Lambda Calculus and Combinatory Logic		WS 2017/18
Exercise sheet 5	due 24.11.	T. Piecha
Exercise 1 (6 points)		
Reduce the following terms to β -r	normal form:	
(a) $(\lambda u. \mathbf{R} \underline{0} (\lambda uv. (\lambda xy. x)uv)u) \underline{1}$		(3 points)
(b) $(\lambda u. \mathbf{R} \underline{0} (\lambda uv. (\lambda xy. y)uv)u) \underline{1}$		(3 points)
where $\mathbf{R} :\simeq \boldsymbol{\Theta}(\lambda uxyz. \mathbf{D}x(y(\mathbf{V}z)))$	$uxy(\mathbf{V}z)))z).$	
<i>Remark:</i> Reduce applications of L	D and V according to Lemma 1.29, case	es 2 and 3.
Exercise 2 (8 points)		
Construct combinators for the foll	owing (intuitively defined) recursive fu	inctions:
(a) $mult(m,0) = 0$ mult(m,n+1) = add(m,mult	f(m,n))	(2 points)
(b) $fact(0) = 1$ fact(n+1) = mult(n+1), fact	(n))	(3 points)
(c) $non(0) = 1$ non(n+1) = 0		(3 points)
Remarks:		

- First present definitional equations according to the schemata given in Definition 1.31.

- The function *add* has already been λ -defined in the lecture notes.

You may also define auxiliary functions, if necessary.

Exercise 3 (6 points)

Evaluate the following terms stepwise to normal form:

(a)	<u>23</u>	(2 points)
(b)	$\lambda x. \underline{2}(\underline{3}x)$	(2 points)
(c)	$\lambda xy.(\underline{2}x)((\underline{3}x)y)$	(2 points)

Observing the behaviour of these terms provide combinators Add, Mult and Exp for addition, multiplication and exponentiation on Church numerals without using the recursion combinator **R**.