Lambda	Calculus	and	Combinatory L	ogic.
Lannoaa	Curcurus	MIIM	comonator j L	S

Exercise sheet 13 due Wednesday 31.1. at 18h T. Piecha

Exercise 1 (5 points)

Solve the type inhabitation problem for the following types; that is, for each type construct a term having this type.

(b)
$$(\alpha \to (\beta \to \gamma)) \to (\beta \to (\alpha \to \gamma))$$
 (3 points)

Exercise 2 (5 points)

(a)	Show that the type $((\alpha \rightarrow \beta$	$(\rightarrow \alpha) \rightarrow \alpha$ is <i>not</i> inhabited.	(3 points)
-----	---	--	------------

(b) Is the type $((((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha) \rightarrow \beta) \rightarrow \beta$ inhabited? (2 points)

- Exercises 3 and 4 are not to be handed in -

Exercise 3

Show that the following sequents are derivable in $\lambda 2$.

- (a) $\vdash \lambda x.xx : \forall \beta . (\forall \alpha. \alpha \rightarrow (\beta \rightarrow \beta))$
- (b) $\vdash \lambda x.x: \forall \beta.(\forall \alpha.\alpha \rightarrow \beta)$
- (c) $\vdash \lambda x.x: \forall \alpha.(\alpha \rightarrow \alpha)$
- (d) $\vdash \lambda x.x: \forall \alpha.\alpha \rightarrow \forall \beta.\beta$

Considering (b)-(d), explain why a λ -term can have different types in $\lambda 2$.

Exercise 4

Show that in $\lambda 2$ every Church numeral <u>*n*</u> has type $\forall \alpha . ((\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha))$.