Exercise 1 (4 points)
Prove that

$$
M[P / x][Q / x] \equiv_{\alpha} M[(P[Q / x]) / x]
$$

holds for all λ-terms M, P, Q.

Exercise 2 (7 points)
We consider the following λ-terms:
(1) $(\lambda x . y) x$
(2) $(\lambda x \cdot x(x y)) z$
(3) $(\lambda x . x x y)(\lambda y . x y y)$
(4) $(\lambda x . x y y)(\lambda x . x x y)$
(5) $(\lambda y x . x y)((\lambda z . z) y)(\lambda x z . x)$
(6) $(\lambda x y z . x z)((\lambda z y \cdot y y) z)((z z)(z z))(\lambda x . x x)$
(a) Which terms have a β-normal form? (Give successive β-contractions.)
(b) Which terms are strongly normalisable?
(c) Which terms are β-equal?

Exercise 3 (6 points)
Give β-reduction series for the following λ-terms, where $\mathbf{K}: \bumpeq \lambda x y . x$ and $\Omega: \bumpeq(\lambda x . x x)(\lambda x . x x)$:
(a) $\mathbf{K K}(\mathbf{K K})$
(2 points)
(b) $\mathbf{K} \boldsymbol{\Omega}(\mathbf{K} \boldsymbol{\Omega})$
(2 points)
(c) $\Omega \mathrm{K}(\Omega K)$
(2 points)

Exercise 4 (3 points)
Which of the following statements hold for arbitrary λ-terms M and N ? Give a short justification or present a counterexample.
(a) If $M[N / x]$ is in β-normal form, then M is in β-normal form.
(1 point)
(b) If $M[N / x]$ has a β-normal form, then M has a β-normal form.
(c) If M has a β-normal form, then $M[N / x]$ has a β-normal form.

