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Heterogeneity of local conditions and spatial dependencies are typical aspects of sociological
phenomena. However, large-scale empirical data is often rather limited with regard to the spa-
tial references that are (publicly) available to researchers. We describe several aspects of the
problem and assess available options and consequences associated with limited information.
Our empirical examples are popular research topics such as returns to education and gender-
based and migration-related wage gaps. We base our analyses upon widely used survey data
from Germany, the German Socio-Economic Panel Study (GSOEP), which contains geograph-
ical information on various levels of aggregation. Our particular interest is focused on problems
of space and place in standard large-scale socio-economic surveys and what researchers need
to consider when making decisions about their analytical strategy.
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1 Introduction

There are two major geographical aspects in empirical
analyses with survey data: one is related to “place”, while the
other is related to “space” (Logan, 2012) more specifically,
the first aspect refers to heterogeneity across space, whereas
the second aspect refers to spatial dependencies among the
units of observation (Fotheringham, 2009b).

Against this background, many users of large-scale socio-
economic survey data experience a typical contrast: On the
one hand, they realize that the heterogeneity of local con-
ditions and interdependencies among proximate units of ob-
servation are important aspects of the social phenomena they
study. On the other hand, survey data often provide no in-
formation about spatial references that would allow a precise
localization of the cases and make them useful for GIS-based
analysis. Fortunately, data users are often provided with ap-
proximate geographical information – even though such in-
formation is typically not included in standard scientific use
files. In this paper, we describe several aspects of the prob-
lem and assess the potentials of survey analyses with limited
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geographical information. We illustrate these aspects using
the examples of monetary returns to education and gender-
based and migration-related wage gaps as popular research
topics.

Aspects of place refer to local and regional differences.
They primarily raise questions of data availability: Is there
explicit information about local conditions? And is there in-
formation about the location of the cases? Such informa-
tion is necessary to map regional variation and to match suit-
able data from other sources. Matching survey data with
adequate aggregate (context) data has become increasingly
popular as it offers a wide range of analytical possibilities.
Such matching is usually done on the basis of standard codes
from specific regional classification systems. After provid-
ing an outline of conceptual challenges associated with space
and place, we therefore give an overview of standard (ad-
ministratively defined) spatial classification systems that are
frequently used for social research in Europe as well as an
overview over the geographical information that is available
in major European surveys.

Aspects of space have primarily methodological conse-
quences as they refer to spatial interdependencies among the
units of analysis. We present a set of empirical analyses on
this topic: We discuss approaches to account for spatial clus-
tering and assess the relevance of spatial dependencies when
using large-scale socio-economic surveys with restricted ge-
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(a) Positive spatial autocorrelation (b) No spatial autocorrelation (c) Negative spatial autocorrelation

Figure 1. Spatial patterns: (a) clustered, (b) random, and (c) uniform (Fortin & Dale, 2009, p. 89).

ographical information. We begin with results from analyses
using ordinary least square (OLS) regression. In the next
step, multi-level techniques are applied whose basic require-
ment is information about which regional cluster an individ-
ual can be assigned to. Finally, we turn to spatial regres-
sion models as special techniques to account for spatial de-
pendencies among the cases (e.g. Ward & Gleditsch, 2008).
Such models require at least proxy information about the lo-
calization of the cases and are routinely used in the analysis
of spatial interrelations. Our illustrative analyses are based
on the German Socio-Economic Panel Study (GSOEP), but
users of other standard survey datasets are faced with similar
restrictions.

We conclude with a number of general recommendations
for data users.

2 Analytical problems of spatial heterogeneity and
clustering

A focus on “place” emphasizes aspects of substantive het-
erogeneity when comparing specific localities, i.e., the fact
that life conditions typically vary geographically. Average
results using unspecified (pooled) data therefore give only a
very limited picture of the real situation.

Aspects of “space” refer directly to the relative position
of observations. These observations are often not randomly
or evenly distributed in geographical space, but are to a con-
siderable degree clustered (see Figure 1). Clustering results
from two potential sources. It may be a reflection of both
empirical population patterns and cluster-based sampling of
the survey data (“clustering by design”). Spatial clustering
in surveys in terms of an uneven or non-random distribution
of individual cases is not a problem per se. It is problem-
atic if the clustering of cases corresponds with a systematic
spatial variation of relevant individual or regional character-
istics, a phenomenon called (positive) spatial autocorrela-

tion. Spatial autocorrelation exists if values at one locality
are systematically associated with values at proximate local-
ities (Fortin & Dale, 2009). Hence, the concept of spatial
autocorrelation highlights additional dimensions of possible
inter-dependencies in the observed data. For example, in-
dividuals in a sample who live next to each other may be
similar with regard to their income or other variables of in-
terest. This is unproblematic as long as these differences are
captured by the model parameters. However, there might be
characteristics relevant for the level of individual income that
vary geographically and are not observed or even considered
by the researcher, such as local labor-market conditions, in-
frastructure, or self-selection of particular employers in cer-
tain regions. When spatially proximate cases are typically
more similar than average, the basic assumption of indepen-
dent sampling units in OLS regression is violated and the
standard errors of estimated parameters are estimated incor-
rectly. Furthermore, there may be direct (causal) relation-
ships between proximate sample units.

Various statistical techniques are available to account for
spatial heterogeneity and dependencies (see the following
sections) that can be implemented using standard GIS soft-
ware packages, but they require information about the lo-
calization of cases. The easiest way is the use of exact
geocoded positions, i.e., data which includes the exact ge-
ographical coordinates of the cases in terms of longitude and
latitude. However, in standard large-scale socio-economic
survey data, the provision of geocoded data is the exception,
which is not least the result of corresponding data protec-
tion regulations. However, data users are often provided with
approximate geographical information (regional identifiers).
This means that the approximate position of a case can be
inferred from its affiliation with a larger geographical unit
for which a geographical code is available. The units are
typically denoted according to standard systems of territorial
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Figure 2. Spatial distribution of individuals within spatial units (examples).

classification whose geo-references are publicly available in
the form of geographical shapefiles. In addition, clustering
identifiers are often provided in survey data sets as part of
describing the (complex) sampling design. This information
on the primary sampling units (PSUs) may also be used to
account for spatial dependencies. Note, however, that they
typically refer to only one aspect of spatial clustering (“clus-
tering by design”). They represent a fixed level of aggrega-
tion and they may differ among various subsamples. More-
over, they typically contain no geographical information on
the actual location (“place”), so that regional variation and
potential spatial associations beyond the clusters cannot be
considered. Finally, survey data may contain information on
local conditions without any information to which particular
regional unit this information relates and where this unit is
located.

In the empirical analyses below, we will use several of the
standard classification systems and compare the results for
individual analyses. Prior to this, we will give a brief descrip-
tion of the most common territorial classification systems. In
addition to our discussion of spatial dependencies, there is
another good reason to become familiar with such classifica-
tion systems. Many researchers are interested in describing
the effects of local context conditions on individual behavior,
e.g., analyses of the effect of regional infrastructure on ed-
ucation or the effect of local labor-market conditions on ca-
reer mobility. Standard classification systems also allow the
merging of individual-level information from surveys with
adequate context data from other sources, such as aggregate
official statistics.1

3 Making use of the geographical information in
survey data

In practice, dealing with basic aspects of “place” is rela-
tively straightforward. Regional variation in relevant survey-
based information is mapped descriptively, or identifying in-
formation on spatial units is used for matching with external

(context) data.
Spatial dependencies can be dealt with to various degrees

of sophistication. Corresponding statistical techniques have
different requirements for the accuracy of the geographical
location of the observations. In the case of an OLS regres-
sion, we implicitly assume that no spatial autocorrelation is
present. This means that all observations are evenly dis-
tributed across the geographical space or that their geograph-
ical positions and the distances between them do not matter
for the specific research question. Problems may arise if the
units of observation are in fact clustered and the proximate
cases are correlated in terms of relevant characteristics in
some unknown (and uncontrolled) way. In particular, stan-
dard errors may be underestimated if this correlation is rele-
vant for the considered outcome (Moulton, 1990).

A standard option to account for clustering is the use of
clustered standard errors (Rogers, 1994). This method is
based on the concept of robust (Huber – White) standard
errors that are used to account for heteroscedasticity of the
model residuals. While the standard approach to compute
robust standard errors assumes that model residuals are in-
dependently distributed, a generalized form relaxes this as-
sumption and replaces it with the assumption of indepen-
dence between clusters. Such a model allows for correla-
tions among the observations within clusters and any het-
eroscedasticity in the error term, but it also assumes no cor-
relation among observations across clusters (Primo, Jacobs-
meier, & Milyo, 2007). Such simple clustering can be per-
formed either as part of the data definition (such as svyset
in Stata’s survey commands) or as a specification of the ana-
lytical model. It can account for dependencies due to spatial
clustering if these dependencies work predominantly within
the specified geographical units. Such models do not require
information about the exact localization of the regional clus-

1 Researchers are not necessarily bound to fixed classification
systems because units of such systems can be flexibly aggregated in
issue-specific, suitable ways (Weßling, Hartung, & Hillmert, 2015).
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Spatial models can account for more complex and ex-
tended spatial dependencies, but they have also higher re-
quirements. Two central problems are spatial allocation and
spatial weighting. When spatial models require the geo-
graphical position of the individuals and the exact position
is not available to the data user, this information must be ap-
proximated by using regional identifiers and the geometries
of available regions. The simplest way of allocating cases
is to use the geographical centroids of each considered re-
gion. In this case, individuals who share the same region
will be allocated to exactly the same geographical position
(see Figure 2, a). More precisely, even in this case, the exact
distance between cases has to be modeled as > 0 in order
to avoid invalid values when computing weighting functions
as inverse distances. In our example, the distance between
cases is at least one meter. Alternative modes of allocation
include an assignment with maximum distances (Figure 2, b)
and random assignment (c).

Furthermore, spatial regression models require a func-
tion that represents the importance of geographical distance
for the weighting term. The simplest way to achieve this
is to use the inverse distance, which is also the default in
most applications, but in principle, the choice of the specific
weighting scheme should be based on theoretical arguments
of distance-related relevance referring to underlying mecha-
nisms such as density and range of social interactions, com-
muting or communication. Spatial weighting functions typi-
cally imply that the importance of proximate cases decreases
steadily with their distance, but there are many alternatives
with specific profiles (cf. Figure 3). Our empirical analyses
in the sections below will show that the choice of the weight-
ing function has consequences for the results.

NUTS (national level) 

NUTS 1 (major regions; 7m – 3m inhabitants) 
(e.g., UK: statistical regions , n=9 + Wales, Scotland, Northern Ireland; 
Germany: federal states, n=16; Netherlands: Landesdelen, n=4) 

NUTS 2 (basic regions; 3m – 800,000 inhabitants) 
(e.g., UK: regions, n=40; Germany: governm. districts, n=31; 
Netherlands: provinces, n=12) 

NUTS 3 (small regions; 800,000 – 150,000 inhabitants) 
(e.g., UK: counties/unitary authorities, n=174; Germany: admin. districts, 
n=412; Netherlands: COROP, n=40) 

LAU 1  
(e.g., UK: districts/lower-tier authorities, n=415; Germany: collect. municipalities, 
n=1,281; Netherlands: same as NUTS 3)  

LAU 2  
(e.g., UK: wards, n=10,040; Germany: municipalities, n=11,252; Netherlands: 
municipalities, n=443)  

Figure 4. International administrative regional classifica-
tions (with national examples): European local and regional
classification systems by Eurostat. NUTS: Nomenclature
des unités territoriales statistiques; LAU: local administrative
unit. Numbers of units refer to the year 2009 (Statistisches
Bundesamt, 2016).

4 Standard regional classifications

Regional identifiers in survey data are used for detailed
analyses on the regional level, for matching with external
(context) data, and for approximating the locations of in-
dividual cases. They typically refer to standard regional
classification systems. Table A3 in the appendix provides
an overview of geographical information in major European
surveys and access regulations.

Public administration uses several regional classifications.
For an illustration of the European classification system, see
Figure 4. The largest territorial units in the administrative
classification are nation states; the smallest units are munici-
palities or their equivalents. Apart from these administration-
based systems, several alternative classifications have been
developed for analytical purposes. These include labor-
market regions, rural and urban areas, and economic cen-
ters. These regional concepts are often based on empirical
quantities such as commuter flows and economic activities.
Some of the classifications follow administrative borders,
while others overlap but do not directly match the official
structures. For geographical illustrations of smaller levels of
aggregation, ZIP (postal) code areas are suitable. They are
not part of administrative classification systems as they have
been conceptualized by companies such as Deutsche Post in
Germany. Administrative structures and ZIP-code areas do
not follow the same boundaries, but it is generally possible
to match administrative area codes (e.g., municipalities) ap-
proximately or proportionately with ZIP codes (e.g. Statistis-
ches Bundesamt, 2016).

Tables of conversion among classifications are provided,
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(a) Planning regions (b) Administrative districts (NUTS-3)

(c) Municipalities (LAU2) (d) ZIP-code areas

Figure 5. Regional classifications in Germany. Shapefiles: (BKG, 2016; Deutsche Post, 2003); authors’ illustration.
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for example, by the European Commission’s Eurostat and na-
tional statistical offices (Eurostat, 2013; Statistisches Bunde-
samt, 2016). Moreover, commercial suppliers (e.g., microm
Consumer Marketing, infas360) provide their own concepts
of small-scale aggregation levels, such as living quarters or
building block areas. Such data are normally not available
for free.

Figure 5 maps the most important classification systems
for Germany.

• Planning regions (PRs; Raumordnungsregionen) are
not part of the administrative regional classification system
but are based on the administrative structures. The basic units
of PRs are administrative districts (NUTS-3). Also, PRs can
be aggregated up to the level of federal states. The purpose of
the PRs is to describe the functional classification of larger
economic centers and their associated peripheries. PRs are
conceptualized on the basis of commuter flows and other in-
formation. Since 2009, there have been 96 PRs in Germany.
The area size of PRs varies between 325.6 km2 and 7,775.7
km2. The average area size is 3,720.6 km2. A conversion of
this value to a simple geometric form may allow a more in-
tuitive interpretation: A circle with this area size would have
a radius of approximately 34.4 km.
• In 2009, there were 412 administrative districts (Kreise

und kreisfreie Städte, NUTS-3) in Germany. Administra-
tive districts represent the basic analytical unit for regional
statistics and are adjusted to the European regional classifi-
cation system. These districts represent the NUTS-3 units
conceptualized by Eurostat and therefore allow for interna-
tional comparisons. The NUTS regions follow the national
administrative structures. For researchers, it is important
that comprehensive geographical information is available for
these territorial units. NUTS-3 regions are the smallest of
the NUTS units. They are suitable for specific analyses at
the level of cities and coherent rural areas. The area size of
districts varies between 35.7 km2 and 2,881.8 km2, with an
average size of 869.0 km2. This is equivalent to a circular
area with a radius of 16.6 km.
• Municipalities represent the LAU2 level in the interna-

tional classification. In 2009, there were 12,067 municipal-
ities in Germany. Municipalities represent the smallest ad-
ministrative classification units and are the basis for many
statistics at the local level. Municipalities are dissimilar with
respect to inhabitants and area size. The largest municipality
according to the number of inhabitants is Berlin, with 3.4
million inhabitants; the smallest municipality (Holm Gröde
in Schleswig-Holstein) has only nine inhabitants. The area
size of municipalities varies between 0.31 km2 and 891.8
km2, with an average size of 31.4 km2. This is equivalent
to a circular area with a radius of 3.2 km.
• Finally, there is the map of ZIP-code areas. There are

nine large ZIP-code areas denoted as 0 to 8. These num-
bers represent the first digit in the 5-digit ZIP code. The total

number of ZIP codes in Germany is 28,683. However, a large
number of these codes belong to mailboxes and large vol-
ume receivers; only 8,208 are relevant for private households
(Deutsche Post, 2003). Compared with municipalities, ZIP-
code areas are much more similar with regard to the number
of inhabitants. Their average size is approximately 42 km2,
which is equivalent to a circular area with a radius of 3.7 km.

Once sampled individuals are linked to geographical units,
this (approximate) spatial information can be used in statisti-
cal models to account for potential spatial interdependencies.

5 Empirical applications

5.1 A brief introduction to the substantive examples

To illustrate our discussion on spatial dependencies, we
choose related, popular research topics as empirical exam-
ples: monetary returns to education and gender-related and
migration-related wage gaps. We make use of the empiri-
cally well-tested relations between ethnic origin, gender, ed-
ucation, and economic returns and follow the established re-
search methods in this field.

Educational attainment is among the most important
individual-level determinants of earned income, occupa-
tional position, and labor-market security. It is therefore no
surprise that returns to education have been a frequently ana-
lyzed topic in empirical sociological and economic research.
Many analyses on the relevance of education for the labor
market have been driven by the human capital approach. In
this theory, education is understood as an investment of cur-
rent resources – taking the opportunity costs of time as well
as any direct costs into account – in exchange for future re-
turns (Becker, 1993; Mincer, 1974). Moreover, education
can be considered the most relevant information employers
have on job applicants. Subsequently, education also func-
tions as a signal on the job market (Spence, 1973). In empir-
ical studies, earnings are almost always measured in logarith-
mic form. On the one hand, the distribution of log earnings
– particularly on an hourly basis – is very close to a normal
distribution. On the other hand, the log earnings function is
best approximated by the linear schooling term and allows
for an easy interpretation (Card, 1999). Returns to education
represent the monetary return of an investment in education
in terms of a percentage increase in income. Since the late
1960s, returns to education have been among the most re-
searched topics in economics and the social sciences, and the
positive effect of investments in human capital on earnings
and employment is among the most robust findings. Findings
on the overall returns to an additional year of education for
Germany vary with respect to the measurement of education
and income as well as with the analytical strategy used, but
they have proven to be positive and stable (Ammermüller &
Weber, 2005; Gebel & Pfeiffer, 2007; Harmon & Walker,
2000).
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Beyond that, there are well-known income differentials
with respect to individual characteristics such as gender or
migration. In most countries, immigrants have, on average,
lower wages compared to the native population, and females
have lower wages than males. Average income differences
between men and women can in large part be explained by
differences in work- and education-related aspects such as
working hours, employment status, level of education, and
degree subject (e.g. Bishu & Alkadry, 2017; Fitzenberger
& Wunderlich, 2002; Machin & Puhani, 2003). Concern-
ing migration- and ethnicity-related differences in earnings,
qualification differences can be regarded as one major rea-
son. Discrimination is an additional explanation for differ-
ences in working outcomes between ethnicities (as well as
between sexes). A large number of studies have confirmed
multidimensional explanations and have disaggregated the
relevance of specific explanations (e.g. Constant & Massey,
2005; Dustmann & Glitz, 2005; Nielsen, Rosholm, Smith, &
Husted, 2001).

Returns to education and the effect of determinants of in-
come are also likely to depend on location (“place”). Local
or regional contexts are unequal in terms of socio-economic
conditions that can influence individual outcomes, such as re-
turns to education. We can therefore expect regional variabil-
ity in outcomes. Relevant local contexts do not necessarily
follow administrative boundaries. Since local labor-market
conditions encourage processes of (self-)selection, there may
also be disproportionate similarities and mutual influences
between proximate units of observation, so that also aspects
of “space” matter.

5.2 Data and calculation tools

To illustrate the alternatives and challenges of taking as-
pects of locality in survey data into account, we use the Ger-
man Socio-Economic Panel (SOEP) (2014). The GSOEP is
a survey of private households that has been carried out since
1984. The survey is conceptualized as a panel study. Re-
spondents are household members aged 17 and older. The
survey provides information on living conditions, the eco-
nomic situation of individuals and households, educational
careers of individuals, and a set of information on values and
attitudes. The main questionnaire is a yearly, standardized
instrument for individuals and households, which focuses on
current living situations. Additionally, a one-time biograph-
ical questionnaire is used at the time of the first interview
that records individual biographies as of the interview date.
For international comparisons, there are several standardized
questions in the GSOEP that are compatible with other in-
ternational data sets (e.g., BHPS for the UK; cf. Frick, Jenk-
ins, Lillard, Lipps, & Wooden, 2008). The GSOEP contains
several subsamples (see Goebel, Krause, Pischner, Sieber,
& Wagner, 2008). The PSUs in the GSOEP and their lev-
els of aggregation differ among subsamples. They can be

constituencies, municipalities, administrative districts or re-
gions. Households are selected within the regional units us-
ing a random-route procedure with a random starting address
and fixed selection intervals (Spieß, 2008).

For our analyses, we use individual-level data in the form
of a pooled cross-sectional sample. Starting in the year 2000,
i.e., the first year detailed regional information became avail-
able, we include all individual GSOEP cases between 35 and
55 years of age with valid information on our model vari-
ables. 13,952 such cases were interviewed at least once be-
tween the years 2000 and 2013. For each case, we con-
sider the information from the first year the person was in-
terviewed. To avoid possible bias due to clustering within
households, we include only one (randomly selected) earner
from a particular household. This subsampling is performed
in such a way that the proportion between single-person and
multi-person households remains unchanged. Due to these
restrictions and missing data on the geographical location,
our final sample consists of 5,832 individual cases.

The dependent variable in all of our analyses is individual
gross hourly wage (in Euros) in logarithmic form. The fig-
ures have been inflation-adjusted (to the base year 2000). Be-
sides education and migration status, independent variables
on the individual level include sex, age, working hours, fam-
ily status, industry or sector, and job tenure within the com-
pany. Previous research on the impact of education on earned
income has confirmed these variables as highly relevant pre-
dictors (e.g. Fossen & Büttner, 2013; Strauß & Hillmert,
2011). A description of the model variables can be found
in Table A1 in the appendix.

Spatial models have only recently entered the focus of sur-
vey researchers. They have been originally developed for
macro-level analyses, not sample-based analyses of individ-
uals. The consideration of non-spatial weighting in spatial
modelling is still in the early stages. Most applications of
spatial models do not yet incorporate individual sampling
weights (Belotti, Hughes, & Piano Mortari, 2016; Mercer,
Wakefield, Chen, & Lumley, 2014). For reasons of consis-
tency, we present all of the following analyses without the
use of individual sampling weights. The inclusion of indi-
vidual survey weights has also made little difference for the
results in our standard multivariate regression analyses.

As it is the case with comparable large-scale surveys, the
GSOEP allows researchers to localize not individual respon-
dents but larger areas in which respondents live. Different
levels of territorial aggregation are available (cf. Table A3 in
the appendix). The GSOEP also offers on-site access to some
additional levels of aggregation (DIW, 2016). The scien-
tific use files that can be accessed via download only contain
information about the largest administrative territorial units
(the federal states in which respondents live). Smaller levels
of aggregation are subject to stricter data protection proce-
dures. Municipalities and ZIP codes are only available at
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the Research Data Center at the DIW (the German Institute
for Economic Research) – the research institute that hosts
the GSOEP. The coding of these aggregation levels allows
for both the localization of territorial units and their link-
age to aggregate context information. Exceptions include the
classification of municipality size and the most detailed level
of aggregation (neighborhood information), which only con-
tains selected context information. A localization of specific
neighborhoods would come close to a localization of indi-
vidual cases. In principle, the data provider can also match
the individual-level data with context information based on
alternative classification systems and provided by the user.
However, it needs to be ensured that the exact location of
individual cases remains unidentifiable.

In the following analyses, we illustrate the regional con-
centration of individuals on different aggregation levels. We
choose planning regions (PR), administrative districts, mu-
nicipalities and ZIP-code areas to cluster individuals and ap-
ply different methodological strategies to analyze economic
returns to education and wage gaps due to gender and mi-
gration status. As these levels of aggregation are ranked ac-
cording to their size, a comparison of results may provide
an impression of the possible consequences of the so-called
modifiable areal unit problem (MAUP). MAUP implies that
results of statistical models in which contextual informa-
tion is used can be strongly affected by the level at which
the contextual data is aggregated (Fotheringham & Wong,
1991; Kwan, 2012). MAUP highlights an important chal-
lenge in survey data analysis: the choice of the appropriate
level of aggregation when accounting for clustering in statis-
tical models. Both the geographical references of theoretical
mechanisms and the way the empirical sample is selected
should be considered (Heeringa, West, & Berglund, 2010;
Hillmert, 2016).

Administrative regional units have frequently been subject
to territorial reforms due to population development and re-
gional economic situations. We use a uniform territorial state
of the data and utilize all regional information as of Decem-
ber 31, 2009. In the prepared individual-level dataset, there
are respondents in all 96 PRs. The 5,832 respondents are dis-
tributed across 402 of the 412 districts. Within the prepared
dataset, we have included respondents living in 1,798 of the
12,067 municipalities and in 2,595 different ZIP-code areas.

QGIS was used for generating the maps in Figure 5, cal-
culating spatial distributions and matching with regional con-
text data (in shapefile format). Further calculations were per-
formed in Stata 14 using the commands spmat for weight-
ing matrices (Drukker, Peng, Prucha, & Raciborski, 2013)
and spreg for spatial lags (Drukker, Prucha, & Raciborski,
2013). Shapefiles were converted to .dta format using
shp2dta (Crow, 2006); results for geographically weighted
regression were obtained using gwr (Pearce, 1998); and Fig-
ure 7 was generated using spmap (Pisati, 2007).

5.3 Indicators of spatial autocorrelation

The simplest and most intuitive way to get an impression
of local similarity is to account for intra-class correlation of
cases within defined units of clustering (Snijders & Bosker,
2012). Intra-class correlation describes how strongly cases
in the same group resemble each other; this approach ex-
plicitly accounts for the grouping data structure. Intra-class
correlation, however, does not consider information about
the distribution of cases within the regions or their relations
across regional borders. To account for these kinds of rela-
tionships, geo-referenced data and spatial models are indis-
pensable. In spatial statistics, the level of autocorrelation can
be quantified using different approaches. A popular concept
is Moran’s I (Moran, 1950). Moran’s I summarizes the sim-
ilarity of the values of the variables of interest at different lo-
cations as a function of the distance between cases (following
Delmelle, 2009, p. 188):

I =
N∑

j
∑

k w jk

∑
jk w jk(y j − ȳ)(yk − ȳ)∑

j(y j − ȳ)2 (1)

Denoted with y j and yk are the values of the variable of in-
terest measured at the locations j and k, respectively. w jk are
weights based on the proximity of these two points. These
weights can be defined in different ways according to theo-
retical considerations; usually, similarity is expected to de-
crease over distance (cf. Figure 3). The values of I range
from −1 to +1. Positive values indicate positive spatial auto-
correlation and negative values indicate negative spatial au-
tocorrelation (see also Griffith & Arbia, 2010). A value of
zero indicates a random spatial pattern. A transformed form
of Moran’s I values (z-scores) can be used for statistical hy-
pothesis testing (Cliff & Ord, 1972).

To illustrate the degree of spatial autocorrelation in our
example, we compute Moran scatter plots. The horizontal
axes in the scatter plots display the z-values of the income
variable, while the vertical axes display the corresponding
spatial lag (of the income variable). The spatial lag variable
of income is obtained by the matrix-vector-product W × y
(with y the vector of the variable of interest, and W the square
matrix holding the values of w jk). For a person at location
j, Wy represents the sum of all y-values at proximate loca-
tions k weighted with the matrix elements w jk . The slope
of the linear predictor in the Moran scatter plot corresponds
to Moran’s I; a positive slope can be interpreted as positive
spatial autocorrelation (Ward & Gleditsch, 2008).

To compute a spatial weighting matrix to serve as the basis
for the identification of the spatial lag, geographic locations
of the cases in terms of latitude and longitude need to be
specified. To get an estimate of the locations, we use the
geographical centers (centroids) of the considered territorial
units as approximations of the individual geographical posi-
tions and – as the default specification and in line with con-
ventional research – the inverse distance as weighting func-
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Figure 6. Linear relation between z-standardized earned income (log hourly wage) and its first-order spatial lag. Slope is
equivalent to Moran’s I (Ward & Gleditsch, 2008, p. 24). Calculations are based on inverse distance weights and approximate
the individual location as geo-centers at different levels. All slopes are significantly different from 0 (p < 0.001) except for
the level of ZIP codes. Data: GSOEP, own calculations.

tion. Geographical coordinates describing the different re-
gional units – e.g., in the form of the geographical centroid
of the region – are not part of the GSOEP. This informa-
tion must be obtained with standard GIS applications using
appropriate geometries in the form of shapefiles. The co-
ordinates can then be linked with the individual-level data
so that a weighting matrix between individual cases can be
computed.

In Figure 6, such scatter plots have been produced using
four different levels of geographical approximation and the
weighting scheme 1

distance (as it was illustrated in Figure 3).
As we can see, the obtained level of spatial autocorrelation is
strongly dependent on the level of geographical approxima-
tion used; while there appears to be strong autocorrelation
on the level of PRs, it steadily decreases when the size of

considered units becomes smaller (districts, municipalities,
ZIP codes).

However, a substantive interpretation of these results is
difficult. Looking at the inverse distance function in Figure
3, we recognize that cases within a very close range receive
very large weights. The geo-centered allocation makes the
positions of individuals in the same territorial units (almost)
identical, so their mutual importance is very high. The im-
pact of these large weights is particularly consequential in
larger territorial units, where relatively more cases are close
to each other. Potential dependencies beyond the clusters be-
come negligible, so the clusters resemble a simple hierarchi-
cal structure.

The general conclusion is therefore not only that estimated
spatial dependencies depend on the level of aggregation on
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which local and regional information is available, but also
that under conditions of local approximation, the results can
also be particularly sensitive to the (combined) specification
of both allocation and spatial weighting.

6 Regression-based analyses (average effects)

6.1 Methods

We will now compare results on our substantive exam-
ples (determinants of earned income) using the most com-
mon types of regression-based analyses: OLS regression;
OLS with clustered standard errors; multi-level (random-
intercept) models; and spatial regression models.

OLS regression. We start our discussion with results
from an OLS (ordinary least square) regression. This stan-
dard model has the following form:

yi = β0 + β1x1i + . . . + βnxni + εi (2)

for individual i.
OLS with clustered standard errors. Local spatial

clustering is an attractive approach especially in a situation
where there is information about joint cluster membership
without information about the geographical positioning of
these clusters. Neglecting the identifiability of territorial
units in our example, such nominal clusters can be derived
from the specific regional units. Some survey data sets pro-
vide adequate clustering indicators.

Multi-level analyses. A similar approach for dealing
with geographically correlated error terms is to use hierar-
chical multi-level models with defined regions as aggregate-
level (level-two) units and to compute random intercepts.
Multi-level techniques allow for the determination of the im-
pact of variables on different analytical levels. However,
in this paper, we concentrate on a more specific feature of
these models, their account for clustering. When computing
random intercepts, we add an additional term to the model
that represents the variation of the error term (or the con-
stant) among the defined regions, i.e., the explanatory part
of the regional level. Again, multi-level models may be
the method of choice when there is information about lo-
cal clustering (joint cluster membership) without informa-
tion about the geographical positioning of these clusters.
Such models still assume that local and regional mechanisms
work within the boundaries of the considered local or re-
gional units of aggregation. Furthermore, multi-level mod-
els make an implicit assumption about the distribution of the
cases within the clusters; all cases within the same cluster
receive exactly the same correction of the model error term.
The random-intercept model has this specification (following
Rabe-Hesketh & Skrondal, 2012, p. 128):

yi j = (β0 + ζ0 j) + β1x1i j + . . . + βnxni j + εi j (3)

for individual i in region j with ζ0 j ∼ N
(
0, τ2

)
.

The basic requirement for estimating this model is infor-
mation about which cluster an individual can be assigned to.
When there are alternatives, the choice of a particular level
of aggregation should follow theoretical considerations about
the spatial range of relevant dependencies.

Spatial regression models. Multi-level models neglect
the potential effects of equivalent geographical units that sur-
round the unit in which an individual is located. Therefore,
we now compare these models with specific techniques of
geographical weighting that take non-stationarity and spa-
tial proximities within the sample into account (cf. Anselin,
2001). On the basis of the standard OLS model, spatial de-
pendence can be incorporated in two distinct ways. The first
method is to estimate an additional parameter representing
the distribution of the spatially lagged dependent variable
(for each case this is the weighted average across neighbors).
This approach is referred to as spatial lag model (or spatial
or simultaneous autoregressive model – SAR). This model is
appropriate when the focus of interest is on the existence and
strength of spatial interactions among the units of observa-
tion. Using this technique, we get an impression of how the
distribution of the dependent variable across the cases affects
their values. In our example, the corresponding question of
interest is how individual income spatially correlates with the
level of income across proximate cases. This approach is di-
rectly related to the issue of the spatial autocorrelation of the
dependent variable.

Alternatively, we can control for spatial dependence in the
regression disturbance term. Models of this kind are called
spatial error models. They are appropriate when the aim
is to correct for potential bias due to spatial autocorrelation.
In this regard, spatial error models pursue similar objectives
as models with clustered standard errors or random-intercept
multi-level models: They adjust the computed error terms for
potential clustering in the data structure. In spatial models,
proximity between cases is operationalized as a function of
the geographical distance between them.

Spatial error and spatial lag approaches can be applied si-
multaneously. The notation for combined spatial lag and spa-
tial error models (SARAR or SARSAR models) is as follows
(cf. Drukker, Prucha, & Raciborski, 2013, pp. 222-223):

y = λWy + Xβ + u (4)

u = ρMu + ε . (5)

In these equations y is the N × 1 vector of observations on
the dependent variable, X is the N × k matrix of observations
on the independent variables; W and M are N × N spatial-
weighting matrices; Wy and Mu are N × 1 vectors referred
to as spatial lags, and λ and ρ are the corresponding scalar
parameters; u represents an N × 1 disturbance vector; and ε
is an N × 1 vector of independent and identically distributed
innovations (see also Ord, 1975). In line with the assump-
tions on the spatial disturbance of y and ε, W and M can be
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based on different weights, but in the following analyses we
will use identical weights.

We approximate the geographical position of the individ-
uals with available information about the regional units in
which the individuals are located. We exemplify this by com-
paring approximation strategies of using large units, such as
PRs, and relatively small units, such as ZIP codes. We al-
ready obtained rather different results when assessing the ex-
tent of spatial autocorrelation in the dependent variable using
the different regional levels of approximation (cf. Figure 6).

6.2 Selected empirical results

OLS regression. The empirical results for OLS can be
seen in Table 1, model “OLS”. For reasons of clarity, we re-
port in this section only coefficients and corresponding stan-
dard errors for the central independent variables years of ed-
ucation, sex, and migration background. The full model is
presented in Table A2 in the appendix. Applying the OLS
model, we observe significant coefficients for years of edu-
cation as well as for sex. Years of education has a highly sig-
nificant positive impact on earned income (with a coefficient
of 0.083), whereas being female has a negative significant
effect of -0.161. Migration background has a small negative
and non-significant effect.

OLS with clustered standard errors. In Table 1, mod-
els under “OLS (clustered Std. Err.)”, we define clusters on
various levels of aggregation. For the sake of clarity, we re-
strict the analyses to two substantive alternatives: clustering
on the level of PRs (regional planning units) and ZIP-code
areas. A special alternative is clustering by primary sam-
pling units (PSUs). Clustering can be achieved either as part
of the complex sample description (svy) or as an option in
the regression syntax. However, it is difficult to interpret the
results of PSU-based clustering in substantive terms: First,
as properties of the sample PSUs reflect only one aspect of
spatial clustering (“clustering by design”) and they may not
correspond to a particular level of aggregation specified on
substantive grounds; second, PSUs represent different lev-
els of aggregation in different subsamples. Cluster-robust
estimators for standard errors have, per definition, no im-
pact on point estimates. In terms of standard errors, we ob-
serve slightly higher values than with OLS. However, they
decrease when clustering on small-scale levels. In all cases,
the estimator is obviously not more efficient than in the stan-
dard OLS. Increasing standard errors can be interpreted as
indicators for “multiple information” in the original OLS re-
gression (Moulton, 1990).

Multi-level analyses. In Table 1, models under
“Random-intercept models”, we see that the decision about
which regional level is used as level two has crucial con-
sequences for the results. With respect to migration back-
ground, the effect is negative and significant on the level of
PRs but it becomes weaker with lower levels of geographical

aggregation and statistical significance disappears. A sim-
ple interpretation of the results from these random-intercept
models is that there is an effect of migration background
that is suppressed in the OLS model because immigrants are
systematically distributed among regions with specific eco-
nomic situations and income potentials. This compositional
effect is controlled by the random intercept. This interpre-
tation would stress that there are major differences in the
composition of native Germans and immigrants among re-
gions. Immigrants are concentrated in regions with higher
average incomes (in West Germany). Native Germans and
immigrants are, on average, much more similar with respect
to their income when compared within their immediate en-
vironments (ZIP-code units) than within large PRs. The re-
sults indicate that random-intercept models are sensitive to
the modifiable areal unit problem.

The effect of sex increases (in absolute terms) with a lower
level of aggregation, but it is still highly significant in all
cases. Compared to this, the effect of education remains al-
most constant and is comparable to the result obtained from
OLS. This effect is very stable; the impact of education is
sensitive neither to the applied method nor to the level of
regional clustering.

Computing robust standard errors does not distinguish be-
tween model error on individual and context levels. In con-
trast, multi-level modeling is based on the logic of variance
decomposition and offers the possibility to assess the ex-
tent of heterogeneity on different levels (Snijders & Bosker,
2012). For the computed models, we obtain significant vari-
ance components for the context as well as individual lev-
els. The explanatory power of the context increases with a
smaller level of geographical aggregation. While the income
differences between PRs explain around 11.3 percent of the
total variance, this share increases to 13.8 percent when con-
trolling for the affiliation with particular ZIP-code areas. Hi-
erarchical models may also include more than one level of
regional aggregation.

Spatial regression models. First, we apply a standard
spatial lag and spatial error model with inverse distances
as elements of the weighting matrix (W and M as defined
above). Geographical positions are approximated by the ge-
ographical centroid of the region. In line with the results
of the Moran scatter plots (Figure 6), wherein we used the
same weighting matrix, the spatial lag term λ is significant
on the level of PRs but not on the level of ZIP-code areas. λ
represents the level of spatial autocorrelation of income. In
contrast, the spatial error term ρ is significant regardless of
the regional level that has been used for approximating the
geographical position of the individual cases. This finding
can be interpreted as unobserved spatial clustering that we
have adjusted for by applying a spatial regression model. As
we can see in Table 1, first model with “Geo-centered alloca-
tion”, the consequences of this model setup for the estimated
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coefficients of education and sex are minimal. However, the
effect of migration background is very sensitive to the ap-
plied operationalization. There is a negative effect when us-
ing PRs but no significant effect when using the ZIP-code
level as an approximation. This result appears to be a val-
idation of the results provided by multi-level modeling (see
Table 1, “Random-intercept models”). In fact, a closer in-
spection reveals that the specification is almost an exact re-
production of a random-intercept model or simple clustering.
As mentioned before, when using an inverse distance func-
tion, cases within a very close range get very high weights.
Modeled geographical locations of individuals in the same
polygons are (almost) identical when using geo-centered al-
location. their mutual importance for the adjustment of the
spatial lag is very high whereas cases within any longer dis-
tance are effectively irrelevant.

To illustrate the relevance of allocation we vary the mode
of allocation. Now cases are allocated randomly within the
regional units (cf. again Figure 2 (c)). The results are shown
in Table 1, under “Random alloction”. Inhabitants of the
same territorial unit are now more distant from each other,
and there is no longer an extraordinarily high mutual inter-
dependence between them. As a consequence, cases from
neighboring regions become relatively more relevant. We
find the effect of migration background to be no longer sig-
nificant with this mode of allocation.

Finally, we modify the weighting distance function from
an inverse distance function to a Gaussian (normal) func-
tion (with varying dispersion). For a comparison of different
functional forms see Figure 3; a larger dispersion means that
the weights decrease less strongly with distance. Our em-
pirical findings on different function forms can be found in
Table 1. The first four spatial regression models are based on
an inverse distance function while the last four models under
last two headings of “Geo-centered allocation” use Gaussian-
type functions with a relatively small and a relatively large
dispersion respectively. As we can see in both models, mi-
gration background again has a significant negative effect on
the level of PRs. When using ZIP-code areas as the level of
approximation this also applies to the last model. As already
mentioned, immigrants and native Germans in the same ZIP-
code areas are likely rather similar in terms of earned income.
Disproportionately high weights for immediate neighbors re-
sulting from an inverse distance function (or a Gaussian func-
tion with a small dispersion) eliminate the negative effect ob-
servable on a larger scale. By taking more distant cases more
strongly into account, this effect is recovered.

7 Regression-based analyses (geographically varying
effects)

In our final analyses, we return to aspects of “place” by
looking at the geographical variation in the determinants of
earned income. An important issue that can be attributed to

specific regional positions is the spatial non-stationarity of
effects (Brunsdon, Fotheringham, & Charlton, 1996). When
applying a linear regression model to spatial data, we as-
sume a stationary process, which means that the same char-
acteristic has the same impact everywhere. If there is spatial
non-stationarity, such a global model cannot appropriately
explain the relationships between the sets of relevant vari-
ables. The problem is not an incorrect estimation of a global
indicator, but the fact that a single global indicator does not
adequately represent an effect that varies across space.

7.1 Methods

Random-slope model. One possibility that allows con-
sidering the variation of effects among clusters is a multi-
level model in the form of a random-slope model. Random-
slope models do not consider spatial information but ac-
count for the clustering of observations in particular (terri-
torial) units. We can obtain an additional parameter for the
considered independent variable that represents the variation
of the correspondent linear coefficient among regions. The
random-slope model has this specification (see also Rabe-
Hesketh & Skrondal, 2012, p. 188):

yi j = (β0 + ζ0 j) + (β1 + ζ1 j)x1i j + . . . + βnxni j + εi j (6)

for individual i in region j, with ζ0 j ∼ N
(
0, τ2

0

)
and ζ1 j ∼

N
(
0, τ2

1

)
.

Geographically weighted regression. Another possi-
bility to account for the spatial non-stationarity of effects by
explicitly considering the spatial proximity of all cases is ge-
ographically weighted regression (GWR; cf. Brunsdon et al.,
1996; Fotheringham, 2009a). GWR follows a logic that is
slightly different from the spatial lag approach; in this model
framework, there are no additional parameters that account
for spatial dependency in estimated global measures, but sep-
arate linear models for every given geographical position in
the dataset are calculated. For each linear regression, a sep-
arate set of coefficients is obtained. Thereby, every single
local regression makes use of the entire dataset. For each
of these regressions, all cases are weighted depending on
their distance from a particular geographic position. Various
weighting schemes can be used to specify the relevance of
distance and proximity; but in most cases, a Gaussian func-
tion is used. This implies that the importance of neighboring
cases decreases with a varying slope across space.

Following Fotheringham (2009a, p. 244), the GWR model
can be specified as follows:

yi j = β0 j + β1 jx1i j + . . . + βn jxni j + εi j (7)

for individual i in region j, with parameter estimator

β′j =
(
XT W jX

)−1
XT W jY (8)
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(a) Years of education (b) Sex (female) (c) Migration background

Figure 7. Geographically varying effects of education (a), sex (b) and migration (c) background on individual earnings: Results
from GWR. Regional classification: admin. districts (NUTS-3). Data: GSOEP; BKG, 2016 (shapefile), own calculations.

where W j is a matrix of weights specific to location j.
For the definition of the weighting function, a bandwidth

– i.e., the standard deviation of the Gaussian distribution –
has to be specified. The bandwidth can be set to the maximal
distance between given positions in the dataset. This might
not, however, be the best choice because GWR results are
very sensitive to the chosen weighting function; a bandwidth
that is too broad – e.g., due to outliers – will lead to a large
bias in the local estimates. Therefore, most statistical pack-
ages implement a model calibration procedure whereby the
bandwidth is derived by excluding all distant cases until an
“optimal” function is obtained. This procedure can be carried
out by minimizing a cross-validation score or via the Akaike
Information Criterion (AIC). In a further step, adaptive func-
tions can be computed, meaning that weighting functions are
allowed to vary between geographical positions. GWR tech-
niques are predominantly descriptive, but there are several
approaches based upon GWR that allow statistical testing for
non-stationarity of OLS model coefficients (Leung, Mei, &
Zhang, 2000).

7.2 Selected empirical results

Random-slope model. When computing random-slope
parameters for our example, neither the effect of years of ed-
ucation nor of sex or migration background vary between re-
gions; the parameters that indicate the level of variation in
the effects of sex, migration and education are not signifi-
cant. However, when computing random slopes, we face the
same restrictions as in the case of random-intercept models:

The random-slope follows a particular distributive assump-
tion, and proximity between individuals is only considered
when they share the same region – even if the theoretically
assumed connection between them is not limited by these
geographical borders.

At this point we are not interested in average effects but in
their heterogeneity between regions, so the coefficients are
not reported.

Geographically weighted regression. To illustrate
GWR, we compute examples using a Gaussian distance func-
tion with a fixed bandwidth that was obtained by a cross-
validation algorithm. We use geographical centroids of ad-
ministrative districts to approximate the geographical posi-
tion of individuals. To obtain detailed results, researchers use
the smallest level of aggregation available. However, a mean-
ingful interpretation of GWR results demands their depiction
in the form of maps. Due to strict data protection guidelines
on the use of many large-scale surveys, graphical mapping of
the results is not permitted if data cells are occupied by too
few observations, which is often the case when using small
levels of aggregation. The test for non-stationarity delivers
negative results for most variables, including sex and years
of education, but the effect of migration background varies
significantly across space. This finding is in contrast to the
conclusion made on the basis of multi-level modeling. As in-
dividuals sharing the same aggregate unit have been assigned
to exactly the same position, GWR produces identical results
for cases within the same aggregate unit. Using a GIS map-
ping tool, the results can be presented graphically. Figure 7
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shows the regional distribution of the relevant coefficients.
Following the effective data protection rules, we cannot

consider regional units where the number of observations is
below the limit of ten individual cases. This also means that
maps like this cannot be produced using a finer gradation
than the level of administrative districts.

We find that (only) the effect of migration background on
earnings varies markedly by region. We can also observe
regional patterns: For example, immigrants in East Germany
earn even more than native German employees when con-
trolling for relevant characteristics. The immigrant popu-
lation in East Germany is relatively small, so this result is
consistent with established findings of a negative impact of
minority group size (Granato, 2009). On the other hand, this
local effect does not neutralize the overall average negative
effect for immigrants that we found in a number of models.
GWR does not quantify the importance of particular regions
for the global estimate. Furthermore, the positive test for
spatial non-stationarity does not imply that the effects at ev-
ery particular location are significant. For such an exami-
nation, additional local statistics can be computed. This op-
tion is not provided by many GIS packages, but for exam-
ple by GWR4 (Charlton, Fotheringham, & Brunsdon, 2006;
Nakaya, 2016).

8 Summary and conclusions

In this paper, we have presented illustrative analyses of
large-scale socio-economic survey data that carry underlying
spatial structures. Our fundamental assumption has been that
individual actions necessarily have spatial references. Indi-
viduals act in the physical world, and their relative geograph-
ical position may have an impact on the processes under con-
sideration. Even if potential spatial interdependencies are not
explicitly considered, analytical models are still based im-
plicitly on assumptions about the geographical distribution
of the cases, their relevance for the measured effects, and the
quality of the models. Our example has been determinants of
earned income. Comparing a number of analyses, we have
found both robust effects, as in the case of education, and ef-
fects that are very sensitive to the specific operationalization,
as in the case of sex and, in particular, migration background.

Which general conclusions can be drawn from these ex-
amples beyond the specificities of the particular substan-
tive questions? Large-scale survey data do not often allow
for fine-grained geographical differentiation, but researchers
should in any case consider the level of geographical detail
in the available data. It is obvious that analyses which are
based on data that allows only the calculation of global aver-
ages are of limited value when systematic spatial variation of
the particular phenomenon can be expected. One should also
acknowledge, however, that local composition differences,
spatial heterogeneity, and spatial dependencies are univer-
sal problems that may influence the results even if the re-

search question does not explicitly focus on spatial phenom-
ena. Even in these cases, including geographical information
may prevent inconclusive substantive results. Another pop-
ular research interest that requires geographical information
is concerned with the effects of local context conditions rep-
resented by aggregate information that is matched to survey
data.

Therefore, at least proxy information about local posi-
tioning and clustering should be obtained. For determining
the local position of cases, information should preferably be
based on a classification system with a small scale of regional
aggregation so that the approximation gets close to the exact
position. In any case, the goal is to approximate the empirical
patterns of distribution. The situation is somewhat different
when deciding the aggregation level of context information
and the level of regional clustering in multi-level analyses of
context effects. In these cases, the challenge is to find the
level of aggregation that is substantively most relevant for
the specific topic (cf. Hillmert, 2016).

The choice of adequate analytical techniques depends on
the studied phenomenon and the type of geographical infor-
mation available to the researcher. OLS is the non-spatial
standard approach for determining statistical associations in
many applications. It can also be used when any geographi-
cal information is lacking. However, it assumes homogeneity
of effects and the independence of observations – assump-
tions which are often not justified.

Multi-level models can account for dependencies due to
spatial clustering if these dependencies work predominantly
within the specified geographical units. The models do not
require information about the exact localization of the re-
gional clusters. The main challenge is choosing the opti-
mal level of spatial clustering. In this case, dependencies
are located within the clusters and spatial dependencies be-
yond the cluster are negligible. However, multi-level models
neglect the potential effects of geographical units that sur-
round the unit in which an individual is located. The same
applies to the use of clustered standard errors. The use of
small-scale aggregate units allows goods estimates of the lo-
cation of cases, but the cluster may be “too small” for effec-
tively controlling the relevant spatial dependencies. An al-
ternative might be the inclusion of more than one aggregate
level. However, a general restriction of multi-level models
is that the assumption of hierarchical structures of clusters
–or comparatively simple cross-classifications – does not al-
low considering (complex) dependencies beyond the defined
clusters.

Spatial models are in many instances the most adequate
way of dealing with spatial dependencies, as they allow con-
sidering multiple (matrix-like) dependencies. Still, they re-
quire a number of important decisions, particularly about
distance-based weighting, and they may be rather sensitive
to specifications. The applied weighting scheme should be
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based on solid theoretical arguments or empirical evidence
on the mutual relevance of cases in a defined range. In the
likely case that only approximate information about the loca-
tion of individual cases is available, the additional challenge
is to make a valid assumption about the distribution of cases
within spatial units, particularly if these territorial units are
relatively large. This distribution should resemble the likely
empirical pattern. Hence, using spatial modeling does not
produce better estimates per se. Researchers should be aware
of the theoretical assumptions and specific settings that may
have direct implications for the results.

Many macro-level applications – particularly in the aca-
demic fields of geography or political science – focus on
interdependencies between regions or countries (e.g. Beck,
Gleditsch, & Beardsley, 2006). However, such analyses rep-
resent only a rather small proportion of all survey applica-
tions. More widespread potential problems may therefore
apply for the larger proportion of research that is not explic-
itly spatial. Given the universality of clustering in the social
world, spatial dependencies may still affect the validity of the
results of many analyses, regardless of whether they are part
of the research question or not. The aim of our paper has
been to increase awareness of this set of problems among
researchers, including those outside corresponding research
areas such as human geography and spatial economics.
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Appendix
Tables

Table A1
Variable descriptions

Variable Percentage/Mean Std.dev. Min Max N

Dependent variable
Inflation-adjusted gross hourly wage (log) 2.574 0.524 −1.025 6.058 5, 832

Independent variables
Years of Education 12.56 2.63 7 18 5, 832

Sex 5, 832
Female 49.66 - - - -
Male 50.34 - - - -

Migration background 5, 832
Native 87.52 - - - -
Migration background 12.48 - - - -

Age (in years) 42.75 6.29 35 55 5, 832

Marital status 5, 832
Married 25.31 - - - -
Unmarried 74.69 - - - -

Employment status 5, 832

Full-time 72.89 - - - -
Part-time 27.11 - - - -

Duration of job tenure (in years) 10.19 9.05 0 40.8 5, 832

Firm size 5, 832
<20 employees 23.13 - - - -
20–200 employees 30.57 - - - -
200–2,000 employees 22.43 - - - -
>2,000 employees 23.87 - - - -

Duration of previous unemployment (in years) 0.61 1.64 0 21.2 5, 832

Industry/Sector 5, 832
Primary 3.60 - - - -
Secondary 31.28 - - - -
Tertiary 65.12 - - - -

Data: GSOEP, own calculations
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Table A2
Full OLS model

Independent variable Coef. Std. Err.

Years of education 0.830*** 0.002
Sex: female (Ref. male) −0.161*** 0.013
Migration background: migrant (Ref. non-migrant) −0.018 0.016
Age −0.002** 0.001
Marital status: married (Ref. not married) 0.063*** 0.012
Employment status: full-time (Ref. part-time) 0.063*** 0.012
Firm size: < = 20 employees −0.254*** 0.018
Firm size: 21–200 employees −0.053*** 0.013
Firm size: 201–2,000 employees (Ref. > 2,000 employees) 0.019 0.014
Job tenure in years 0.012*** 0.001
Previous unemployment in years −0.051*** 0.003
Sector: Primary −0.200*** 0.029
Sector: Tertiary (Ref. Secondary) −0.064*** 0.013
Constant 1.609*** 0.049

R2 0.42
N 5,832

Data: GSOEP, own calculations. Dependent variable: gross hourly wage (log).
* p < .05 ** p < .01 *** p < .001
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