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of spin models
Robin Eberhard

Abstract This thesis presents systems towards quantum manybody effects. Part of these
are acousto-optically deflected tweezers, in order to dynamically move atoms. Two imple-
mentations for the tweezers are discussed, where for one, atoms are rearranged to deter-
ministically achieve 100% filling across a tweezer grid, allowing to study correlations in
more detail. Moreover, the dynamic tweezers allow for a spin-selective imaging approach,
where a spin-sensitive laser beam traps only one spin state and moves it away from the
other, thereby identifying the spin based on an image. Moreover, a system is discussed to
increase the power available during loading of atoms into tweezers, ultimately paving the
way to increase the available number of tweezers.
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1. Introduction

Quantum mechanics has expanded the scope of physics, where a new way of thinking
about atomic and photonics models emerged and new theories of microscopic effects are
still researched experimentally and theoretically. Nowadays, within the realm of quantum
research, atoms are being controlled in an isolated environment, that have allowed to set
e.g. new high-precision time standards [1] and resolve new types of matter [2, 3]. The scope
of these studies has greatly expanded over the last 30 years, as laser-cooling, trapping, and
detection techniques have gained momentum. Within this realm, the field of quantum sim-
ulation is of particular interest to this thesis, where microscopic effects found in solid state
physics are modelled by arranging and interacting atoms on a scale much larger than they
appear in nature and can therefore be studied in detail. Forming the structures necessary
to measure effects in this macroscopic regime, such as Ising [4] or Hubbard [5] models, is
achieved by confining atoms to periodic potential wells in optical lattices.

Advancements in detection of atoms have led to quantum gas microscopes [6, 7], where
single-site resolution in these lattices is possible and are thus a perfect fit for use in quan-
tum simulators, as interactions and correlations between atoms can be studied in detail.
This has allowed to measure e.g. superfluid to Mott insulator transitions [7] or antiferro-
magnetic correlations [5]. However, control over these systems was limited in the past,
as optical lattices have a fixed geometry and cycle times were long due to the necessity of
cooling atoms to ultra-cold temperatures. More recently however, optical tweezers have
emerged [8–11], where each lattice site is generated from an individual laser beam. This al-
lows high control and tunability not only between lattice sites, but also poses the ability to
generate arbitrary geometries. As these traps can be made sufficiently deep, this removes
the requirement of cooling atoms to ultra-cold temperatures, resulting in fast cycle times.

To study manybody effects in these optical tweezers, Rydberg atoms can be employed.
They offer the ability of long-range interactions on a micrometer scale [12] and therefore
across multiple tweezers. Direct manybody-effects are seen as part of the Rydberg block-
ade, where within a certain radius, only a single atom can be excited into a Rydberg state.
However Rydberg atoms are very well suited to study spin Hamiltonians, which are used
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Chapter 1. Introduction

to research quantum magnetism [13]. In combination with optical tweezers, coherent dy-
namics can be observed, as the positions of atoms aren’t random. This has allowed for
example, to observe coherent excitation hopping in spin-flip Hamiltonians [14] and large
arrays of Rydberg atoms modelling Ising dynamics [15]. In another approach, out-of-time
order correlators are a measure of chaotic behaviour in condensed matter physics and can
be modelled in spin-like systems [16]. Quantum manybody dynamics in spin-models have
also been observed using a programmable 1D quantum simulator, where symmetry break-
ing across phase transitions was detected [17].

This forms the building blocks for the experiment this thesis is a part of. Hereby, single
Potassium-39 atoms are trapped in optical tweezers and excited to Rydberg levels [18].
The tweezers are generated through spatial light modulators (SLMs) [19], where arbitrary
intensity patterns are formed and projected onto the atomic cloud.

This work presents three new setups towards this experiment. In Chapter 2, loading of
potassium atoms from the cloud into tweezers is discussed. The chapter places focus on
the theory behind electro-optical modulators (EOMs) which is followed by the characteri-
zation of two EOMs, that will be used to improve the loading stage of the experiment and
allow deploying more tweezers in the future. Chapter 3 then works towards enabling unity
filling in a grid of atoms. For this, a new way of generating the tweezers is introduced in
the form of acousto-optical deflectors (AODs), which can move atoms into vacancies in the
lattice. Therefore the theory behind the deflectors is explained and is followed by compar-
ing two algorithms of achieving this sorting of atoms. The chapter is then concluded by
describing the driver used for the dynamic tweezers and ways to work around its limita-
tions. Finally, Chapter 4 presents a spin-selective imaging approach by applying dynamic
tweezers that are sensitive to only one spin species using the same AODs as above. The
spin-sensitive laser used in this setup was built during this thesis and is concluded with the
characterization of this laser.
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2. Loading atoms into optical tweezers

The experiment uses spatial light modulators (SLMs) to generate two-dimensional arrays
of tweezers, which trap single atoms [19]. SLMs allow to generate various geometries, and
therefore freely adjustable inter-atomic distances and trapping depths. However, in order
to load atoms into the optical tweezers, they have to undergo several cooling stages first.
Being vaporized from a solid sample of 39K, the atoms are decelerated by passing through
a Zeeman-slower, which cools the atoms longitudinally. The atoms are then trapped, com-
pressed and cooled in a magneto-optical trap (MOT) in the center of the vacuum chamber.
The temperature limit in theMOT is the Doppler limit, therefore the sub-doppler techniques
gray molasses [20] and red molasses are used in order to cool even further. When the atoms
are cold enough, they are then loaded into the SLM tweezers. However, as the tweezers
(at λ = 1064 nm) are highly detuned to the D2 line (at λD2 = 766.701 nm), loading directly
from the molasses proves difficult, due to the large light shifts of the D2 excited state of
Potassium, making it highly anti-trapped. To overcome this issue, trapping and cooling
beams can be temporarily alternated [21]. This way, cooling and trapping are never on at
the same time and therefore heating due to light shifts is eliminated, as there are no excited
atoms during the trapping phase. However, for this to work, the frequency of alternating
the beams has to be much larger than the trapping frequency and therefore, the atoms see
an effective, averaged trap.

So far, alternating between molasses cooling and trapping light, called chopping, is im-
plemented using acousto-optical modulators (AOMs). However, the maximum switch-
ing speed of an AOM is limited by the speed of sound in the medium (here, TeO2 has
4.2mmμs−1) and results in a maximum chopping frequency of 1.4MHz, governed by the
AOM with the slowest rise time, which can be seen in Figure 2.1. By increasing the chop-
ping frequency, the atoms heat less during each trapping cycle. As already mentioned, the
atoms only see an averaged trap given by the duty cycle of the trapping beam. Thus, the
pulse shape determines how much trapping power the atoms see. Improving therefore the
pulse shape leads to more laser power that can be used per tweezer. This in turn means,
more tweezers can be deployed, as the average power increases when the pulse shape is
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Figure 2.1.: Chopping in the experiment: MOT (cooler (blue), repumper (orange)) and SLM
tweezer (green) beams alternate in the chopping sequence. The amplitude of
the MOT beams is limited due to the risetime of the AOMs. The scale of the
MOT beam amplitudes has been adjusted to match the SLM tweezer scale for
better visualization.

more rectangular. Figure 2.1 shows how the pulse shape is limiting the average power
during the cooling cycle as well as during trapping.

Achieving larger duty cycles and higher chopping frequencies is possible by using EOMs,
which are not limited by acoustic waves. The optical medium is modulated using electric
fields, and therefore switching speeds are only limited by their capacitance. Light enter-
ing the modulator will have its polarization turned, depending on the electric field that is
applied. In the following, the polarization of electro-magnetic waves is briefly discussed,
which is followed by the main effect governing the devices tested in this thesis — the Pock-
els effect. The devices are then evaluated by filtering one polarization component and by
measuring the intensity of the light after the filter, the rise times and extinction ratio are
determined. The new system allows to switch with rise times on the order of nanoseconds,
improving the current system by at least two orders of magnitude.

2.1. Theory on Polarization

Switching laser beams using EOMsmeans turning and filtering the polarization of the light.
Therefore in this subsection, the theory behind polarized monochromatic electromagnetic
waves, leading to the Pockels effect governing EOMs is discussed.

Polarization of electromagnetic waves is understood as the orientation of their electric field
in space, transverse to the direction of movement. In general, the electric field travelling

4



Chapter 2. Loading atoms into optical tweezers

along the z-axis can be oriented somewhere in the x-y plane. Therefore, writing the electric
field component of the light in this basis takes the following form:

E(x, t) = Ex cos (kx− ωt+ ϕx) ex + Ey cos
(
ky − ωt+ ϕy

)
ey. (2.1)

Here, k and w refer to the wave number and angular frequency respectively. Depending on
the amplitudesEx andEy and the phases ϕx and ϕy, the light can be in different polarization
states. If it is not possible to write the electric field in this basis, then the light is not in a
pure polarization state. Otherwise, it is linear, when either one of the amplitudes Ex or
Ey is zero or when the phase difference ∆ϕ = ϕx − ϕy evaluates to 0 or π. It is circular,
when the phase difference ∆ϕ = ±π/2 and the amplitudes are the same, Ex = Ey. In any
other case, the wave is elliptically polarized.

Changing the phases of the x and y field component relative to each other gives the ability
to influence the polarization. Light traversing a medium will accumulate a phase shift, de-
pending on the refractive index, which affects the speed of light in the medium. Therefore,
media that have different refractive indices nx, ny along the two axes x and y changes the
relative phases of the electric field:

ϕx(z) = k0nxz (2.2)

ϕy(z) = k0nyz (2.3)

where k0 is the free space wave vector of the electric field component. Then a device that
retards the phase difference ∆ϕ by π/2, which is a quarter of the wavelength, can change
linearly polarized light to circularly polarized light (or vice-versa) and is therefore called a
λ/4 waveplate. Similarly, if the phase difference is changed by ∆ϕ = π, or a half wave-
length, then we can turn linear polarization around a given axis or change the orientation
of circularly polarized light. This is then called a λ/2waveplate. In the experiment, linearly
polarized light enters the EOM, which will act as a λ/2 waveplate, turning the polarization
by 90°, making it easy to filter unwanted polarization components and switching the light
on and off.
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2.2. Electro-optical modulators

Light travelling through a material generally has a speed smaller than the speed of light,
given by dividing the speed of light in vacuum by the material-dependent refractive index.
Materials can change their refractive index by being exposed to an electric field, which in
EOMs is generally a crystal between two electrodes. The electro-optical effect discussed in
the following is the Pockels effect and applies, when the refractive index changes linearly
with the electric field, at which point the EOM is called a Pockels cell. The effect is discussed
in the following and the Pockels cells evaluated afterwards.

2.2.1. Pockels effect

As motivated in the previous section, the goal of modulating the light polarization is to
change the phase difference of the electric field component when light traverses a medium.
Following the argumentation from the book Fundamentals of Photonics [22], the Pockels
effect can be described by evaluating the refractive index with respect to the electric field
applied to the modulator. Writing this as n(E) and applying a Taylor expansion, we get
the following expression:

n(E) = n0 +
dn

dE
E +O(E2) (2.4)

The Pockels effect is the linear dependence of the refractive index to the electric field, there-
fore higher orders are neglected. The prefactor dn/dE relates to the change of electric im-
permeability ∆η, which is the ability of a material to be penetrated by an electromagnetic
field. From

η =
1

n2
(2.5)

dη

dn
≈ − 2

n3
0

(2.6)

∆n =
dn

dE
E, (2.7)

we get

∆η =
dη

dn
∆n ≈ − 2

n3
0

dn

dE
E = rE. (2.8)
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This results in the quantity r = − 2
n3
0

dn
dE

, which is called the Pockels coefficient given in
units of mV−1. It can be measured by evaluating the refractive index of the material:

n(E) = n0 −
1

2
rn3

0E. (2.9)

As was seen in Equations 2.2 and 2.3, the refractive index directly affects the phase shift,
which in turn changes the polarization of the light wave. Combining this result with Equa-
tions 2.2 and 2.3 leads to an equation using parameters typically found in EOMs:

ϕ = k0Ln

= k0Ln0 −
k0
2
Lrn3

0E

= ϕ0 −
k0
2
Lrn3

0E

= ϕ0 −
π

λ0

Lrn3
0E (2.10)

where the relation k0 = 2π/λ0 of the wave number was used.

In this application, the Pockels cells act as dynamic wave retarders. Given results from
Section 2.1 we can tune the phase difference ∆ϕ = ϕx − ϕy along the axes x and y by
applying an electric field along one of the axes. With the correct parameters, the phase
difference lets the EOM act as a λ/2 or λ/4 waveplate. The following relations will help
find the main formula governing Pockels cells, resulting in the voltage that needs to be
applied to the EOM in order to turn the polarization by a given amount.

By labeling the refractive index in two dimensions as:

nx(E) = n0,x −
1

2
rxn

3
0,xE (2.11)

ny(E) = n0,y −
1

2
ryn

3
0,yE, (2.12)

the phase difference becomes:
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Figure 2.2.: Schematic view of light passing through an EOM with length L. The electrodes
are positioned on the front and back side of the modulator, the same faces the
light enters and exits. The light exiting the EOM has a relative phase shift ∆Φ
depending on the change of refractive index due to the applied voltage V .

∆ϕ = ϕ0,x − ϕ0,y −
π

λ0

EL
(
rxn

3
x − ryn

3
y

)
(2.13)

∆ϕ = ∆ϕ0 −
π

λ0

EL
(
rxn

3
x − ryn

3
y

)
. (2.14)

The next step is to replace the electric field by a voltage that can be applied to the Pockels
cell. For this, two electrodes are connected to the electro-optical material, separated by a
distance d, giving the electric field as E = V /d. This quantity is replaced in Equation 2.14.
By realizing that the phase is unitless, all other prefactors of the voltage can be combined
into one quantity, called the half-wave voltage Vπ:

Vπ =
d

L

λ0

rxn3
x − ryn3

y

. (2.15)

Thus, the phase difference can be rewritten as:

∆ϕ = ∆ϕ0 − π
V

Vπ

. (2.16)

Therefore, applying the voltage Vπ, the Pockels cell will acts a λ/2 waveplate. A visual
representation of the modulator and the light passing through it is given in Figure 2.2,
highlighting the change in relative phase of the two components of the electro-magnetic
wave.
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We have seen, how applying a voltage to an electro-optical medium changes the refractive
index and therefore affects the phase of an electromagnetic wave. By having two refractive
indices in two axes, whose relative change depends on the applied voltage, it is therefore
possible to modify the circularity and linearity of the polarization in an electro-optical mod-
ulator.

2.2.2. Driving a Pockels cell

With an understanding of the Pockels effect governing the EOMs tested in this thesis, the
next step is driving the Pockels cells with the voltages used for switching. As the rise and
fall times of the switched Pockels cells are crucial and depend only on the speed of applying
the electric field, it is important to build electronics that can provide these fast rise and fall
times. However, materials suitable for use as EOMs, such as β-bariumborate (BBO) and
rubidium tanyl phosphate (RTP) have half-wave voltages in the kilovolt-regime, meaning
not only does the hardware have to switch on fast timescales, but it also needs to be able
to handle high voltages.

The Pockels cell drivers discussed in the following (by BME Bergmann) fulfill these require-
ments. Moreover, it contains viewports for the laser light, such that the Pockels cell can be
integrated into the driver to not expose the high voltage to any parts of the experiment but
the modulators. The driver has an input for the high voltage and option for watercooling in
order to compensate temperature instabilities on the Pockels cell. Furthermore, it contains
four inputs, that allow to have full control over the switching of the voltages. This means,
the EOMs can be switched on and off by applying TTL signals to the inputs of the driver.

In order to correctly drive the Pockels cell and therefore turn the polarization of the light,
it is necessary to understand the switching logic used inside the driver. Schematically, the
driver is divided into the four switches mentioned above, that are controlled from the user:
ON A, ON B, OFF A and OFF B. Two switches are connected to either side (labeled A and B)
of the Pockels cell, such that A controls one electrode and B the other. Most importantly,
the ON X and OFF X (X referring to either A or B) switches work exclusively, so sending a
high to ON X also sends a low to OFF X and vice-versa. It is then possible to apply either a
positive high voltage or a negative high voltage, depending on the state of the switches. For
full identification of the circuit, which is given in Figure 2.3, the side containing the positive
voltage information is called high side and similarly the side containing the negative voltage
information is called low side. The figure shows switching logics for two different drives
used in the experiment. These are named by the manufacturer as dpp-type and bpp-type
and are to be used for the RTP and BBO Pockels cells respectively.
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Figure 2.3.: Schematic of the high voltage switches used inside the bpp-type (left) and dpp-
type (right) Pockels cell driver from BME Bergmann. Not-Gates on both A and
B sides ensure that there is always a potential over the Pockels cell. The blue
and red paths indicate the connection to apply a positive and negative voltage
over the Pockels cell respectively.

On
Off
On
Off
90°
0°

Switch A

Switch B

∆Φ

bpp-type dpp-type

Figure 2.4.: Timing diagrams for the Pockels cell drivers to turn the polarization of the EOM
90°. The shaded areas show positive (red) and negative (blue) voltages applied
to the pockels cells.

Asmotivated before, light will enter the EOMperfectly horizontally or vertically. Therefore,
it is in theory possible, to apply either positive or negative half-wave voltages and therefore
turn the polarization either way by 90°. The driver of the RTP pockels cell provides this
feature and it will be used, as it results in higher performance, as is shown later. On the
other hand, the BBO pockels cell already performs quite well and therefore does not need
to be provided with alternating voltages. Figure 2.4 shows the timing diagrams necessary
to apply to the driver inputs, which in turn directly affects the polarization of the light, as
the EOM receives the half-wave voltage.

2.2.3. Testing and evaluating pockels cells

Two pockels cells (from Leysop Ltd.) are characterized in the following. The EOMs in con-
trast to the AOMs implemented in the current setup allow longer duty cycles of the tweezer
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PBSBeam dump

EOMλ/2 waveplate

Fiber coupler Photodiode

Figure 2.5.: The efficiency of the EOMs were evaluated by setting the polarization of the in-
coming light either horizontal or vertical using the waveplate. The Pockels cell
will then periodically turn the polarization 90°, which can be seen by measuring
the voltage on the photodiode.

light. Switching laser light is achieved in Pockels cells by exploiting the fact, that one lin-
ear polarization component can be filtered out by polarizers. In the following, a polarizing
beam splitter (PBS) acts as the filter directly after the modulator as seen in Figure 2.5. This
way, the setup can be configured such that applying no voltage means light passes through
the beam splitter, while applying Vπ means the light gets reflected 90° off the beam splitter,
save for a fraction of light, given by the extinction ratio of the beam splitter (typically for
the ones used in the experiment, manufactured by Thorlabs, the extinction ratio is about
1000:1).

Two Pockels cells were characterized by placing a photodiode on one end of the beam
splitter. The EOMs are labeled by the material of their nonlinear crystal, RTP and BBO.
Their characteristics are summarized in Table 2.2.3, where half wave voltages is given for
1064 nm light. Both EOMs are used in the chopping condition discussed earlier, where the
RTP crystal will be used for the 770 nm and the BBO for the 1064 nm tweezer light.

First of all, the rise and fall times of the EOMs are determined. Light whose polarization
component was filtered through the PBS arrives at the photodiode. For sufficiently high
bandwidths on the photodiode and oscilloscope, the flanks of the signal are resolved and
the rise time can be evaluated by fitting the function

f(x) =
Uh

1 + exp (−x/τ)
+ Ul, (2.17)

where Uh and Ul refer to the high and low voltage level of the signal respectively, which
will come in useful later when evaluating the extinction ratio. The signals in Figure 2.6
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RTP BBO

Aperture (crystal dimensions) 3mm 3mm

Total crystal length (2 crystals) 30mm 50mm

Approximate half wave voltage
(1064nm)

1.0 kV 2.8 kV

Peak damage threshold (1064nm,
1ns pulse)

> 1GWcm−2 > 1GWcm−2

Insertion loss < 2 % < 1.5 %

Table 2.1.: Characteristics of the two Pockels cells with their respective non-linear crystal
materials being RTP and BBO given from the datasheet of the manufacturer. The
aperture, damage threshold and insertion loss are given for future reference.

were recorded for both EOMs, however, the fit can’t be applied to the data, as the sampling
rate is too low. Moreover, harmonics appear when the signal has risen to the upper level,
indicating that the bandwidth of either the photodiode or the oscilloscope is too low. For
this measurement, the oscilloscope (Teledyne Lecroy Wafesurfer 510) has a bandwidth of
1GHz.The photodiode is a home-built model, whose bandwidth is limited by the built-in
operational amplifier (OPA211) to around 45MHz. Even though the sampling rate is too
low, an upper bound for the rise time can still be given by measuring the distance between
the last point on the lower level and the first point on the upper level. For both crystals,
this means that the rise time is at least a fraction of a microsecond. In contrast to the AOMs
that are currently in use, this is already an improvement by at least one order of magnitude
(see Figure 2.1).

However, the manufacturer of the Pockels cell driver has done independent tests on the
same EOMs used here. The data is available on their website [23] and they measured rise
times for RTP and BBO as 3 ns and 4 ns respectively, which therefore improves on the AOM
setup by three orders of magnitude in rise times.

Another important parameter is the extinction ratio, which is the amount of light that is
left, when the device is supposed to be off. It is evaluated by the ratio of the high level
Uh to the low level Ul of the signal. Figure 2.7 shows signals taken for both crystals using
the same setup as before. In order to correctly evaluate both levels, it is necessary to note,
that photodiodes are susceptible to dark noise, which is electrical noise falsely registered
as light. To compensate for this, a dark image was taken, with the laser beam off, and the
mean of the dark image was subtracted from the signals used to evaluate the extinction ra-
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Figure 2.6.: The EOM was turned on, in order to measure rise times. However, the photo-
diode and oscilloscope both limit the measurement with their bandwidth and
sampling rate. However, an approximation to the rise time can be given, by
subtracting the last data point on the low level and the first level on the high
level, giving at least a fraction of a microsecond for both EOM types.

Uh Ul Uh/Ul

RTP (1.90± 0.06)× 10−2 (3.7± 5.2)× 10−4 51+∞
−21

BBO (5.46± 0.08)× 10−2 (9.6± 7.4)× 10−4 57+247
−32

Table 2.2.: Measuring the extinction ratio requires finding the high and low levels and cal-
culating their ratio. It is noteworthy, that the standard error on the low level is
of the order of the mean, therefore the ratio has an infinitely high upper bound.

tio. The high and low levels are then given by selecting points of the respective level after
it has stabilized, which are highlighted in Figure 2.7. Giving an upper bound to the extinc-
tion proves difficult, as already the standard deviation on the low level for both crystals
is on the order of the mean. In retrospect, the measurement can be improved by reducing
the standard deviation on the levels, which should be possible by taking more signals and
averaging them. Nonetheless, relevant parameters for the extinction ratio for both crystals
are given in Table 2.2.

The manufacturer provides an extinction ratio for the RTP crystal of > 200 : 1, however
no value is given for BBO. Therefore, the value provided by the manufacturer can certainly
be verified with an improved measurement.

As the chopping frequency in the current experiment is limited to 1.4MHz, the upper
bounds for the repetition rate are also a crucial criterion that needs to be evaluated. The
measurement showed for high repetition rates a resonance-like behaviour, where the am-
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Chapter 2. Loading atoms into optical tweezers
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Figure 2.7.: Measurements of extinction ratio for RTP (left) and BBO (right). The highlighted
values were used to find the high and low level, by taking their mean. However
the uncertainty on the low level is too high to give a fair value on the extinction
ratio.
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Figure 2.8.: Shown is the amplitude of a laser whose polarization was rotated by a Pockels
cell and then filtered using a polarizing beam splitter. The frequency is the
repetition rate of the voltage placed into the EOM. The two materials are RTP
(orange) BBO (blue). The curves are normalized to their maximum value.

plitude of the signal from the Pockels cell was higher for certain repetition rates. This
was most notable in the RTP crystal. To quantize this in more detail, the repetition rate
was ramped up in 60 s intervals, after which the resulting signal was recorded and the am-
plitude evaluated. This results in the diagram shown in Figure 2.8. Measuring the signals
showed, that this behaviour was worse if only one type of voltage was applied, therefore the
choice of applying alternating voltages was made. The diagram clearly shows resonant-like
behaviour for RTP. This means, that in the future, the chopping will have to be carried out
around 1.5MHz, where the amplitude of the signal is close to the maximum and therefore
loss of laser power is mostly only insertion loss into the EOM.
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3. Sorting of atoms

Tweezer arrays are especially suitable to studymanybody systems, as arbitrary patterns can
be configured, which is not possible when using optical lattices. In our experiment, atoms
are cooled in optical molasses and loaded into tweezers in a chopping sequence, discussed in
Chapter 2. However, in the loading stage, parity projection induces light assisted collisions
of the atoms [24], which effectively heat pairs of atoms out of the trap. This leaves only
sites occupied, that originally had odd number of atoms, resulting in a total occupation of
50% of atoms across the tweezer array. It is desired to have a fully occupied grid of atoms
each run, however post-selection is unfeasible, as even on a 3× 3 grid of atoms, the chance
of fully occupying the array is only 0.59 = 0.2%.

Consequently, the solution is to rearrange the atoms in the system, which has demonstrated
before [8–10, 25]. As mentioned, the tweezers in our experiment are generated by SLMs.
In order to rearrange the atoms however, they need to be transferred from the static SLM
tweezers, into new dynamic acousto-optically deflected tweezers. These move the atoms
adiabatically to new positions, while keeping the others stationary. In this way, atoms are
moved along pre-calculated paths to fill gaps of the pattern. The following chapter discusses
the sorting of atoms by using acousto-optical deflectors (AODs) as the device of choice for
programmatically deflecting a laser beam. Using this device, it is also possible to generate
an array of tweezers, so that multiple sites at the same time can be moved.

3.1. Acousto-optically deflected tweezers

Being able to quickly change the position of a laser beam is the most fundamental prereq-
uisite of sorting atoms. The process has to happen on short timescales compared to the
lifetime of atoms and with high accuracy. As AODs can fulfill this requirement, the process
of light deflecting off a sound modulated crystal is discussed in the following. By applying
sound waves, it is possible to move a laser beam or split it into multiple beams. The opti-
cal element handling the deflection is called an AOD and works very similar to an AOM.
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Chapter 3. Sorting of atoms

However, in an AOD, the first deflected order is stronger and higher orders are generally
not visible.

After going through the theory of acousto-optical deflection, the AODs in question are
described, following the setup of generating the tweezers needed for the rearrangement of
the atoms.

3.1.1. Acousto-optical effect

The acousto-optical effect describes the way optical waves deflect off sound waves in a solid
medium, which is generally a crystal. This means, sound waves propagating the crystal
modulate the positions of the atoms in the lattice, which in turn affects the refractive index
on a macroscopic scale. Is the sound wave a planar wave, then the modulated refractive
index is written as a function of position x and time t [22]:

n(x, t) = n−∆n0 cos (Ωt− qx). (3.1)

In this case, the offset n is the refractive index in absence of sound waves. Moreover, ∆n0,
is the amplitude, Ω the frequency and q the wavenumber given by the sound wave.

Using this relation, the next step is calculating the deflection angle off the medium. In the
following, a short summary is given, the detailed analysis can be found in [22]. Starting
from the assumption that the incident optical wave has a much higher frequency than the
sound wave, then the light entering the medium sees the sound waves as stationary and
the medium’s crystalline shape is given by the sound wave.

Then the description of light passing through a medium is given by the Bragg condition,
and is used to calculate how light is partially reflected when leaving the medium. In order
to calculate this quantity, the medium is broken up into slices, off which the optical wave
partly reflects, given by the Bragg diffraction. Each slice has a partial reflectance amplitude
∆r, depending on the refractive index n and the angle of the incident optical beam with
respect to the medium. The total reflectance amplitude r can then be calculated by inte-
grating over all slices and carries over the dependence on the angle. By maximizing this
relation, the angle resulting in the maximum reflectance amplitude is given by the Bragg
condition:
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Chapter 3. Sorting of atoms

kl

kl,r

θθ

θ ks

Figure 3.1.: Schematic operation of an AOD. Light waves travelling in direction kl are de-
flected off the sound waves with direction ks, resulting in a reflected beam kl,r.
The optical waves are deflected under the Bragg condition, which can be calcu-
lated via the momentum conservation kl,r = kl + ks.

sin θ =
λl

2λs

, (3.2)

where λl and λs refer to the wavelength of the light and sound waves respectively.

Themaximum of the reflectance amplitude with respect to the angle is very sharp, such that
there is a deflected beam only if the angle between the wave vectors of the optical wave kl

and the sound wave ks matches the Bragg condition. Thus, from momentum conservation
in Figure 3.1, one arrives at the same condition:

|kl| =
∣∣kl,r

∣∣ = 2π

λl

(3.3)

|ks| =
2π

λs

, (3.4)

it follows directly, that

sin θ =
|ks| /2∣∣kl,r

∣∣ =
λl

2λs

. (3.5)

Using the acousto-optical effect in order to modify tweezer positions, it is necessary to
break the dependence of the angle between incoming optical wave and acoustic wave, while
keeping the dependence on the angle of the outgoing light. This is achieved by modelling
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kl,r
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θ
kl

ks

−ks

Figure 3.2.: Similar to Figure 3.1, light is deflected off sound waves in an acousto-optical
medium. This time, the sound wave is modelled as a radial wave, such that
besides the transmitted component, two more orders are deflected.

the sound wave as a radial wave, travelling outwards from the origin of the sound. As
a consequence of this, within a certain bandwidth, it will always be possible to fulfill the
Bragg condition, no matter how the light enters the medium.

In Figure 3.2, an optical beam enters a medium straight and exits on a diffracted angle ±θ,
given by the Bragg condition. Using again the momentum conservation from Equation 3.5,
there are now additional acoustic waves travelling in opposing directions, where the optical
and sound wave meet. In the approximation of small angles, the Bragg condition then
simplifies to:

θ± ≈ sin θ± = ±|ks|
|kl|

= ±λl

λs

= ±fs
v
λl, (3.6)

where the speed of light in the medium v needs to be taken into account.

This means, that the angle of the first deflected orders from the AOD only depend on the
wavelengths of the light wave λl and the sound wave λs. In other terms, the angle of
deflection can be tuned by changing the wavelength of the sound wave. As the deflector is
driven with an RF-generator, we generally speak of the frequency and not the wavelength
of the sound wave. Using the deflector for sorting, means taking first deflected order and
blocking the others. This way, a beam can be moved by driving a frequency ramp on the
sound wave, thus changing the angle of the first deflected order. Consequently, the change
of angle depending on the change in frequency of the sound wave is interesting and is then
calculated as:
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Chapter 3. Sorting of atoms

∆θ± = ±∆fs
v

λl (3.7)

Thus, all parameters required for manipulating the position of laser beam have been cal-
culated, such that the tweezers can be operated for resorting. We have seen how optical
light is deflected off sound waves in media and how this can be used to re-position laser
beams and in the long run, move atoms along paths. There are generally two types of AODs
available, that are normal mode and shear mode. In a normal mode AOM, the shape of the
crystal viewed from the top, is rectangluar, while in a shear mode, the crystal’s front and
back sides are cut at an angle. This means, sound waves won’t be radial anymore, but in-
stead be shear waves, meaning their velocity is slower. This is in general preferable, as we
made the assumption, that the speed of the sound wave is much slower than the speed of
the light wave, and thus this condition is reinforced. All in all, after having understood
the operation of AODs, the following chapter explains the setup in place for sorting the
atoms.

3.1.2. Preparation of the tweezers beams

With the derivations from the previous chapter, it is possible to calculate the position of the
laser beam, depending on the frequency of the soundwave propagating the AOD. However,
the beam has to be prepared before entering the deflector, meaning its polarization has to
be adjusted. After the deflector, the beam will pass an objective into the vacuum chamber
and therefore needs to be shaped correctly before the objective. The setup of the laser, as
well as the configuration of AODs, in order to sort in two dimensions, is described in the
following.

The deflectors ((AA DTSXY-400–800.860) from Pegasus optics) and their characteristics are
given in Table 3.1.2. The AODs are driven by RF-frequencies, which map 1:1 to the fre-
quency of the sound wave. In order to deflect in two dimensions, two deflectors are placed
in series, which are turned by 90° with respect to each other. This way, the first order on
the first AOD will extend e.g. into the x-axis, while the first order of the second AOD will
then extend along the y-axis. Together, exiting the deflectors will be a 2 × 2 grid of laser
beams, which can be seen in Figure 3.3. These are the (x = 0, y = 0), (1, 0), (0, 1) and
(1, 1) orders, however, only the (1, 1) order will be used, as this is the one that is deflected
based on the sound wave placed into the AOD.
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Central drive frequency at 795 nm (102± 4)MHz
Bandwidth 36MHz
Max optical power density 5Wmm−2

Max RF power 2W
Laser beam diameter [D] 500 μm < D < 6mm
Material (speed of sound) TeO2 (650m s−1)
Scan angle (44mrad)2

Table 3.1.: Properties of AA DTSXY-400–800.860 crossed AODs from Pegasus optics.

y

x

(0,0)

(1,0)

(1,1)
(0,1)

AOD 2

AOD 1

Figure 3.3.: Light passing through two AODs is deflected into a 2-dimensional grid. The
colors refer to the optimized power going into the respective order, from lightest
color being lowest power to darkest color being highest power. This way, the
least amount of power goes into the (0,0) order and most into the (1,1) order.
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SLM tweezers
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Crossed AODs
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Figure 3.4.: Beam path to generate acousto-optically deflected tweezers. Two beams used
for sorting and spin-resolved imaging are combined using a PBS. They pass the
AOD after which the beam is shaped to match the objective into the experimen-
tal chamber.

The details of the configuration and characterization of the devices used in the experiment
are given in [19]. The crossed AODs configuration described above is used in the follow-
ing for rearranging the atoms. Additionally, the dynamic tweezers generated from the
deflectors are also used for a spin-selective imaging approach, which is further described
in Chapter 4. This means, beam paths of two different lasers are passing through the same
deflectors. In Figure 3.4, the setup including both laser beams is shown. The first laser, used
for the characterization in [19] and later sorting of atoms, as well as for testing reasons re-
garding the tweezers in the following and has a wavelength of 795 nm. The spin-selective
laser has a wavelength of 768 nm and is further discussed in Chapter 4.

The first step in the setup, is stabilizing the intensity of laser beams, by measuring their
power on a photodiode and using proportional-integral controllers to adjust the signal.
They then pass a λ/2 waveplate to adjust the polarization, which affects the efficiency of
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the AOD. The deflectors, which are connected to RF-synthesizers, then produce the 2 × 2

grid of laser beams. Afterwards, a f = 75mm lens, projecting the center of the AOD-array,
extends the beam spatially until it is collimated using a f = 1000mm lens. This sets the
correct beam size for the objective to project the beam onto the atoms.

3.1.3. Moving tweezers

It was shown, how the position of the laser is calculated using the Bragg condition in Equa-
tion 3.1.1. With the laser setup in place, the question remains how the change of the sound
wave frequency affects the position of the tweezer in the plane of the atoms, where the
AODs are in the Fourier plane. This is calculated, by taking into account the magnification
M due to the telescope created between the f = 1000mm lens and the objective, having
an effective focal length of 33.18mm. From the point of view of the atoms, this results
in M = 1000

33.18
= 30.14, meaning the distance between the atoms ∆x is magnified by this

amount. Continuing from the atom’s reference frame, theirmagnified distance is then given
on the f = 75mm lens as a distance ∆xmagnified = Mx, which projects the position into
the center of the crossed AOD configuration at an angle tan θ ≈ θ = ∆xmagnified/75mm.
With Equation 3.1.1, this results in a change of frequency on the AOD:

∆f =
∆xmagnified

75mm
v

λ
, (3.8)

given an optical laser wavelength of λ. The speed of sound for the AODs, which is the speed
of sound in TeO2 is v = 650m s−1. This means a typical atomic distance of 10 μm, requires
a change in frequency of ∆f = 330 kHz.

3.1.4. Tweezer homogeneity

With all the building blocks in place for driving acousto-optically deflected tweezers, they
are now ready to be imaged and tested. The beam path shown in Figure 3.4 was used, except
the objective at the very end was replaced by a f = 500mm lens and a camera (XIMEA
MD028MU-SY). This way, the tweezers are visible directly on the camera. Moreover, in
order to measure the homogeneity more accurately, part of the beam is split and coupled
into a photodiode after the f = 500mm lens. This way, an image was taken with a camera
and at the same time, a trace was taken from the signal of the photodiode. Although it is
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Figure 3.5.: An image of tweezers was acquired by activating a set of 11 × 11 frequency
combinations on the crossed AODs. A slight field of view effect is visible in the
top-left corner.

technically possible, to draw a grid with the AODs, by applying a superposition of multiple
frequencies, the measurement discussed in the following was taken by turning on each
tweezer separately one after another. This way, they can be distinguished powerwise.

The Figures 3.5 and 3.6 show the results of these measurements. It can be seen in the camera
image, that there is a slight field of view effect in the top-left corner. From the photodi-
ode trace, the homogeneity can be evaluated more clearly and is shown as a histogram
and a heatmap, confirming the field of view effect. This shows, that the intensity differ-
ence between the first and last set of tweezers is about 10% when the distance between
lattice points was given by a frequency difference 1MHz. This, however, is when only one
tweezer is running at the same time. In the case of multiple tweezers, interference between
the acoustic waves will most likely not result in the same results and will give much less
homogeneity.
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Figure 3.6.: The same tweezer picture as in Figure 3.5 was acquired using a photodiode.
The homogeneity is then evaluated by counting the peak heights in the form
of a histogram. The distribution is almost Gaussian, therefore one standard
deviation is shown as dashed red lines. The difference between maximum and
minimum peak height is around 10%. Shown to the right is a heatmap of the
same tweezer homogeneity and a clear trend is visible, where the tweezers in
the lower right corner have most power.

3.2. Sorting algorithms

With the laser now passing through the crossed AODs and being shaped for the objective,
it is time to rearrange the atoms for the experiment. Doing so requires the knowledge
about unloaded SLM tweezers, which is achieved by imaging the atoms and evaluating their
positions. Of course, atoms can’t be lost during imaging, therefore cooling and trapping
beams are chopped together and the scattered light from the cooling beam is recorded as
a fluorescence image. From then on, atoms need to be moved along paths in order to fill
the vacancies. They can be lost, if the move is on the order of the scattering rate, as then
the trap moves out of range while an atom is in the excited state. Generally speaking, the
move needs to be as fast as possible, since heating effects lead to 1/e lifetimes on the order
of 80 seconds in our experiment. Therefore, already 1.2% of atoms, or at least one atom in
a 10× 10 grid are lost after one second.

Sorting the atoms as fast as possible in order to reach 100% filling requires paths that min-
imize the total sorting time. An obvious choice here is Dijkstra’s algorithm, which is de-
signed to find the minimal path between two points in an arbitrary landscape. However,
since the paths have to be calculated while the atoms are loaded, this means computation
complexity has to be taken into account as well. Since Dijkstra’s algorithm scales at best
with O(n2 + n2 log (n2))[26], where n is the number of atoms, this can lead to long com-
putation times. However, some simplifications can be made, which can help come up with
an algorithm that is both fast in calculation speed, as well as having fast sorting speeds.
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For one, we are operating on a rectangular grid and thus make the simplification to only
move vertically or horizontally and not diagonally. Secondly, atoms that have started mov-
ing, stay in the tweezer until they arrive at their destination, and thus the tweezer does
not suddenly jump to a new target. This is a sensible simplification, as an atom has to be
transferred from the initial tweezer array to the moving tweezers (and back again when it
arrives at the destination), which also takes up time. In the description of the algorithms,
the grid is separated into a target and a reservoir region. This means we are trying to get a
100% filling in the target region, by moving atoms out of the reservoir region. Any atoms
left in the reservoir after the sorting is finished, will be discarded. On the other hand, while
there are still holes in the target region, the algorithm will look for ways to fill the gaps
using atoms from the reservoir region.

Two algorithms (pathfinding and compression) are presented in the following, one is based
on solving a pathfinding problem and moves one atom at a time. The other uses the feature
of the AOD and its driver (discussed later), that allows to work move several tweezers at
once, by applying multiple RF frequencies, in order find a more parallelized approach.

3.2.1. Pathfinding

The pathfinding problem is solving the problem of finding the shortest path between two
points. For sorting of atoms, this means identifying the shortest set of movements to relo-
cate an atom from the reservoir region to an empty spot in the target region. The algorithm
described in the following was developed by Jan Werkmann1 and is discussed in [27]. With
the simplifications of above, atoms only move either horizontally or vertically. The algo-
rithm will then identify a path that first moves the full distance of the one dimension, then
the full distance in the other, at which point the atom has arrived at its destination. This
is a sensible approach, as only one frequency ramp per dimension is driven, but does not
change the total distance moved, since the atom won’t move on diagonals. Then there are
only two possible paths every atom can take, either going first vertically then horizontally,
or the other way around. The optimal path is then the one with the least amount of atoms in
it. If there happens to be an atom in the path, the algorithm segmentizes the path, moving
the obstacle atom along the path into the unoccupied spot, with the other atom following
after. An example path is shown in Figure 3.7. This then means, that by using the third
dimension and moving the atom around the obstacles would improve the algorithm, as ob-
stacle atoms can stay in place. In this experiment, this could be achieved by using a tunable
lens.

1https://github.com/PhyNerd/GridRouting
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Figure 3.7.: Conceptual illustration of the pathfinding algorithm for resorting. The atom
tries to move into a hole but has an obstacle (which is just another atom) in its
way. The obstacle is first moved out of the way, after which the atom follows.
The target area is then further filled with the remaining atom.

3.2.2. Compression

As was just discussed, the pathfinding algorithm moves atoms one by one. However, one
might want to find a way to parallelize sorting, therefore decreasing the sorting time. By
supplying an AOD with multiple RF-frequencies, it is possible to create multiple movable
tweezers. The compression algorithm discussed here makes use of this in order to reduce
the total time of the sorting, as well as having a lower computation time with respect to the
pathfinding algorithm.

The compression algorithmworks by picking a full line of atoms. It then moves the selected
atoms along the line towards the target area, grid point by grid point. If an atom would
collide with an obstacle, that is, either another atom not currently inside an AOD tweezer,
or the end of the target area, then that atom is transferred back to the SLM tweezer grid, and
not moved in the next step. This process is shown in Figure 3.8. When one line is finished
moving according to this end condition, the next line is picked up and the process repeated.
This is done first for all rows, then for all columns, and finally, all atoms are found in one
corner of the grid. Doing it this way, effectively compresses all atoms in the grid into an
area.

Due to the nature of the algorithm, there can still be holes in the target area when the
sequence is finished. To overcome this problem, following the compression stage, the
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Figure 3.8.: Sorting atoms using the compression algorithm is done by selecting a full line
of atoms. They are then moved towards the left edge. An atom that meets the
edge is released before the others continue moving. When the steps for the
rows have are completed, the same process follows for the columns.

pathfinding algorithm will fill the final few gaps, whose runtime is favorable towards low
vacancy numbers.

To further take advantage of the compression algorithm, a geometry is chosen, which has
the target area in the center of the grid and the reservoir surrounding it, as seen in Figure 3.8.
As the algorithm pushes the atoms into a corner, the grid can simply be split up into four
sections. Then the moves for each section is individually calculated. Ending up with moves
in the row-dimension and moves in the column-dimension for each section, they can then
be merged together, if they operate on the same line, which is illustrated in Figure 3.9. As
such, the sorting time of moving atoms into one corner is effectively the same as moving
the atoms into the central area, by splitting it up into sections and merging the steps.

3.2.3. Comparison of the two algorithms

As the pathfinding and compression algorithm are both solving the same sorting problem, it
is necessary to make a performance comparison between the two. For the simulation of the
performance comparison, the target area was chosen to be in the center, surrounded by the
reservoir region. This gives a geometry, which has holes as close as possible to reservoir
atoms, therefore giving a minimal number of movements for the pathfinding algorithm,
while also making use of the performance gain that was highlighted in Section 3.2.2 for the
compression.
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1. 2.

3. 4.

Figure 3.9.: Sequence of finding parallelized paths for the compression algorithm. Since
atoms are always sorted into a corner, the compression algorithm can be split
into four sections. Therefore from 1. to 2., the region of interest is split into
four sections. In 3., paths are calculated for each section individually and are
thenmerged (and therefore parallelized) in 4., when they are acting on the same
row (or column).
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Relevant parameters that need to be compared, are the sorting and computation time, as
they need to be much slower than the lifetime of the atoms. Atom loss can also occur,
whenever the atoms are transferred from the SLM tweezer grid to the AOD tweezer grid
used for the sorting. This way, the number of transfers are also shown in the following.
Simulations were performed, by populating the full grid with atoms with 50 % probability
of occupying a grid point. Then each algorithm was run and relevant parameters recorded.
Simulations were run for various grid sizes, while trying to keep the fraction of number
of atoms in the target area Ntarget to the number of atoms in the reservoir area Nreservoir

around Ntarget

Nreservoir
≈ 0.65. This has to be compromised for low grid sizes, as the integer

nature of grid points only allows natural numbers for reservoir sizes.

The results in Figure 3.10 show that the compression algorithm has a faster sorting and
computation time, but has to transfer more atoms into the AOD tweezer grid. However, it
also shows that it scales better for increasing grid sizes. A polynomial fit is shown for the
second half of the points, where the rounding issue is less present. The fit parameters are
given in Table 3.2.3, from where it can be seen, that the compression algorithm scales more
linearly than the pathfinding algorithm.

3.3. Driving an RF-synthesizer for arbitrary pattern
generation

One of the most powerful aspects about AODs is the fact, that a superposition of sound
waves results in a superposition of light waves in the output. This way, it is possible to
generate a grid of tweezers, by supplying each AOD with one or more RF-frequencies.
There are a multitude of ways to generate RF-frequencies, one way is using voltage con-
trolled oscillators (VCOs), which can be simple LC-circuits. Using these, it is also possible
to drive frequency ramps, however it is not possible to synthesize multiple frequencies from
one VCO, meaning it is necessary to use multiple VCOs together. Therefore using this ap-
proach it is possible to sort the atoms one-by-one, however it is not possible to generate
grid patterns.

To overcome this issue, we implement a digitizer card (M4i.6600-x8, Spectrum Instrumen-
tation), whose specifications are summarized in Table 3.3.1. Doing so allows to sample
arbitrary signals, for example sines, rectangles or even non-periodic ones. A digital-to-
analog converter (DAC) on the board converts the sampled points into an analog signal,
which can be passed into the AOD.
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Figure 3.10.: Comparison of pathfinding algorithm (orange) and compression algorithm
(blue) for sorting atoms into a target region. For each data point, 50 simu-
lations were run and the mean of the result is shown. Standard deviation is on
the size of the dots drawn and as as such are not visible. The fraction of atoms
in the target versus the reservoir area are shown in the last diagram. Since
only integer values are allowed for the reservoir size, the fraction between the
two sees a rounding effect. For this reason, the fit is only done for the upper
half of the data points, where the effect is less pronounced. The values to the
fit are given in Table 3.2.3.
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Pathfinding

m a (ms)

Resorting time 1.3 ± 1.7× 10−2 5.8× 10−2 ± 8.8× 10−3

Computation time 1.8 ± 8.9× 10−3 4.8× 10−5 ± 3.8× 10−6

Number of transfers 1.4 ± 1.8× 10−2 5.7× 10−2 ± 9.2× 10−3

Compression

m a (ms)

Resorting time 9.7× 10−1 ± 1.7× 10−2 3.6× 10−1 ± 5.3× 10−2

Computation time 1.6 ± 3.1× 10−2 9.0× 10−5 ± 2.5× 10−5

Number of transfers 9.5× 10−1 ± 1.2× 10−2 8.3× 10−1 ± 8.6× 10−2

Table 3.2.: Comparison of scaling of the two sorting algorithms. For each quantity given in
the left-most column, a polynomial f(x) = aNm was fitted to the points shown
in Figure 3.10. This givesm as the scaling and the parameter of interest, resulting
in better scaling in every aspect for the compression algorithm.
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Maximum sampling rate 1.25GS s−1

Output level (at max sampling rate) ±4V
Transfer speed PC to card 2.8GB s−1

Memory 4GB

Table 3.3.: Relevant parameters of the Spectrum M4i.6600-x8 card from the specifications
given by the manufacturer.

Figure 3.11.: Sampled data points are stored in a local buffer, which can then be transferred
into the cards memory. The memory is effectively 1-dimensional, with two
bytes for each sampled data point. Example signals are given for Channel
1 (red) and Channel 2 (blue). In the single replay mode, the data pointer will
read from the first memory position until a given end point. In sequence replay
mode, the data pointer will move forward, but can jump at any point based on
user preference.

3.3.1. Functionality of the Spectrum driver

Communication with the card is provided through a low-level interface from the official
drivers over a PCIe slot. In the following, two replay modes of the spectrum card are dis-
cussed, which are standard replay mode and sequence replay mode. In single replay mode,
a signal is sent onto the card, which is played back a set number of times, from start to
finish. The sequence replay mode allows to upload sequences during initialization. It is
then possible to play any arbitrary combination of the sequences one after another.

The functionality of the card depends on two factors: The layout of the memory, and the
readout speed (the sampling rate) of the memory. In the following implementation, two
output channels of the spectrum card are used. Doing so, the memory is formatted, such
that two bytes of channel 1 data are followed by two bytes of channel 2 data as seen in
Figure 3.11. Transferring data onto the memory then requires to fill a buffer, that is, mem-
ory on the computer running the driver, that has the same layout as the spectrum card’s
memory.

With this information, the structure of a program driving the digitizer card follows the
format given in Table 3.3.1.
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Single replay mode

Initialization
phase

• Set sampling rate
• Set replay mode to single replay mode
• Allocate the buffer memory

Main loop

• Sample datapoints of the signal to play and move into the
buffer
• Transfer datapoints from the buffer to the card
• Replay signal N times

Sequence replay mode

Initialization
phase

• Set sampling rate
• Set replay mode to sequence replay mode
• Sample signals to use in the sequence programmed later
• Transfer signals onto the card
• Allocate the buffer memory (will contain information about
the sequence)

Main loop
• Fill buffer with information about which signals to play
• Transfer buffer to the card
• Play sequence

Table 3.4.: Difference in programming when using either the single replay or the sequence
replay mode of the Spectrum M4i card. In this case, it is instructive to see, that
the single replay mode has an overhead during the main loop compared to the
sequence replay mode, which has all sequences stored in memory already.
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The maximum transfer speed for transferring data from the PC to the spectrum card is
limited by the hardware to 2.8GB s−1. This means that it will always be preferable to move
as few data as possible. Consequently, if possible, it is advantageous to use the sequence
replay mode, as here, almost all data is already transferred in the initialization phase. All
that is left to transfer, is the sequence the data pointer is following.

3.3.2. Limits of using the card in the experiment

There are some considerations to make when using a digitizer card as a driver for acousto-
optical tweezers. Since the digitizer replays sampled data points from waveforms, this
means data points need to be transferred from a computer memory to the digitizer card. The
transfer time should of course be kept minimal, since the information about which wave-
forms to sample is only available when atoms are already loaded into tweezers and their
lifetime in the tweezer traps is finite (on the order of 80 s for our experiment). Transferring
data points to the spectrum card can be done in advance in the sequence replay mode, how-
ever this requires the internal memory of the digitizer to be big enough to hold all possible
waveforms to be replayed. Both the transfer time and memory usage are calculated in the
following, considering both the standard replay mode and the sequence replay mode.

In order to calculate the transfer time and memory usage, some assumptions need to be
made. The assumptions and all necessary variables are summarized in Table 3.3.2. First
of all, the central frequency of the AOD is approximately fAOD = 100MHz. Therefore,
in order to sample a sine at this frequency with at least 10 points per oscillation, means
a sampling rate of at least 1 GS s−1 needs to be applied. For the M4i digitizer card, this
means the next available setting is 1.25GS s−1 and gives about 13 samples per oscillation.
Being able to resolve the signal clearly, has the advantage to generate the frequency more
accurately, therefore the 10 samples per oscillation is a good limit.

Now in order to calculate the time to transfer an atom adiabatically from the SLM tweezer
grid into the AOD tweezer grid (and back again), the relation ẇ > w2 needs to be fulfilled,
wherew is the trap frequency in transverse direction. The following argumentation follows
the directions in [28]. In our case, this is on the order of 20 kHz and is fulfilled for a transfer
time of ttransfer = 1ms. To calculate the moving time tmove for an atom from one grid point
to another, the shape of the trap is considered. If the atom is accelerated in the first half
of the movement, and decelerated in the second half of the movement, the total distance
to transfer the atom is given as L = at2move. The maximal acceleration is found from the
trap waist w = 1 μm and its radial frequency frad = 100 kHz, as amax ≈ wf 2

rad = 104ms−2.
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Variable Used or assumed value

Sampling rate 1.25GHz
Central AOD driving frequency 100MHz
Adiabatic transfer time to new grid 1ms
Adiabatic movement time to next grid point 1ms
Grid size 10× 10

Number of tweezer transfers for sorting 60
Number of movements for sorting 40

Table 3.5.: Variables and assumptions used in the calculations for estimation of data transfer
time and memory usage under the consideration of the experiment discussed in
this thesis.

Therefore, choosing a conservative acceleration a = 10m s−2 results in a moving time
tmove = 1ms over a distance L = 10 μm.

With the transfer time, moving time, and sampling rate in place, the size of one signal to
move and transfer an atom, can be calculated as:

npoints = St = 1.25GS s−1 ∗ 1ms = 1.25× 106 (3.9)

Msig = 2 B ∗ npoints = 2.5MB, (3.10)

where 1 B is one byte and t = Tmove = ttransfer. From the simulations of the algorithms
in Figure 3.10, we see that assuming a 10 × 10 grid, there are about 60 transfers from the
SLM to the AOD grid (or the other way around) and 40 movements for one sorting. This
means 100 sequences need to be played per channel, which is nseq = 200 in total. Lastly, the
memory for all signals needs to be aligned to a power of two. Therefore, from the transfer
speed vtransfer in Table 3.3.1 follows the time it takes for one transfer ttransfer:

ttransfer = ⌈nseqMsig⌉2 vtransfer = 183ms, (3.11)

where the symbol ⌈. . .⌉2 refers to rounding up to the next power of two. These calculations
set the limit for the single replay mode, however, in the sequence replay mode, the limiting
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factor is the memory it takes to store all possible sequences. The storage of the sequences
already assumes knowledge of the composition of both channels. Therefore it is necessary
to upload every relevant combination of signals for both channels. Working again with a
10× 10 grid of atoms, all relevant signals are found from the following table:

Signals on channel 1 Signals on channel 2 Usage

10 intensity ramps up 10 intensity ramps up Transfer into AOD grid

10 intensity ramps down 10 intensity ramps down Transfer out of AOD grid

9 frequency ramps up 10 constant frequencies Move along x-axis

9 frequency ramps down 10 constant frequencies Move along x-axis

10 constant frequencies 9 frequency ramps up Move along y-axis

10 constant frequencies 9 frequency ramps down Move along y-axis

Thus, by multiplying the signals in the columns and then adding the rows, there are 560
combinations and nseq = 560 ∗ 2 = 1120 signals to upload onto the card. Each having a
size of Msig = 2.5MB results in a required memory of Mreq = 2.8GB. More generally, on
a NxM grid, the number of sequences can be calculated via

nseq = 2NM + 2N(M − 1) + 2(N − 1)M (3.12)

and therefore the required memory is

Mreq = 5MB ∗ nseq. (3.13)

With the calculations above, it is possible to apply the pathfinding sorting algorithm to the
atoms in a timely manner. However for the compression algorithm, a much larger amount
of signals needs to be sampled to cover all possible combinations. Considering, that two
sides of the target area are sorting at the same time, and that slices of one row (or column)
is selected at the same time, the number of sequences, in one channel, to move one row is
then given by

nseq,row =

M−1∑
N=1

N

2

=
1

4
(M2 −M)

2
. (3.14)
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The square comes from the fact, that for every frequency ramp on one side, a frequency
ramp on the other side of the target area needs to be matched. A similar relation (replacing
M byN ) is found for the number of sequences for the columns. Then, considering that the
channels aren’t independent, the total number of sequences is found by:

nseq = Mnseq,col +Nnseq,row. (3.15)

Taking also into account, that after the compression phase follows a pathfinding phase, it
is already easy to see, that the memory requirement would greatly exceed the available
memory of 4GB on the spectrum M4i on a 10× 10 grid.

This means, in order to use the compression algorithm, the sequences need to be sampled
on-the-fly. This is in general slow, compared to the sorting time if done on a CPU. How-
ever, it is possible to use parallelization of graphics processing units (GPUs). On a NVIDIA
Geforce GTX 1080 Ti, 3584 cores are available, which can all sample part of a signal individ-
ually. This means for a sequence of 5MB, 2 B per datapoint, about 700 calculations need to
be made in sequence. Assuming only rectangles are sampled, this gives one comparison per
sampled value and one insertion (into an array). At a clock speed of 1480MHz [29], results
in 0.5 μs computation time, meaning only transfer speed from the GPU to the digitizer card
is relevant. The transfer speed is then given from Table 3.3.1, adding 1.8ms per move of
one row (or column) of atoms.

Since one channel always has a fixed frequency, it is possible to use a VCO for this channel,
meaning only half of the signals need to be sampled. Therefore, each move takes 0.9ms to
transfer from the GPU to the digitzer card and thus for the 60 transfers + 40 moves takes
about 90ms total.

3.4. Conclusion

It was shown how crossed AODs are used, in order to generate movable tweezers. As
loading of atoms can only guarantee 50% filling, the tweezers are then used to sort atoms
into the gaps, to guarantee a perfectly occupied grid, as long as the sorting happens faster
than the lifetime of the atoms. Two different algorithms were discussed that move the
atoms to their new locations, which are a pathfinding algorithm, moving single atoms and
a compression algorithm, which is able to use parallelization, such that multiple atoms are
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moved at the same time. It was shown that this approach reduces computation time of
paths and sorting time of the atoms. Lastly, it was explained how the signals are generated
using a digitizer card and the memory requirement for both algorithms were stated. It was
shown, that as long as the grid is small enough, the pathfinding algorithm can be used
with the digitizer card, as it has a smaller memory footprint. However, for a grid size of
12× 12 already, the memory of the digitizer card (Spectrum M4i.6680-x8) is not sufficient,
such that on-the-fly calculations are inevitable and the compression algorithm, with smaller
computation time, can be used.
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4. State selective light shifts for
spin-sensitive imaging

Being able to measure the spin of ground state potassium atoms in many-body quantum
experiments gives insight into the full quantum state and thus being able to pinpoint the
ground state on the Bloch sphere. In Rydberg dressing experiments [30–35], where the
atom is in a ground state and fractionally in an excited Rydberg state, the spin can be used
in a Ramsey sequence, in order to measure correlations [36]. This is, since the ground state
atoms in a superposition of two spins, couple to the Rydberg state. To measure effects, such
as Rydberg blockade [12, 37], and the resulting correlations, the superposition state acquires
a phase on the Bloch sphere, which needs to be evaluated. This is currently achieved, by
doing a projection measurement by removing one component out of the system.

With the new approach, it is possible to evaluate the spin species, by separating them in
independent tweezers. A spin-sensitive tweezer array is then moved, and thus the atoms
having this spin component follow this dipole potential. This creates a separation, and
by evaluating the geometry from a fluorescence image, it is thus possible to find how the
tweezer arrays were previously occupied. Measuring the spins this way, also means the
atoms will not heat out during the process, and therefore the system can be reassembled
and reused for further investigation.

The following chapter will discuss the setup in question in more detail, as well as the wave-
length in use, in order to have tweezers sensitive to only one spin component. The new
laser system is explained in detail, which includes a cavity for frequency stabilization, and
therefore stability of the laser is discussed.

4.1. Approaches

Measuring the spin means in our experiment, to take a fluorescence image of the two
ground states F = 1 and F = 2. However, during imaging, the spins are mixed, such
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that they can’t be distinguished. As it was shown in Chapter 3, it is possible to move se-
lected tweezers. Therefore two approaches are discussed in the following, both work by
separating the two spins spatially, which requires finding ways of being sensitive to one
specific ground-state spin. The first idea is using strong magnetic fields to increase the
separation of the spin levels with the Zeeman effect. The second approach is using a state
selective light shift, given by selecting a particular wavelength. This allows one spin com-
ponent to be trapped, while the other will not see a trapping effect. In both applications, the
idea is to trap one spin state in its own trap and physically move it away from the other. By
taking an image, it is then possible to map positions to spins and therefore find out which
tweezers contained which spin species. Moving the spin-sensitive tweezers back into its
original position, the initial system is the reassembled and newmeasurements can be taken
with more information.

4.1.1. Zeemann induced potential separation

Although the spin levels are too close in energy space, to address them with imaging lasers,
having a position dependent potential, that is different for each spin state, is enough to
spatially separate them. One way of achieving this, is by applying magnetic fields. In 1896,
Pieter Zeeman wrote about how magnetic fields were affecting spectroscopy of atoms [38].
From this followed the Zeeman effect, which explains how spectral lines of atoms are split
and shifted when applying magnetic fields. This can be calculated perturbatively [39], by
modelling the atom as a magnetic dipole. In analogue to the classic description of magnetic
dipoles, this gives an energy VM depending on the magnetic field B:

VM = −µB (4.1)

and is then the perturbation in the total HamiltonianH = H0+VM . The magnetic moment
µ contains contributions from nuclear and electron spin, which then give direction and
length of the magnetic dipole. The energy associated with the perturbation evaluates to

Ez = BzµB (glml + gsms) . (4.2)
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It has contributions from the nuclear spin (glml) and electron spin (gsms) and depends on
the Bohr magneton µB . The magnetic quantum numbers mi, i ∈ {l, s} depend on the
value of the associated quantum numbers, which are the orbital angular momentum L and
electron angular momentum S, such that ml ∈ {−L,−L + 1, . . . , L − 1, L} and ms ∈
{−S,−S + 1, . . . , S − 1, S}. This means, not only is the hyperfine state shifted by the
magnetic field, it is also split into more energy sublevels. However, a complete description
of the energy shift, needs to integrate the shifts of the hyperfine levels, which has been
done in the Breit-Rabi model [40].

Figure 4.1 gives an illustration of how the two spin components F = 1 and F = 2 in the
potassium ground state are affected due to a magnetic field. Visible is a splitting of the
spin-states into sublevels. In order to maximally separate the spin states, the F = 1 spin
would be pumped into themF = 1 state, and consequently, F = 2 into themF = 2 state.

Using this, the idea is to create a position dependent trap for the two spin-states. To do this,
we need to note, that from the figure, the F = 1,mF = 1 state has a negative slope, while
the F = 2,mF = 2 state has a positive slope. This means, simply by generating a magnetic
field ramp, the atoms in different spin states, will see a position dependent energy Vmag.
Since the atoms are trapped inside optical tweezers, the potential given by the dipole force
is [41]:

Vdip(r) = − πc2Γ

2w3
0∆

I(r), (4.3)

where Γ is the line width of the transition, in this case the D2 line, ∆ the detuning, w0 the
resonance frequency and I(r) the intensity of the laser beam. By applying the magnetic
field gradient, the atoms see a total potential V (r):

V (r) = Vdip(r) + Vmag(B(r)), (4.4)

where the position dependence was explicitly noted. This way, the potential minimum,
which was originally just given by the dipole trap, is now shifted in the direction of the
potential induced by the Zeeman effect. Thus, the two spin states will see different poten-
tials, which are shifted in position space with respect to each other. However, numerical
calculations of the potential minimum show that the shift is too small in order to spatially
separate the atoms. For this, it is assumed, the atom is trapped on the D2-line and the laser
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Figure 4.1.: The spectrum of ground state potassium is split into magnetic sublevels and
shifted depending on a magnetic field applied to the atoms. Shown are two spin
states F = 1 in blue and F = 2 in purple, relative to the ground state energy of
4 S1/2.

power is 1 μW, where the spatial separation is favorable towards lower laser powers. More-
over, the magnetic field gradient is set to B(r) = 40G cm−1, the maximum possible in our
experiment. This gives a separation of∆x = 2.1 nm, which is much less than typical beam
waists of w = 1 μm. These results are further illustrated in Figure 4.2.

The parameters used in the calculations are already on the optimistic end, which leads to
the conclusion that this approach only works when very high magnetic fields are applied.
Simulations show, that applying a magnetic field slope of B = 4000G cm−1 results in a
separation of 0.2 μm. Luckily, there is another approach, which works by using only the
light from frequency stable lasers, which is discussed in the following.

4.1.2. Utilization of state selective light shifts

There is another effect that affects the energy of the spin states, similar to the Zeeman effect,
in which electrical fields also shift and split energy levels [42, 43]. Under the influence of
modulated electrical fields, such as coherent laser light, the effect is called AC Stark shift or
simply light shift.

They are calculated in the semiclassical picture, where the light is treated classically and
the atom is quantized. Moreover, in a simplified approach, the atom can be treated as a
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Figure 4.2.: Two spin species are subject to a dipole trap under the influence of a magnetic
field gradient. The F = 1,mF = 1 and F = 2,mF = 2 states are colored in
purple and blue respectively. The parameters for the trap are given in the text.
Also shown is the energy of the atom as a red area. The zoomed in diagram on
the right shows the separation of the two potentials, which is on the nanometer
scale.

two-level system, when light is mostly resonant to a single excited state. Therefore, the
electric field of the light and the state of the atom are written respectively as:

E(r, t) = ϵE0 cos (kr− ωLt) (4.5)

|Ψ⟩ = cg(t)|g⟩+ ce(t)|e⟩. (4.6)

Here, ϵ is the electric field vector and E0 its strength, k and ωL are the wave vector and
frequency of the field respectively. The state of the two-level atom changes with time, given
by the ground and excited state probabilities |cg(t)|2 and |ce(t)|2. Moreover, the transition
from the ground to the excited state has a resonance at ω0 and therefore the difference
between the light frequency and the resonance is called the detuning, ∆ = ωL − ω0. The
coupling between the electric field and the atom can be calculated from the dipole interac-
tion and is simply VI = −µE, given the dipole operatorµ = −er. In this two-level system,
where the atom is constantly driven by the electric field, the populations oscillate, however
due to spontaneous emission, which can’t be neglected, the excited state population will
decay with time. This decay is calculated in [44] and the result is:
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Γ =
w3

0

3πϵ0h̄c3
|⟨g|µ|e⟩|2. (4.7)

To calculate the energy shift the states experience, perturbation theory can be applied in
case the detuning is large [45], which to second order is in general:

∆Ei =
∑
j ̸=i

|⟨j|VI |i⟩|
ϵi − ϵj

(4.8)

Therefore, in the two-level system, the sum vanishes and the dipole matrix element ⟨e|µ|g⟩
can be replaced with the decay rate from Equation 4.7 and therefore:

∆E± = ±|⟨e|µ|g⟩|2

∆
|E2| = ±3πc2

2ω3
0

Γ

∆
I (4.9)

where the relation I = 2ϵ0c|E|2 was used. The plus and minus sign of the energy shift
refer to the excited and ground states respectively and it can be seen, that these shifts
only depend on the light field. The two-level system is only a simplification and in a more
complete scenario, contributions from all excited states need to be summed up. Moreover,
for large laser powers, coupling to the nuclear spin has to be considered, resulting in the
hyperfine splitting of the energy levels [45]. This results in the light shifts seen in Figure 4.3,
for the two spin states, F = 1 and F = 2 for the potassium atoms in the experiment.

Due to the light shifts, the atoms see an induced potential, given by the energy of the state.
Therefore, the two spins can be spatially separated, when one component sees a potential,
where the other one does not. This is easy to see in Figure 4.4, where the light shifts for the
two spin states are given as a function of wavelength of the laser for circularly polarized
light. We can see, that at 768.40 nm, the F = 2 state is trapped, while the F = 1 component
does not see a light shift, wich makes the atom with this spin transparent to the light.

In the experiment then, the light is produced as optical tweezers using AODs as discussed
in Chapter 3 and mapped over the SLM tweezers. To transfer the atoms into the spin-
selective tweezer, the resulting trap has to be much deeper than the initial tweezers. These
have a power of ≈ 15mW, but are highly detuned to the excited state on the D2 line at
a wavelength of 1064 nm. Moreover, high scattering rates will heat the atoms out of the
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Figure 4.3.: The spin levels are split up due to the AC Stark shift from the laser illuminating
the atoms. Shown are the ground states with F = 1 in purple and F = 2 in
blue. The laser has a wavelength of 768.40 nm and positive circular polarization.
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Figure 4.4.: The light shift of the F = 1,mF = 1 (purple) and F = 2,mF = 2 (blue) states
against wavelength for a laser power of 0.1mW and positive circular polariza-
tion. At 768.40 nm, the F = 1 component is transparent to the laser, therefore
making it possible to trap only the F = 2 state.

45



Chapter 4. State selective light shifts for spin-sensitive imaging

0 1 2
Power (mW)

0

5

10

15
Re

la
tiv

e 
tra

p 
de

pt
h

0 1 2
Power (mW)

0

5

10

15

Sc
at

te
rin

g 
ra

te
 (k

H
z)

0 1 2
Power (mW)

0.0

0.2

0.4

H
ea

tin
g 

ra
te

 (m
K 

s−1
)

Figure 4.5.: On the left, the relative trap depth between the spin-selective tweezer and the
SLM tweezer is shown as a function of the spin-tweezer laser power. For the
F = 1,mF = 1 (purple) and F = 2,mF = 2 (blue) state, only one state
is trapped. Already at 0.3mW power, the spin tweezer is more than 2 times
deeper than the SLM tweezer. The shaded area is for reference if the laser is
shifted by ±100GHz. The middle plot shows the scattering rate of the tweezer
as a function of laser power, where both spin states scatter practically the same
amount of photons. As a guide to the eye, the 0.3mW power is shown as a
dashed red line. In the same vein, the right plot shows the heating rate inside a
harmonic potential.

trap and therefore, both of these quantities have been verified to be compatible with the
experiment and are given in Figure 4.5. The trap depth of the spin-selective tweezer is
almost twice as deep as the SLM tweezer for a laser power of P = 300 μW, when the trap
depth of the SLM tweezer is ≈ 1mK. At this point, the scattering rate is Γsc = 2.5 kHz or
less than three photons per millisecond. Therefore, if the move happens during this time,
almost no photons are being scattered. Moreover, a Raman sideband cooling technique
that is implemented in the experiment [46] allows to cool atoms even further, therefore
trap depths can be reduced by at least a factor of ten, which reduces scattering over one
millisecond to less than one. To verify, that heating is not an issue, the heating rate due
to dipole traps has been calculated [45] and is shown as a function of the laser power in
Figure 4.5 as well. Consequently, using the AC-Stark shift in order to spatially separate the
atoms is a viable approach to do spin-selective imaging.

4.2. Setup

We have seen, how light shifts can be used to trap a single spin species. Doing so, it is
possible to spatially separate and image them onto a camera. However, it is necessary to
have a stable laser at 768.40 nm. The following section highlights the steps in order to build
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Figure 4.6.: Shown is the laser threshold for the home-built laser, driven with a Thor-
labs LDC205C current controller. The power was measured using a Thorlabs
PM100D power meter and the Thorlabs S121C sensor.

such a laser system, which includes setting up a cavity and a Pound Drever Hall (PDH)
lock, that frequency stabilizes the system. The laser is then coupled into the same setup
as in Chapter 3, allowing to generate acousto-optically deflected, spin-sensitive tweezers,
allowing to move the spin state in space.

4.2.1. Laser classification

The laser classified in the following is a homebuilt model, the design of which is given
in Appendix A. It has room for a laser diode, whose light is collimated, filtered and re-
flected through a partially reflective mirror, which also serves as the output of the housing.
The laser diode (Eagleyard EYP-RWE-0760-02010-1500-SOT12-0000) used, is tunable in the
range from 752 nm to 772 nm with a maximum power of 80mW. Since the diode is also
used as the active medium, the cavity simplifies to being just a mirror, that reflects back
into the diode and transmits part of the light out of the laser casing.

The laser power is classified as a function of current supplied to the laserdiode. Beyond the
laser threshold, the power is linear with current and the diagram for the model built here
is given in Figure 4.6.

4.2.2. Beam setup of spin-selective laser

Now that there is a laser, the beam path in order to have a laser for spin-selective imaging
can be set up. For this, two parts of the laser are split and coupled into fibers. One is
used for monitoring of the wavelength, which will give an indication, if the frequency is
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Figure 4.7.: Shown is the setup, in order to prepare the spin-sensitive tweezer for the ex-
periment. The laser first passes an isolator, in order to protect the laser cavity
from reflections. It is then split into two paths for monitoring and frequency
stabilization. An AOD is used to switch the light on and off for the experiment.

currently locked or not. The second part will go to the cavity, allowing to actually perform
the frequency stabilization. The full beam path is shown in Figure 4.7.

The main path is then coupled into a fibre, going towards the AOD discussed previously.
However, the beam needs to be turned on and off at certain times during the experiment, for
this, it first passes through an AOM and finally a shutter to block any leftover stray light. As
shown previously, in 3.1.2, the light coming out of the fibre is then intensity stabilized and
coupled into the AOD, which can be programmed to move the spin-sensitive tweezers.
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4.2.3. Cavity classification

The laser has been built and characterized and can be coupled into the AOD, in order to gen-
erate movable tweezer for spin-selective imaging. However, the process requires a stable
frequency at 768.40 nm. As a matter of fact, not only are there resonances at 766.7 nm and
770.1 nm, this spin-selecting procedure works by requires that one spin state is completely
transparent to the laser light, in terms of seeing a dipole potential. In order to have the
laser emit a stable frequency, a piezo tunes the position of the mirror inside the laser cavity
based on an input signal. This way, the length of the cavity, and therefore the standing
wave, can be selected. However, pressure and temperature can both affect the mirror, and
therefore there needs to be a system in place, to compensate for these factors.

Consequently, it is necessary to have a device, that measures the instability, and feeds back
a signal to the piezo. In order to do so, a part of the laser is split off and sent into a stable
cavity. The light that has passed the cavity is measured using a photodiode and it is then
possible to measure resonances of this cavity. With the PDH method, an error signal is
generated, that gives a feedback to the piezo. This generates a feedback loop, which is
stable when the error signal is at a minimum. The process has been used and described in
the experiment before [18]. The error signal recorded for this specific setup was recorded
and is given in Chapter C.

The stable cavity in place for locking the laser frequency is made from a ultra-low expan-
sion (ULE) glass, that has twomirrors attached to it. Thematerial is not explicitly necessary,
however the full extent of this specific ULE couldn’t be used anymore, as only one side has
the mirror contacted, while the other mirror is glued. Therefore, due to the glue, this cavity
is still prone to some wavelength drifts, induced by temperature expanding and compress-
ing the material. This specific application can deal with these instabilities and therefore
the glass was recycled for this setup. In order to stabilize the cavity against temperature
fluctuations, it rests in a copper housing. This copper housing further rests in a stainless
steel container. This container is then evacuated with a vacuum pump, which stabilizes the
cavity against pressure fluctuations. A picture of the cavity is given in Appendix B.

In order to quantize the stability this cavity can provide, the frequency drift is measured.
However, at 768.40 nm, the frequency is in the hundreds of terahertz, which is difficult to
measure conventionally. However, by superimposing a reference laser onto the spin-laser,
that has a very stable frequency, it is possible to measure the beat note. Mathematically,
this means adding two sine-signals together:
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sin (2πf1t) + sin (2πf2t) = 2 sin
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where f1 and f2 are the frequencies of the reference and spin-laser respectively.

This relation turns two modulations, which have the frequencies added and subtracted.
The first one still can’t be resolved, however if the difference frequency is low enough, it
is possible to see it on a spectrum analyzer. This means, the frequency of the “unstable”
laser was first matched to the stable laser, such that the difference frequency was at least
in the Megahertz regime. Then, it is possible to observe the drift of the cavity, which is the
change in frequency with time. This usually happens due to temperature drifts affecting
the cavity. The measurement was taken over several days and recorded as in Figure 4.8.
Close to the end of the measurement, the drift was at a minimum of around 33MHz per
day, which is well within the limits, which can be verified with Figure 4.5. There, a shift
of 100GHz is shown as the shaded area and therefore it would take the cavity 30 days to
drift to just one percent within this area. However it is important to note, that ULE glass
has generally much lower drifts, on the order of kilohertz per day [47]. This means, the
glue on one side of the glass cavity is the limiting factor for these drifts and the only way
to improve on this, is to replace the ULE glass.

With the cavity in place, all building blocks are there in order to separate spins of ground
state potassium atoms. This means, the frequency stability given by the cavity locks the
laser andmakes it possible to position it close to themagic wavelength, where only one spin
state sees a trap. By coupling the beam into the crossed AOD, each atom can be addressed
and moved individually and an image of the spins can be acquired, while simultaneously
keeping the atoms in the trap.
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Figure 4.8.: The cavity drift was recorded over six days by doing a beat measurement with
a reference laser. Horizontal lines show 50MHz difference at the end of the
measurement, where temperature and pressure has stabilized. From this it can
be seen, that the drift is on the order of 33MHz per day.
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5. Conclusion and Outlook

This thesis discussed setups related to optical tweezer arrays in a Potassium-39 experiment.
It was shown, how using a Pockels cell improves a current setup for loading atoms into
SLM tweezers. With the new implementation, the duty cycle of the dipole traps during the
chopping sequence can be increased, effectively improving the power available for every
single tweezer. This also opens up the possibility of increasing the number of tweezer, as the
trap depth available currently can then be distributed across a larger area. The discussion of
sorting atoms followed, which solves the problem of only having 50% of sites occupied due
to parametric heating. The solution requires moving atoms into unoccupied sites, which
can be implemented using a pathfinding algorithm. As an alternative, a new algorithm
was proposed, that uses parallelization and a digitizer card to move multiple atoms at the
same time. The chapter was concluded by comparing the efficiency of the algorithms and by
highlighting the requirements when using the digitizer card. The third setup then discussed
an approach of doing spin-selective imaging, which will be useful in experiments involving
Rydberg dressed states, as they are mostly ground states, but of unknown spin. For this, the
spin states are spatially separated by using spin selective light shifts induced by a frequency
stabilized laser. The laser system was built and characterized, and a stable cavity with a
feedback loop to the laser for frequency stabilization was described. It is then coupled into
the same crossed AODs used for the sorting, allowing to move atoms (and therefore the
spin states) apart.

Shown were ways of improving the current state of the experimental setup. Moreover,
there are applications beyond the scope of the current system in place. As was shown, the
EOMs presented here also have faster repetition rates than the AOMs used currently. Apart
from loading, it is then possible to drive faster pi-pulses in the experiment, or start doing
Floquet engineering [48], which requires periodic driving of atoms. For sorting, being able
to fill every site in an atomic array opens the door to manybody Rydberg effects. This
allows for example to model antiferromagnets in an Ising-like system [49] and measure
correlations without the need of heavy post-selection of data. It was motivated, how spin-
selective imaging reduces cycle times, which ultimately leads to being able to take more
statistics. This is a requirement to measuring entanglement entropies, for example Rényi
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entropies [50] in a quantum information application of the experiment. Conclusively, the
setups that were built over the course of this thesis offer a way to explore manybody Ryd-
berg effects with high cycle times and high fidelity.
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A. Linear laser design

The linear laser was designed by Nikolaus Lorenz and is used in multiple parts of the ex-
periment.

Figure A.1.: The laser casing used for the spin-sensitive tweezer. It consists of a diode, filter,
lens and a mirror.
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B. Cavity for frequency stability of
spin-sensitive tweezer

A special cavity was built in order to stabilize the spin-sensitive tweezer against its fre-
quency. The outer housing is made of stainless steel and can be evacuated using the flange
in the back. The cavity is a ULE spacer, resting on a copper block, which should absorb
most temperature instabilities. The spacer is surrounded by Viton rings, to prevent it from
damage against direct contact with the copper block. Not visible are peek spacer between
the copper block and steel casing, which isolate both parts from each other. A picture of
the cavity is given below, in Figure B.1.
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Appendix B. Cavity for frequency stability of spin-sensitive tweezer

Figure B.1.: The cavity used for frequency locking the spins-sensitive tweezer.
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C. PDH lock of cavity

Given below is the PDH locking signal retrieved, when scanning through the cavity.
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Figure C.1.: The PDH locking signal (orange) and the transmission signal of the cavity
(blue).
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