Lambda Calculus and Combinatory Logic	WS 2017/18
---------------------------------------	------------

Exercise sheet 6	due 1.12.	T. Piecha

Exercise 1 (6 points)

Find a λ -term that represents the Ackermann–Péter function *a*, which is defined recursively as follows:

$$a(0,n) = n + 1$$

 $a(m+1,0) = a(m,1)$
 $a(m+1,n+1) = a(m,a(m+1,n))$

Exercise 2 (8 points)

Show by finding derivations in $\lambda\beta$ that for all λ -terms P, Q, R we have:

(a)	$\lambda eta \vdash \mathbf{K} P Q = P$	(2 points)
(b)	$\lambda\beta \vdash \mathbf{S}PQR = PR(QR)$	(3 points)
(c)	$\lambda \beta \vdash \Upsilon x = x(\Upsilon x)$	(3 points)

Which of these equalities are also provable in $\lambda \beta_{\triangleright}$?

Exercise 3 (6 points)

Prove for all λ -terms M, N:

- (a) If $M \triangleright_{1\beta} N$, then $\lambda \beta_{\triangleright} \vdash M = N$. (3 points)
- (b) If $\lambda \beta_{\triangleright} \vdash M = N$, then $M \triangleright_{\beta} N$. (3 points)