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Abstract. Several real-world situations can be represented in terms of
agents that have preferences over activities in which they may partici-
pate. Often, the agents can take part in at most one activity (for instance,
since these take place simultaneously), and there are additional con-
straints on the number of agents that can participate in an activity. In
such a setting we consider the task of assigning agents to activities in
a reasonable way. We introduce the simplified group activity selection
problem providing a general yet simple model for a broad variety of set-
tings, and start investigating the case where upper and lower bounds of
the groups have to be taken into account. We apply different solution
concepts such as envy-freeness and core stability to our setting and pro-
vide a computational complexity study for the problem of finding such
solutions.

1 Introduction

Several real-world situations can be represented in terms of agents that have
preferences over activities in which they may participate, subject to some feasi-
bility constraints on the way they are assigned to the different activities. Here
‘activity’ should be taken in a wide sense; here are a few examples, each with its
specificities which we will discuss further:

1. a group of co-workers may have to decide in which project to work, given
that each project needs a fixed number of participants;

2. the participants to a big workshop, who are too numerous to fit all in a single
restaurant, want to select a small number of restaurants (say, between two
and four) out of a wider selection, with different capacities, and that serve
different types of food, and to assign each participant to one of them;

3. a group of pensioners have to select two movies out of a wide selection, to be
played simultaneously in two different rooms, and each of them will be able
to see at most one of them;

4. a group of students have to choose one course each to follow out of a selection,
given that each course opens only if it has a minimum number of registrants
and has also an upper bound;
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5. a set of voters want to select a committee of k representatives, given that
each voter will be represented by one of the committee members.

While these examples seem to vary in several aspects, they share the same
general structure: there is a set of agents, a set of available activities; each agent
has preferences over the possible activities; there are constraints bearing on the
selection of activities and the way agents are assigned to them; the goal is to
assign each agent to one activity, respecting the constraints, and respecting as
much as possible the agents’ preferences.

Sometimes the set of selected activities is fixed (as Example 1), sometimes it
will be determined by the agents’ preferences. The nature of the constraints can
vary: sometimes there are constraints that are local to each activity (typically,
bounds on the number of participants, although we might imagine more complex
constraints), as Examples 1, 2, 4, 5, and also 3 if the rooms have a capacity
smaller than the number of pensioners; sometimes there are global constraints,
that bear on the whole assignment (typically, bounds on the number of activities
that can be selected; once again, we may consider more complex constraints), as
in Examples 2, 3. Sometimes each agent must be assigned to an activity (as in
Examples 1 and 5), sometimes she has the option of not being assigned to any
activity.

This class of problems can be seen as a simplified version of the group activ-
ity selection problem (GASP), which asks how to assign agents to activities in a
“good” way. In the original form introduced by Darmann et al. [5], agents express
their preferences both on the activities and on the number of participants for
the latter; in general, these preferences are expressed by means of weak orders
over pairs “(activity, group size)”. Darmann [4] considers the variant of GASP in
which the agents’ preferences are strict orders over such pairs and analyzes the
computational complexity of finding assignments that are stable or maximize
the number of agents assigned to activities.
Our model considers a simplified version of the group activity selection prob-
lem, called s-GASP. Here, agents only express their preferences over the set of
activities. However, the activities come with certain constraints, such as restric-
tions on the number of participants, concepts like balancedness, or more global
restrictions. The goal is again to find a “good” assignment of agents to activities,
respecting both the agents’ preferences as well as the constraints.

But what is a good assignment? Clearly, this essentially depends on the
application on hand, but there are several concepts in the social choice and
game theory literature that propose for an evaluative solution. We consider two
classes of criteria for assessing the quality of an assignment:

– solution concepts that mainly come from game theory and that aim at telling
whether an assignment is stable enough (that is, immune to some types of
deviations) to be implemented. First, individual rationality requires that each
agent is assigned to an activity she likes better than not being assigned to any
activity at all. Then, a solution concept considered both in hedonic games,
where coalition building is studied, and in matching theory, is the notion
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of stability. It asks whether the assignment is stable in the sense that no
agent would want to or be able to deviate from her coalition, her match, or
in our case, her assigned activity. Besides considering different variants of
core stability, it also makes sense in our setting to investigate variations of
virtual stability, meaning that it is not possible that an agent deviates from
her assigned activity due to the given constraints.

– criteria that mainly come from social choice and that measure, qualitatively
or quantitatively, the welfare of agents. A common quality measure in terms
of efficiency of an assignment is the notion of Pareto optimality: there should
be no feasible assignment in which there is an agent that is strictly better off,
while the remaining agents do not change for the worse. More generally, one
may wish to optimize social welfare, for some notion of utility derived from
the agents’ preferences: for instance, one may simply be willing to maximize
the number of agents assigned to an activity. If fairness is important in the
design, the notion of envy-freeness makes sense: an assignment respecting the
constraints is envy-free if no agent strictly prefers the group another agent is
assigned to.

Related Work. Apart from GASP, our model is related to various streams of
work:

Course allocation, e.g. [2,6,10,14]. Students bear preferences over courses
they would like to be enrolled in (these preferences are typically strict orders),
and there are typically constraints given on the size of the courses. Courses
will only be offered if a minimum number of participants is found, and there are
upper bounds due to space or capacity limitations. In particular, Cechlárová and
Fleiner [2] consider a course-allocation framework, so for them it makes sense
that one agent can be matched to more than one activity (course), while [10,14]
consider the case in which an agent can be assigned to at most one activity
(project). The latter works are very close to our setting with constraints over
group sizes. In contrast to above works however, our setting contains a dedicated
outside option (the void activity), and agents’ preferences are represented by
weak orders over activities instead of strict rankings.

Hedonic games (see the recent survey by Aziz and Savani [1]) are coalition
formation games where each agent has preferences over coalitions containing her.
The stability notions we will focus on are derived from those for hedonic games.
However, in our model, agents do not care about who else is assigned to the
same activity as them, but only on the activity to which they are assigned to.1

1 Still, it is possible to express simplified group activity selection within the setting
of hedonic games, by adding special agents corresponding to activities, who are
indifferent between all locally feasible coalitions. See the work by Darmann et al. [5]
for such a translation for the more general group activity selection problem. But it is
a rather artificial, and overly complex, representation of our model, which moreover
does not help characterizing and computing solution concepts.
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In multiwinner elections, there is a set of candidates, voters have preferences
over single candidates, and a subset of k candidates has to be elected. In some
approaches to multiwinner elections, each voter is assigned to one of the members
of the elected committee, who is supposed to represent her. Sometimes there are
no constraints on the number of voters assigned to a given committee member
(as is the case for the Chamberlin-Courant rule [3]), in which case each voter is
assigned to her most preferred committee member; on the other hand, for the
Monroe rule [13], the assignment has to be balanced. A more general setting, with
more general constraints, has been defined by Skowron et al. [16]. Note also that
multiwinner elections can also be interpreted as resource allocation with items
that come in several units (see again [16]) and as group recommendation [12].
While assignment-based multiwinner elections problems are similar to simplified
group activity, an important difference is that for the former, stability notions
play no role, as the voters are not assumed to be able to deviate from their
assigned representatives.

Contents and Outline. In this work, we will take into account various solution
concepts and ask two questions: First, do “good” assignments exist? Can we
decide this efficiently? And if they exist, can we find them efficiently? Our second
concern is optimization: we are looking for desirable assignments that maximize
the number of agents which can be assigned to an activity. Again, we may ask
whether an assignment that is optimal in this sense exists, and we can try to
find it.

We will focus on one family of constraints concerning the size of the groups—
we assume that each activity comes with a lower and an upper bound on the
number of participants—and give a detailed analysis of the described problems
for this class.

Our results for this class are twofold. First, we show that it is often possible
to find assignments with desirable properties in an efficient way: we propose
several polynomial time algorithms to find good assignments or to optimize
them. We complement these findings with NP- and coNP-completeness results
for certain solution concepts. Whenever we encounter computational hardness,
we identify tractable special cases: we will see that all our problems can be
solved in polynomial time if there is no restriction on the minimum number of
participants for the activities to take place. An overview of our computational
complexity results is given in Table 1 in Sect. 3; due to space constraints, we
do not elaborate all proofs. Second, we show that also in this class of problems
considered, there is a certain tension between the concepts of envy-freeness and
Pareto-optimality, even for small instances.

The remainder of this work is organized as follows. In Sect. 2, we formally
introduce the simplified model as well as possible constraints and several solution
concepts. Section 3 is the main part of the paper and provides an analysis of the
computational complexity of the questions described above. Section 4 deals with
the tension between envy-freeness and Pareto optimality. In Sect. 5, we conclude
and discuss future directions of research connected to s-GASP.
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2 Model, Constraints, and Solution Concepts

We start with defining our model and with introducing the solution concepts we
want to consider.

Simplified Group Activity Selection, Constraints. An instance
(N,A, P,R) of the simplified group activity selection problem (s-GASP) is given
as follows. The set N = {1, . . . , n} denotes a set of agents and A = A∗ ∪ {a∅} a
set of activities with A∗ = {a1, . . . , am}, where a∅ stands for the void activity.
An agent who is assigned to a∅ can be thought of as not participating in any
activity. The preference profile P = 〈�1, . . . ,�n〉 consists of n votes (one for
each agent), where �i is a weak order over A for each i ∈ N . The set R is a set
of side constraints that restricts the set of assignments.

A mapping π : N → A is called an assignment. Given assignment π, #(π) =
|{i ∈ N : π(i) �= a∅}| denotes the number of agents π assigns to a non-void
activity; for activity a ∈ A, πa := {i ∈ N : π(i) = a} is the set of agents π
assigns to a.

The goal will be to find “good” assignments that satisfy the constraints in R.
The structure of the set R depends on the application. Some typical kinds of
constraints are (combinations of) the following cases:

1. each activity comes with a lower and/or upper bound on the number of par-
ticipants;

2. no more than k activities can have some agent assigned to them;
3. the number of voters per activity should be balanced in some way;

Intuitively, if there are no constraints or the constraints are flexible enough,
then agents go where they want and the problem becomes trivial. If the con-
straints are tight enough (e.g., perfect balancedness, provided |A| and |V | allow
it), then some agents are generally not happy, but they are unable to deviate
because most deviations violate the constraints. The interesting cases can there-
fore be in between these two extreme cases.

In this work, we will start investigations for s-GASP for the first class of
constraints: We assume that each activity a ∈ A∗ comes with a lower bound �(a)
and an upper bound u(a), and all constraints in R are of the following type: for
each a ∈ A∗, |πa| ∈ {0} ∪ [�(a), u(a)].

Feasible Assignments, Solution Concepts. Let an instance (N,A, P,R) of
s-GASP be given. A feasible assignment is an assignment meeting the constraints
in R. We will consider the following properties. A feasible assignment π is

– envy-free if there is no pair of agents (i, j) ∈ N ×N with π(j) ∈ A∗ such that
π(j) �i π(i) holds;

– individually rational if for each i ∈ N we have π(i) �i a∅;
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– individually stable if there is no agent i and no activity a ∈ A such that (i)
a �i π(i) and (ii) the mapping π′ defined by π′(i) = a and π′(k) = π(k) for
k ∈ N \ {i} is a feasible assignment;

– core stable if there is no set E ⊆ N and no activity a ∈ A such that (i)
a �i π(i) for all i ∈ E, (ii) πa ⊂ E holds if a ∈ A∗, and (iii) the mapping π′

defined by π′(i) = a for i ∈ E and π′(k) = π(k) for k ∈ N \ E is a feasible
assignment; (Note that the respective activity a to which the set E of agents
wishes to deviate must be either a∅ or currently unused.)

– strictly core stable if there is no set E ⊆ N and no activity a ∈ A such that
(i) a �i π(i) for all i ∈ E where a �i π(i) for at least one i ∈ E, (ii) πa ⊂ E
holds if a ∈ A∗, and (iii) the mapping π′ defined by π′(i) = a for all i ∈ E
and π′(k) = π(k) for k ∈ N \ E is a feasible assignment;

– Pareto optimal if there is no feasible assignment π′ �= π such that π′(i) �i π(i)
for all i ∈ N and π′(i) �i π(i) for at least one i ∈ N ;

Finally, an individually rational assignment π is maximum individually ratio-
nal if for all individually rational assignments π′ we have #(π) ≥ #(π′).
Analogously, maximum feasible/envy-free/. . . /Pareto optimal assignments are
defined.

For the class of constraints we consider, the notion of virtual stability is
interesting. It requires that any deviation from the assigned towards a more
preferred activity a ∈ A∗ violates the capacity constraints of a. Formally, we
define the following stability concepts.

A feasible assignment π is

– virtually individually stable if there is no agent i and no activity a ∈ A with
�(a) ≤ |πa| + 1 ≤ u(a) such that a �i π(i) holds;

– virtually core stable if there is no set E ⊆ N and no activity a ∈ A with
�(a) ≤ |E| ≤ u(a) such that a �i π(i) for all i ∈ E, and (ii) πa ⊂ E holds if
a ∈ A∗;

– virtually strictly core stable if there is no set E ⊆ N and no activity a ∈ A
with �(a) ≤ |E| ≤ u(a) such that (i) a �i π(i) for all i ∈ E where a �i π(i)
for at least one i ∈ E, and (ii) πa ⊂ E holds if a ∈ A∗.

Note that as in the definition of core stability, also in virtual core stability
the respective activity a to which the set E of agents wishes to deviate must be
either a∅ or currently unused.

The relationships between the solution concepts is shown in Fig. 1 (for an
overview of the relationships between solution concepts in hedonic games we
refer to [1]).

strictly core stable core stable individually stable individually rational

Pareto optimal
virtually strictly

core stable
virtually
core stable

virtually
individually stable

Fig. 1. Relations between the solution concepts we consider.
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3 Computational Complexity for s-GASP with Group
Size Constraints

We will now consider the computational complexity of s-GASP for various solu-
tion concepts. An overview of our results is given in Table 1.

Table 1. Overview of results for constraints |πa| ∈ {0} ∪ [�(a), u(a)], a ∈ A∗.

Find assignment that is general u(a) = n �(a) = 1

Feasible in P (Proposition 1) in P (Proposition 1) in P (Proposition 1)

Individually rational in P (Theorem2) in P (Theorem2) in P (Corollary 2)

Envy-free in P (trivial) in P (trivial) in P (trivial)

Individually stable in P (Theorem1) in P (Theorem1) in P (Corollary 2)

Core stable in P (Theorem1) in P (Theorem1) in P (Corollary 2)

Strictly core stable in P (Theorem1) in P (Theorem1) in P (Corollary 2)

Virtually individually
stable

in P (Theorem2) in P (Theorem2) in P (Corollary 2)

Virtually core stable NP-c (Corollary 1) NP-c (Corollary 1) in P (Corollary 2)

Virtually strictly core
stable

NP-c (Theorem3) NP-c (Theorem3) in P (Corollary 2)

Pareto optimal ? ? in P (Theorem7)

Is there an assignment π
with #(π) ≥ k (k ∈ N)
that is

general u(a) = n �(a) = 1

Feasible in P (Proposition 1) in P (Proposition 1) in P (Proposition 1)

Individually rational NP-c (Theorem4) NP-c (Theorem4) in P (Theorem5)

Envy-free NP-c (Theorem6) in P (trivial) ?

Virtually individually
stable

NP-complete NP-complete in P (Corollary 2)

Virtually core stable NP-c (Corollary 1) NP-c (Corollary 1) in P (Corollary 2)

Virtually strictly core
stable

NP-c (Theorem3) NP-c (Theorem3) in P (Corollary 2)

Pareto optimal ? ? in P (Theorem7)

Given assignment π, is π
PO?

coNP-c (Theorem8) coNP-c (Theorem8) in P (Theorem9)

3.1 Finding “Good” Assignments

The first interesting question is whether “good” assignments exist and how to
find them. Obviously, assigning the void activity to every agent results is a
feasible, individually rational and envy-free assignment. However, this is not
a satisfying solution in terms of stability because agents will want to deviate.
The good news is that for several stability concepts, a corresponding assignment
always exists and can efficiently be found, as shown in the following theorem.
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Theorem 1. A strictly core stable assignment always exists and can be found
in polynomial time.

Proof. We sketch the basic algorithmic idea. Starting with a feasible assignment
π, for each agent i and each activity b which i prefers to π(i) we check whether
there is a subset of agents including agent i that wants to deviate to b such
that the resulting assignment is feasible. That is, we check whether there is
a subset E ⊃ πb such that (i) for all j ∈ E we have that b �j π(j) holds
(recall that for agent i b �i π(i) holds) and (ii) π′ with π′(i) = b for i ∈ E
and π′(j) = π(j) for j ∈ N \ E is a feasible assignment. In order to do so, for
each activity c ∈ A \ {b}, we compute the possible numbers of agents in the set
πc that agree with joining b and can be removed from πc while still enabling a
feasible assignment. Finally, given these numbers, we need to verify if—including
i and the agents in πb—these add up to an integer contained in [�(b), u(b)] by
taking exactly one number from each activity. The latter problem reduces to
the Multiple-Choice Subset-Sum problem (see Pisinger [15]), which, in our
case, allows for an overall polynomial time algorithm for finding a strictly core
stable assignment. �

Recall that a strictly core stable assignment is also core stable and individ-
ually stable. Hence, as a consequence of the above theorem, also a core stable
and an individually stable assignment always exist.

Theorem 2. A virtually individually stable assignment always exists and can
be found in polynomial time.

Proof. In an instance (N,A, P,R) of s-GASP, we initially assign each agent to
a∅, i.e., set π(i) := a∅ for i ∈ N . For a ∈ A∗ with �(a) ≥ 2, if no agent is
assigned to such a, then �(a) ≤ |πa| + 1 cannot hold. Hence, in what follows, we
only consider activities a ∈ A∗ with �(a) = 1. For 1 ≤ i ≤ n, assign agent i to
the best ranked such activity a �i a∅ with |πa| < u(a) and update π (i.e., set
π(i) := a while π(j) remains unchanged for j ∈ N \ {i}). It is easy to see that
the resulting assignment π is virtually individually stable. �

In contrast, a virtually core stable (and thus a virtually strictly core stable)
assignment does not always exist, as the following example shows.

Example 1. Let N = {1, 2, 3} and A∗ = {a, b, c}, with a �1 b �1 c � a∅,
b �2 c �2 a � a∅, and c �3 a �3 b � a∅. The restrictions on the activities are
given by |πx| ∈ {0} ∪ [2, 3], for each x ∈ A∗. By the restrictions given, there
is at most one non-void activity to which agents can be assigned. Clearly, for
any activity z ∈ A there is a y ∈ A∗ such that two agents prefer y to z. As a
consequence, there can be no virtually core stable assignment.

In addition, the problem to decide whether or not a virtually strictly core
stable assignment exists turns out to be computationally difficult.

Theorem 3. It is NP-complete to decide if there is a virtually strictly core stable
assignment, even when for each activity a ∈ A∗ we have u(a) = n.
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Proof. Membership in NP is not difficult to verify. The proof proceeds by a
reduction from Exact Cover by 3-Sets (X3C). The input of an instance of
X3C consists of a pair 〈X,Z〉, where X = {1, . . . , 3q} and Z = {Z1, . . . , Zp}
is a collection of 3-element subsets of X; the question is whether we can cover
X with exactly q sets of Z. X3C is known to be NP-complete even when each
element of X is contained in exactly three sets of Z (see [7,8]); note that in such
a case p = 3q holds. For each i ∈ X, let the sets containing i be denoted by
Zi1 , Zi2 , Zi3 with i1 < i2 < i3.

Define instance I = (N,A, P,R) of s-GASP as follows. Let N =
{Vi,1, Vi,2, Vi,3 | 1 ≤ i ≤ p} and A∗ = {yi, ai, bi, ci | 1 ≤ i ≤ p}. For 1 ≤ i ≤ p,
let �(ai) = �(bi) = �(ci) = 2, and �(yi) = 9. For each a ∈ A∗, let u(a) = |N |.
Since any virtually strictly core stable assignment is individually rational, in the
profile P we omit the activities ranked below a∅; for each i ∈ {1, . . . , p}, let the
ranking of the agents Vi,1, Vi,2, Vi,3 (each of which represents element i ∈ X) be
given as follows:

Vi,1 : yi1 �i,1 yi2 �i,1 yi3 �i,1 ai �i,1 bi �i,1 ci �i,1 a∅
Vi,2 : yi2 �i,2 yi3 �i,2 yi1 �i,2 bi �i,2 ci �i,2 ai �i,2 a∅
Vi,3 : yi3 �i,3 yi1 �i,3 yi2 �i,3 ci �i,3 ai �i,3 bi �i,3 a∅

Note that each set Z contains three elements, and hence each yi, 1 ≤ 1 ≤ p,
is preferred to a∅ by exactly 9 agents. We show that there is an exact cover in
instance 〈X,Z〉 if and only if there is a virtually strictly core stable assignment
in instance I.

Assume there is an exact cover C. Consider the assignment π defined by
π(Vi,h) = yj if i ∈ Zj and Zj ∈ C, for i ∈ {1, . . . , p} and h ∈ {1, 2, 3}. Since
C is an exact cover, assignment π is well-defined and feasible; note that each
agent is assigned to an activity she ranks first, second or third. In addition, note
that for Zj ∈ C, each agent that prefers yj to a∅ is assigned to yj . Assume a
set of agents E wishes to deviate to another activity d, such that at least one
member i ∈ E prefers d over π(i) while there is no j ∈ E with π(j) �j d. By the
definition of π, d ∈ {yi | 1 ≤ i ≤ p} holds. Observe that πd = ∅ holds because C
is an exact cover. Due to �(d) = 9, it hence follows that each agent of those who
prefer d to a∅ must prefer d to the assigned activity, which is impossible since,
by construction of the instance, for at least one of these agents j the assigned
activity is top-ranked, i.e., π(j) �j d holds. Therewith, π is virtually strictly
core stable.

Conversely, assume there is a virtually strictly core stable assignment π.
Assume that there is an agent Vi,h who is not assigned to one of the activities
yi1 , yi2 , yi3 . Then, by �(yi) = 9 and the fact that exactly 9 agents prefer yi to a∅
for each i ∈ {1, . . . , p}, it follows that no agent is assigned to one of yi1 , yi2 , yi3 ;
in particular none of Vi,1, Vi,2, Vi,3 is assigned to one of these activities. Analo-
gously to Example 1 it then follows that there is no virtually strictly core stable
assignment, in contradiction with our assumption.

Thus, π assigns each agent Vi,h to one of the activities yi1 , yi2 , yi3 . For each
i ∈ {1, . . . , p}, by �(yi) = 9 and the fact that exactly 9 agents prefer yi to a∅
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it follows that to exactly one of yi1 , yi2 , yi3 exactly 9 agents are assigned, while
no agent is assigned to the remaining two activities. As a consequence, the set
C = {Zi | |πyi | = 9, 1 ≤ i ≤ p} is an exact cover in instance 〈X,Z〉. �

In the instance considered in the above proof, an assignment is virtually
strictly core stable if and only if it is virtually core stable. As a consequence, we
get the following corollary.

Corollary 1. It is NP-complete to decide if there is a virtually core stable
assignment, even if for each activity a ∈ A∗ we have u(a) = n.

However, for the case of �(a) = 1 for each a ∈ A∗, we get a positive complexity
result (see Sect. 3.2). In particular, we can show that in this case a virtually
strictly core stable assignment that maximizes the number of agents assigned to
a non-void activity can be found in polynomial time.

Turning to Pareto optimality, in the special case of �(a) = 1 for each a ∈ A∗,
there is a simple algorithm to compute a Pareto optimal assignment. In that case,
it is easy to see that a Pareto optimal assignment is always individually rational.
Thus, neglecting activities ranked below a∅, we start with the assignment π(i) =
a∅ for each i ∈ N and iteratively assign an agent to the best-ranked among the
activities a with |πa| < u(a). However, in the case of �(a) = 1 for each a ∈ A∗

we can even find a Pareto optimal assignment that maximizes the number of
agents assigned to a non-void activity in polynomial time (see Sect. 3.2).

3.2 Maximizing the Number of Agents Assigned to a Non-void
Activity

We now turn to an optimization problem: Among all feasible assignments that
feature a certain property, one is usually interested in finding one that maximizes
the number of agents that are assigned to a non-void activity, thus keeping the
number of agents who cannot be enrolled in any activity low.

Proposition 1. In polynomial time we can find a feasible assignment that max-
imizes the number of agents assigned to a non-void activity.

But already for individual rational assignments, it is hard to decide whether
all agents can be assigned to a non-void activity, as the following theorem shows.
We omit its proof which is again a reduction from the Exact Cover by 3-Sets
problem.

Theorem 4. It is NP-complete to decide if there is an individually rational
assignment that assigns each agent to some a ∈ A∗, even if for each activity
a ∈ A∗ we have u(a) = n.

However, if we assume that each activity admits a group size of 1, then we
can find an optimal individually rational assignment efficiently.

Theorem 5. If for each activity a ∈ A∗ we have �(a) = 1, then in polynomial
time we can find a maximum individually rational assignment.
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Proof. Reduction to max integer flow with upper bounds. Given an instance
I = (N,A, P,R) of s-GASP with �(a) = 1 for all a ∈ A∗, we construct an instance
M of max integer flow with directed graph G = (V,E). Set V := {s, t} ∪ N ∪ A∗,
and let the edges and their capacities be given as follows: for each i ∈ N , intro-
duce edge (s, i) with capacity 1; for each a ∈ A∗ and i ∈ N introduce an edge
(i, a) of capacity 1 if a �i a∅ holds; for each a ∈ A∗, introduce edge (a, t) of
capacity u(a). It is easy to see that a max integer flow from s to t induces a
maximum individually rational assignment in I and vice versa. �

For envy-freeness, optimizing the number of “active” agents turns again out
to be a hard problem which can be shown by a reduction from Exact Cover
by 3-Sets as well.

Theorem 6. It is NP-complete to decide if there is an envy-free assignment that
assigns each agent to some a ∈ A∗.

We obtain tractability for envy-freeness if we loosen the constraints on the
upper bounds of the group sizes: Clearly, if there is an activity with “unlimited”
capacity (i.e., its upper bound equals n), we can assign all agents to it and obtain
envy-freeness.

3.3 Pareto Optimality

In this subsection, we consider the computational complexity involved in Pareto
optimal assignments.

In the framework of course allocation, if all agents have strict preferences it
is known that a Pareto optimal matching—that assigns an agent to an activ-
ity (course) only if the activity is acceptable for the agent—can be found in
polynomial time (see [2,10]). Since in our setting (i) the agents’ preferences are
represented by weak orders and (ii) Pareto optimality does not require individual
rationality, these results do not immediately translate. For the latter reason, the
computational intractability result of [2] for finding a Pareto optimal matching
maximizing the number of agents assigned to a non-void activity if each agent
can be assigned to at most one activity does not immediately translate to our
setting either. In particular, in general we do not know the computational com-
plexity status of finding a Pareto optimal assignment (or of finding one that
maximizes the number of agents assigned to non-void activities) in s-GASP. As
the following theorem shows, the latter issue is computationally tractable if we
relax the constraint on the lower bound of the group sizes.

Theorem 7. If for each activity a ∈ A∗ we have �(a) = 1, then in polynomial
time we can find a Pareto optimal assignment that maximizes the number of
agents assigned to a non-void activity.

Proof. In that case, any Pareto optimal assignment is individually rational. Let
k be the maximum number of agents assigned to non-void activities by an indi-
vidually rational assignment. Hence, it is sufficient to find a Pareto optimal
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assignment π with #(π) = k. Given an instance I = (N,A, P,R) of s-GASP
with �(a) = 1 for all a ∈ A∗, we construct an instance F of the minimum cost
flow problem. Instance F corresponds to instance M of the proof of Theorem 5
except that we add the following edge costs: for each a ∈ A∗ and i ∈ N edge
(i, a) has cost −(1 + |{b ∈ A∗|a �i b, b �i a∅}|), all remaining edges have zero
cost. Let f be a minimum integer cost flow of size k in instance F . Then f
induces the assignment π by setting π(i) = a iff f sends a unit of flow through
edge (i, a). Clearly, π is Pareto optimal since otherwise a flow f ′ of lower total
cost than the total cost of f could be induced. �

Note that in the case �(a) = 1 for each a ∈ A∗, also any strictly core stable,
core stable, or individually stable assignment is individually rational. In addition,
in this case virtually (strict) core stability coincides with (strict) core stability,
and virtually individually stability coincides with individual stability. Hence we
can state the following corollary.

Corollary 2. If for each activity a ∈ A∗ we have �(a) = 1, then in polynomial
time we can find a maximum individually rational assignment that is Pareto opti-
mal, (virtually) individually stable, (virtually) core stable and (virtually) strictly
core stable.

However, checking whether a given assignment is Pareto optimal turns out
to be coNP-complete, as Theorem 8 shows. We omit the proof which makes use
of the NP-completeness of X3C.

Theorem 8. It is coNP-complete to decide if a given assignment is Pareto opti-
mal, even if for each activity a ∈ A∗ we have u(a) = n.

Again, if there are no restrictions on the minimum number of participants of
each activity, the latter problem becomes tractable.

Theorem 9. If for each activity a ∈ A∗ we have �(a) = 1, then in polynomial
time we can decide if a given assignment is Pareto optimal.

Proof. Given instance I = (N,A, P,R) of s-GASP with �(a) = 1 for all a ∈ A∗

and assignment π, we construct instance C of the minimum cost flow problem as
follows with lower and upper edge capacities. Note that π must be individually
rational. In instance C, the directed graph G = (V,E), edge costs and capacities
are given as follows. G = (V,E) has vertex set V := {s, t} ∪ N ∪ A∗, the edge
set E consists of the following edges:

– for i ∈ N , edge (s, i) of zero cost, and, for a ∈ A∗ with a �i π(i), edge (i, a)
of cost −1 if a �i π(i) and of cost 0 if a ∼i π(i);

– for a ∈ A∗ edge (a, t) of upper capacity bound u(a).

The lower and upper capacity bound of edge (s, i) is 1 iff π(i) � a∅ holds.
Unless otherwise specified, the lower capacity bound of edge e ∈ E is 0 and the
upper capacity bound is 1, and its cost is 0.
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Assume there is an integer flow f of negative total cost. Consider the assign-
ment π′ defined by π′(i) = a iff f sends flow through edge (i, a). Then, by
construction we must have π′(i) ∼i π(i) or π′(i) �i π(i) for each i ∈ N , where
the latter holds for at least one agent i ∈ N by the negative total cost of f .
Thus, π is not Pareto optimal.

If, on the other hand, π is not Pareto optimal, then there is an assignment
π′ with π′(i) ∼i π(i) or π′(i) �i π(i) for each i ∈ N , where the latter holds
for at least one i ∈ N . The integer flow f ′ that sends flow along the edges
(s, i), (i, a), (a, t) iff π′(i) = a holds, has negative total cost.

Therewith, for verifying if π is Pareto optimal it is sufficient to find an integer
minimum cost flow in instance C. �

4 Envy-Freeness vs. Pareto Optimality

In many social choice settings, there is a tension between envy-freeness and
Pareto optimality. This is also the case for our simplified group activity selection
problem, as the following proposition and the subsequent corollary show.

Proposition 2. For any k ≥ 2, there is an instance (N,A, P,R) of s-GASP
with |N | = k and �(a) = 1 for each a ∈ A∗, for which there does not exist an
assignment π which is both Pareto optimal and envy-free.

Proof. We provide a proof for k = 2, which easily extends to n = k for any k > 2.
Consider the instance with N = {1, 2}, A∗ = {a}, with the rankings a �1 a∅
and a �2 a∅, and the restrictions given by �(a) = u(a) = 1. Any Pareto optimal
assignment assigns exactly one agent to a, which is clearly not envy-free. �

Corollary 3. There is no mechanism that determines an assignment that is both
Pareto optimal and envy-free for each given instance (N,A, P,R) of s-GASP,
even if �(a) = 1 holds for each a ∈ A∗.

Interestingly, this tension also holds if the only relevant constraint is the
lower bound of the activities (i.e., u(a) = n for all a).

Proposition 3. For any k ≥ 6, there is an instance (N,A, P,R) of s-GASP
with |N | = k and u(a) = k for each a ∈ A∗, for which there does not exist an
assignment π which is both Pareto optimal and envy-free.

Proof. We provide a proof for k = 6, which easily extends to k = n for any
n > 6. Consider the instance of s-GASP with N = {1, 2, 3, 4, 5, 6}, A∗ = {a, b, c}
and for any x ∈ A∗ we have �(x) = 3, u(x) = 6. The rankings are

�1: a �1 b �1 c �1 a∅ �4: a �4 b �4 c �4 a∅
�2: b �2 c �2 a �2 a∅ �5: b �5 c �5 a �5 a∅
�3: c �3 a �3 b �3 a∅ �6: c �6 a �6 b �6 a∅
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Due to the feasibility constraints, there are only 4 types of feasible assignments:

(i) 3–5 agents are assigned to the same activity x �= a∅, and the rest to a∅.
(ii) All agents are assigned to the void activity.
(iii) All agents are assigned to the same activity x �= a∅.
(iv) 3 agents are assigned to the same activity x �= a∅ and the other 3 agents

are assigned to another activity y /∈ {x, a∅}.

The assignments of type (i) and (ii) are Pareto dominated by some assign-
ment of type (iii). An assignment π1 of type (iii) is envy-free but not Pareto
optimal. Due to the symmetrical construction of the preferences profiles, we can
assume without loss of generality πa

1 = N . But then the assignment is Pareto
dominated by the assignment π2 with πa

2 = {1, 3, 4} and πc
2 = {2, 5, 6}. An

assignment of type (iv) cannot be envy-free. Without loss of generality we can
assume x = a and y = b. Assume, for the sake of contradiction, that there is an
envy-free assignment. Agents 1 and 4 must be assigned to activity a and agents 2
and 5 to activity b. As the preference profiles of the remaining agents both rank
a strictly better than b, the assignment cannot be an envy-free assignment. �
Corollary 4. There is no mechanism that determines an assignment that is both
Pareto optimal and envy-free for each given instance (N,A, P,R) of s-GASP,
even if u(a) = n holds for each a ∈ A∗.

5 Conclusion

We have formulated a simplified version of GASP where the assignment of agents
to activities depends on the agents’ preferences as well as on exogenous con-
straints. This model is powerful enough to capture many real world applica-
tions. We have made a first step by analyzing one family of constraints and have
studied several solution concepts for this family.

An obvious next step is to drive a similar analysis for other interesting classes
of constraints as described in Sect. 2. In particular, it would be interesting to
characterize families of constraints guaranteeing or not guaranteeing existence
of a stable solution for the different solution concepts we considered, or exploring
forbidden structures that prevent stability. Also, it would be nice to provide a
detailed analysis of the parameterized complexity of the hard cases, as done by
Lee and Williams [11] for the stable invitation problem and by Igarashi et al. [9]
for GASP on social networks. Another variant would be to consider typed agents
as in the paper by Spradling and Goldsmith [17].
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