Exercise 1 (6 points)
Find a λ-term that represents the Ackermann-Péter function a, which is defined recursively as follows:

$$
\begin{aligned}
a(0, n) & =n+1 \\
a(m+1,0) & =a(m, 1) \\
a(m+1, n+1) & =a(m, a(m+1, n))
\end{aligned}
$$

Exercise 2 (8 points)

Show by finding derivations in $\lambda \beta$ that for all λ-terms P, Q, R we have:
(a) $\lambda \beta \vdash \mathbf{K} P Q=P$
(2 points)
(b) $\lambda \beta \vdash \mathbf{S} P Q R=P R(Q R)$
(3 points)
(c) $\lambda \beta \vdash \Upsilon x=x(\Upsilon x)$
(3 points)

Which of these equalities are also provable in $\lambda \beta_{\triangleright}$?

Exercise 3 (6 points)
Prove for all λ-terms M, N :
(a) If $M \triangleright_{1 \beta} N$, then $\lambda \beta_{\triangleright} \vdash M=N$.
(3 points)
(b) If $\lambda \beta_{\triangleright} \vdash M=N$, then $M \triangleright_{\beta} N$.
(3 points)

