Exercise 1 (6 points)
Reduce the following terms to β-normal form:
(a) $\quad(\lambda u \cdot \mathbf{R} \underline{0}(\lambda u v \cdot(\lambda x y \cdot x) u v) u) \underline{1}$
(3 points)
(b) $\quad(\lambda u \cdot \mathbf{R} \underline{0}(\lambda u v \cdot(\lambda x y \cdot y) u v) u) \underline{1}$
(3 points)
where $\mathbf{R}: \bumpeq \boldsymbol{\Theta}(\lambda u x y z . \mathbf{D} x(y(\mathbf{V} z)(u x y(\mathbf{V} z))) z)$.
Remark: Reduce applications of \mathbf{D} and \mathbf{V} according to Lemma 1.29, cases 2 and 3.

Exercise 2 (8 points)
Construct combinators for the following (intuitively defined) recursive functions:

```
(a) \(\operatorname{mult}(m, 0)=0\)
    \(\operatorname{mult}(m, n+1)=\operatorname{add}(m, \operatorname{mult}(m, n))\)
(b) \(\quad \operatorname{fact}(0)=1 \quad\) (3 points)
    \(\operatorname{fact}(n+1)=\operatorname{mult}(n+1, \operatorname{fact}(n))\)
(c) \(\operatorname{non}(0)=1\)
    (3 points)
    \(\operatorname{non}(n+1)=0\)
```

Remarks:

- First present definitional equations according to the schemata given in Definition 1.31.
- The function add has already been λ-defined in the lecture notes.

You may also define auxiliary functions, if necessary.

Exercise 3 (6 points)
Evaluate the following terms stepwise to normal form:
(a) $\underline{2} \underline{3}$ (2 points)
(b) $\lambda x \cdot \underline{2}(\underline{3} x)$ (2 points)
(c) $\lambda x y \cdot(\underline{2} x)((\underline{3} x) y)$ (2 points)

Observing the behaviour of these terms provide combinators Add, Mult and Exp for addition, multiplication and exponentiation on Church numerals without using the recursion combinator \mathbf{R}.

