Lambda Calculus and Combinatory Logic		WS 2017/18
Exercise sheet 2	due 3.11.	T. Piecha
Exercise 1 (4 points)		
Prove that		
	$M[P/x][Q/x] \equiv_{\alpha} M[(P[Q/x])/x]$	
holds for all λ -terms M, P, Q .		
Exercise 2 (7 points) We consider the following λ -te	rms:	
(1) $(\lambda x.y)x$		
(2) $(\lambda x.x(xy))z$		
(3) $(\lambda x.xxy)(\lambda y.xyy)$		
(4) $(\lambda x.xyy)(\lambda x.xxy)$		
(5) $(\lambda yx.xy)((\lambda z.z)y)(\lambda xz.x)$		
(6) $(\lambda xyz.xz)((\lambda zy.yy)z)((zz)(zz))$	$(\lambda x.xx)$	
(a) Which terms have a β -nor	mal form? (Give successive β -contractions.)	(3 points)
(b) Which terms are strongly i	normalisable?	(2 points)
(c) Which terms are β -equal?		(2 points)
Exercise 3 (6 points) Give β -reduction series for the	following λ -terms, where K := $\lambda xy.x$ and Ω :=	= $(\lambda x.xx)(\lambda x.xx)$:
(a) KK (KK)		(2 points)
(b) $\mathbf{K} \mathbf{\Omega}(\mathbf{K} \mathbf{\Omega})$		(2 points)

(c) $\Omega K(\Omega K)$ (2 points)

Exercise 4 (3 points)

Which of the following statements hold for arbitrary λ -terms *M* and *N*? Give a short justification or present a counterexample.

(a)	If $M[N/x]$ is in β -normal form, then M is in β -normal form.	(1 point)
(b)	If $M[N/x]$ has a β -normal form, then M has a β -normal form.	(1 point)
(c)	If <i>M</i> has a β -normal form, then $M[N/x]$ has a β -normal form.	(1 point)