Lambda Calculus and Combinatory Logic	2
---------------------------------------	---

Exercise sheet 8 due 15.12. T. Piecha

Exercise 1 (3 points)

Prove that there is no CL-term X with $XY =_{w} [x] Y$. (In other words, [x] Y must be a metalinguistic operation.)

Hint: One can prove this by showing that [x]. *Y* conflicts with substitution. That is, one has to find terms U, V such that for $x \neq y$ we have $([x].U)[V/y] \neq [x].(U[V/y])$.

Exercise 2 (11 points) Consider the following λ -terms:

- (i) $\Omega := (\lambda x.xx)(\lambda x.xx)$
- (ii) $M := (\lambda xy.x)(\lambda xyz.xz(yz))$
- (iii) $N := (\lambda xy.yx)((\lambda x.x)x)$

(a)	Provide corresponding CL-terms Ω_{CL} , M_{CL} and N_{CL} .	(6 points)
-----	--	------------

- (b) To which terms can Ω_{CL} , M_{CL} and N_{CL} be weakly reduced? (3 points)
- (c) To which terms can M and N be β -reduced? (2 points)

Exercise 3 (6 points)

Find counterexamples to disprove the following statements:

(a)	If $M \triangleright_{\beta} N$, then $M_{\text{CL}} \triangleright_{w} N_{\text{CL}}$.	(3 points)
(b)	If $M_{\mathrm{CL}} \triangleright_w N_{\mathrm{CL}}$, then $M \triangleright_\beta N$.	(3 points)