1 , ...,

∂E
∂ζ6

, ∂E∂ϕ1
, ∂E∂ϕ2

, ...) is the Jacobian
matrix, containing the derivatives of the error function to all rig pose and rig
intrinsics parameters. Note that each ∂E

∂... is a column vector with one element
for each ()2 term of Equation 4. We know that the pose of one camera on the rig
just has 6 degrees of freedom (DoF), so we prefer to evaluate Jc = ( ∂E∂ξ1 , ...,

∂E
∂ξ6

).
To achieve this, we approximate the known transformation from rig pose ζ and
rig intrinsics ϕ to camera pose ξ locally and linearly for every camera c with the
matrix

Jζϕ→ξc = (R|Cc) R =

(
∂ξi
∂ζj

)
i,j=1...6

Cc =

(
∂ξi
∂ϕcj

)
i=1...6;j=1...

. (7)

By using this transformation, we can calculate δξ = Jζϕ→ξc δζϕ. From the
chain rule it follows that we can replace J = Jc(J

ζϕ→ξ
c )T in Equation 6.

This way, we only have to evaluate the minimum number of derivatives but
are able to transform them to a Jacobian for any arbitrary rig parameteriza-
tion. In addition, this helps to keep the GPU code independent from the rig
parameterization and allows for implementing new rigs with different camera
configurations easily at one place.

3.3 A flexible stereo rig model

Generally, a stereo rig model has 6 DoF: Trivially one would use an identity
camera-to-rig transformation for one of the cameras in the rig while the other
one can be placed freely in the rig space. To avoid scale drifting, one might want
to set the distance between the cameras fixed which leaves 5 DoF remaining.
We found that this is a valid assumption even for flexible camera rigs because
bending a rig by small angles leads to negligible changes in the distance between
the cameras (e.g. 0.5◦ bending ⇒ 10−5% closer).

In most stereo camera rigs, both cameras are attached to the rig in the same
way and the rig is mounted or hold symmetrically, so we prefer a symmetrical
rig model as well to have a more natural mapping from real world effects to
parameter space.

For our first experiments we used the rig model shown in Fig. 4 on the left.
It exhibits individual parameters for the cameras’ roll and pan, but a common
tilt parameter. Using individual tilt parameters would introduce 6 DoF which is
above the minimum and introduces an ambiguity since tilting the rig can also
be accomplished by tilting both cameras.

We observed that this rig model tends to shear as shown in Fig. 5 when
the scene scale starts to drift instead of fixing the scale. Therefore we switched



Real Time Direct Visual Odometry for Flexible Multi-Camera Rigs 9

Fig. 4. Comparison of symmetric stereo rig
models. The left model exhibits the theoretical
minimum number of DoFs for fixed baselines.
The right model is the one that we finally used
due to its clearly distinct DoFs.

Fig. 5. Degeneration of the 5 DoF
rig model. Cameras may shift in
front of each other to reduce the
projected baseline of the rig, over-
riding the scale fixation that it
should actually introduce.

to the 3 DoF model shown in Fig. 4 on the right which ensures that the rig’s
baseline stays orthogonal to the average camera’s viewing direction. Although
this model is not able to represent asymmetric camera rotations correctly, it
provides superior reconstruction quality on exactly such input data.

Depth / panning ambiguity While using the 3 DoF stereo rig model, we
observed that the depth tends to get compressed in front of the cameras while the
cameras start panning towards each other after a few hundred frames. Although
depth and panning are not really ambiguous (i.e. the photometric error E(ζij , ϕj)
is always smaller with the correct panning), it seems like the constraints in the
images are not strong enough to discern them clearly.

To resolve this issue, we implemented a low frequency panning correction:
We assume that the camera rotations relative to the rig are high frequent and
on average corresponding to the initial rig parameterization. Therefore, we keep
track of the low pass filtered panning panavg and correct each optimized panning
parameter for the difference between the initial and the averaged panning:

pann+1
avg = (1− λ)pannavg + λpann+1 (8)

pancorrection = pann+1
avg − paninit (9)

pann+1
corrected = pann+1 − pancorrection (10)

This ensures that the panning parameter is unable to drift away for many
subsequent frames. We got good results on all of our datasets with λ = 0.1.

3.4 Depth estimation

We use the depth estimation component of LSD-SLAM in Section 3.1 as it
is but apply it potentially once for each possible pair of a keyframe camera
and the tracked frame’s camera. We can simply obtain the camera-to-camera
transformation

ξckclij (x) = ϕclj (ζij(ϕ
ck
i
−1

(x))) |x ∈ R3 (11)

that is necessary for stereo depth reconstruction by concatenating the rig intrin-
sics and rig transformations obtained during tracking.
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3.5 Probabilistic depth merging with multiple observations

In this subsection we examine how to merge multiple depth observations that
come from stereo with the different images from the tracked frame into the depth
and variance maps of one of the cameras c of keyframe. Let’s consider one pixel
p of the keyframe whose depth is described as a normal distribution Nprior =

N (Dc
i (p), V

c
i (p)) and the depth distributions Ncj∈C = N (D̂

ccj
i (p), V̂

ccj
i (p)) of

the corresponding pixels in the stereo observations with the tracked frame’s
cameras cj . To perform a Bayes filter update step, we need the joined distribution
Dnew of the observations which can be obtained by

Dnew =
∑
cj∈C

Ncj . (12)

The update step can then be expressed by

Dpost = Nprior · Dnew = Nprior ·
∑
cj∈C

Ncj . (13)

NowDnew andDpost are not normal distributions but we will have to represent
them as one to update the keyframe’s maps. Therefore we rewrite our formulation
to apply the multiplications of the distributions first (the product of two normal
distributions is again a normal distribution) and approximate the sum by one
single normal distribution, i.e. we do the approximation of our distribution as
normal distribution as late as possible:

Npost ≈
∑
cj∈C

(
Nprior · Ncj

)
(14)

To calculate Npost, we have to extend our model of normal distributions
by a weight parameter: N (d, v, w). It was previously omitted because we were
dealing with probability distributions whose weights and integrals evaluate to
one always. In the sum above, however, we need this weight since we want its
terms to contribute differently to the resulting distribution, depending on how
much Nprior and Ncj overlap.

Formulas for computing the product or the merge of normal distributions
can be found in [18]:

Product of normal distributions: N (d, v, w) = N (d1, v1, w1) · N (d2, v2, w2)

d =
d1v2 + d2v1
v1 + v2

v =
v1v2
v1 + v2

w =
N (d; d1, v1, w1) · N (d; d2, v2, w2)

N (d; d, v, 1)
(15)

Merge of normal distributions: N (d, v, w) ≈
∑
iN (di, vi, wi)

w =
∑
i

wi d =
1

w

∑
i

widi v =
∑
i

wi
w

(vi + (di − d)2) (16)

Note that our implementation contains a fmd
(ci, cj) : N2 → {0, 1} similar to

ft from Section 3.2 to allow the user to control which tracked frame cameras cj
are used to update the the maps of keyframe camera ci (see also Fig. 6).
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3.6 Depth map propagation

We propagate depths and variances from one keyframe to the next within the
same camera. When a new keyframe is created, we potentially apply one iteration
of static stereo, i.e. update each camera’s depth and variance maps with the
stereo observations from the other cameras of the same frame. This can be user-
controlled with fms(ci, cj) : N2 → {0, 1}.

4 Evaluation

We evaluated different configurations (see Fig. 6) of our algorithm on various
datasets. Please note that this is a frame-to-frame VO algorithm that does not
perform full SLAM including loop closing and global optimization and is there-
fore not directly comparable to such methods.

4.1 KITTI dataset

Results for two scenes of the KITTI odometry benchmark [19] based on a stereo
setup are shown in Fig. 7 using the configurations displayed in Fig. 6.

Fig. 6. Different camera tracking and mapping configurations. Dynamic tracking is
either done within a single stream, within all streams or across streams. Static tracking
is performed between two images captured at the same time.

Dynamic tracking and mapping on the left camera only is analog to [1] and
produces similar results. Worse results with other configurations of our algo-
rithm, e.g. LR2LR+S, have also been observed by [1] and seem to be related
to more outliers due to obstructions for large baselines between different cam-
eras. However, those other configurations are crucial for flexible camera rigs
(Section 4.2) or rigs with barely overlapping FoVs (Section 4.4).

Please refer to the supplemental material for four camera KITTI evaluations.

4.2 Flexible rigs

We evaluate our estimation of intrinsic rig parameters based on synthetic and
real-world data. Fig. 8 compares the intrinsic rig parameters to the ground truth
of a synthetic scene (highly textured, 720p, with symmetric rig intrinsics as in
Section 3.3) and shows that our approach clearly produces correct results.
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Fig. 7. Results from the KITTI odometry benchmark scenes 06 (top) and 08 (bottom).
Note that static stereo seems to improve quality significantly. Tracking and depth
estimation between different cameras from different frames produces worse results in
the scenes because of errors that are introduced by more occlusions on longer baselines.
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Fig. 8. Evaluation of the rig intrinsics reconstruction on synthetic data with ground
truth. Note that roll and tilt are reconstructed nicely while the panning exhibits some
artifacts due to our correction (Section 3.3) which we accept in favor of drifts or a
collapsing reconstruction.

For evaluation on real world data, we recorded three scenes with a flexible
stereo camera rig with a FoV of 110 degrees and 2048x2048 pixels per image
downsampled to 512x512 pixel images with 30 fps. The rig was bended and
twisted by about 3 degrees while recording. Fig. 9 compares the drift of the
camera pose when sequences are reconstructed based on a rigid or a flexible
rig model. To evaluate the drift, we moved the camera back to its origin at
the end of the sequence and compare the first and last reconstructed rig pose.
Reconstructed depth maps for stereo pairs are shown in Fig. 2. Our results
show that dense algorithms that don’t keep track of the rig intrinsics perform
significantly worse and introduce jittering to the rig pose since the tracking
cannot converge on all cameras consistently. Reconstructions for this section
were performed using LR2LR+S (see Fig. 6), because we observed unstable
reconstructions without cross-camera tracking on some of our flexible rig scenes.

4.3 Timings

Fig. 10 compares the per frame processing times for different resolutions, different
configurations and different steps of the algorithm. It shows that there is just
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Fig. 9. Loop gap evaluation on a flexible rig dataset. Tracking with a flexible rig model
clearly improves the drift in the tracking. A closer look to the plotted paths reveals
that tracking a flexible rig with a rigid model leads to jittering in the reconstructed
camera positions, most likely caused by convergence to one of the cameras when the
cameras don’t agree due to a deformed rig.
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Fig. 10. Timing evaluation. The L2L+S configuration which works best for stereo rigs
runs at more than 15 fps even for 4 Megapixel images. There is just small computational
overhead introduced by static stereo and nonrigid tracking. Note that there is some
overhead for CPU/GPU synchronization which consumes significant time for smaller
resolutions. Also note that the three tasks at the top that are only performed when
the keyframe is updated have a very small average per frame contribution.

small overhead for nonrigid tracking. It also shows that our GPU implementation
is able to process even 4 Megapixel images in real-time.

4.4 Multi-camera rigs

To show the multi-camera capabilities of our algorithm, we evaluated it on video
streams from a Point Grey Ladybug 3 which is a 6 camera, omnidirectional
camera rig with slightly overlapping FoVs. We used three test scenes shown in
Fig. 11. The results in Fig. 12 indicate that our tracking approach can reconstruct
valid camera paths based on the data of all cameras where methods that use
just one camera for tracking like [1] fail, e.g. because of few or EPL-aligned high
gradient pixels or a fixed point of expansion position in the images with leads
to low disparities and therefore bad depth estimations in the surrounding.
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Fig. 11. Test scenes for multi-camera rig evaluation: corridor (left) exhibits few gradi-
ents, repetitive ceiling texture and glossy highlights; office (center) shows many easily
trackable gradients; veranda (right) is an outdoor scene with large depth variations.
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Fig. 12. Loop gap evaluation on the Point Grey Ladybug 3 which is an omnidirectional,
6 camera rig. We used static and dynamic intra-camera tracking (compare to Fig. 6,
B) on a rigid rig model. Note that in contrast to stereo data with overlapping fields of
view (see Fig. 7), the tracking benefits from taking all available data into account and
optimizing for one consistent rig pose. The multi camera tracking reduces the error by
one order of magnitude. The average processing time per frame (6 x 736x1136px) was
59ms for single camera and 120ms for multi camera tracking.

5 Conclusion

We present a direct, semi-dense visual odometry method for flexible multi-
camera rigs. Key features of our method are (1) the tracking based on the
photometric error that optimizes for consistent, relative rig poses as well as
the rig intrinsics at once and (2) the update of the semi-dense depth with stereo
information from multiple cameras in a Bayesian framework.

Our method achieves state of the art reconstruction quality for scenes recorded
with completely rigid rigs. But it even supports the reconstruction with non-
rigidly connected cameras. This reduces reconstruction errors dramatically, even
if only small relative camera motion is present. Additionally, we show that our
method is not just suitable for stereo cameras but also for other configurations
like omnidirectional camera rigs with barely overlapping views.

In the future, this work could be extended to allow also for dynamic camera
intrinsics as well by making the camera intrinsics a controllable parameter in
the warping function (Equation 5).
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